Skip to main content

Signaling Diversity Mediated by Muscarinic Acetylcholine Receptor Subtypes and Evidence for Functional Selectivity

  • Chapter
  • First Online:
Functional Selectivity of G Protein-Coupled Receptor Ligands

Part of the book series: The Receptors ((REC))

  • 838 Accesses

Abstract

Muscarinic acetylcholine (mACh) receptor subtypes (M1–M5) mediate many of the central and peripheral actions of acetylcholine. Although two mACh receptor subgroups (M1/M3/M5 and M2/M4) have been defined based on primary sequence similarities and G protein/effector coupling preferences, considerable overlap in the coupling of subtypes to different signaling pathways is evident from the literature. Here we summarize the available experimental evidence for single mACh receptor subtypes coupling via more than one G protein subtype, or independently of G proteins, to exert their cellular effects. We also critically analyze the current evidence for different ligands being able to activate selectively subsets of these downstream signaling readouts. We discuss why there is currently little available evidence for functional selectivity at mACh receptors and speculate whether this situation will change as more subtype-selective ligands, and ligands that act on mACh receptors at sites other than the acetylcholine binding site are developed and explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dale HH. The action of certain esters and ethers of choline and their relation to muscarine. J Pharmacol Exp Ther 1914;6:147–190.

    CAS  Google Scholar 

  2. Roszkowski AP. An unusual type of sympathetic ganglionic stimulant. J Pharmacol Exp Ther 1961;132:156–170.

    PubMed  CAS  Google Scholar 

  3. Burgen ASV, Spero L. The action of acetylcholine and other drugs on the efflux of potassium and rubidium from smooth muscle of the guinea-pig intestine. Br J Pharmacol 1968;34:99–115.

    PubMed  CAS  Google Scholar 

  4. Hammer R, Berrie CP, Birdsall JNM, Burgen ASV, Hulme EC. Pirenzepine distinguishes between subclasses of muscarinic receptors. Nature 1980;283:90–92.

    PubMed  CAS  Google Scholar 

  5. Hulme EC, Birdsall NJM, Buckley NJ. Muscarinic receptor subtypes. Ann Rev Pharmacol Toxicol 1990;30:633–673.

    CAS  Google Scholar 

  6. Caulfield MP. Muscarinic receptors – characterization, coupling and function. Pharmac Ther 1993;58:319–379

    CAS  Google Scholar 

  7. Caulfield MP, Birdsall NJM. International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 1998;50:279–290.

    PubMed  CAS  Google Scholar 

  8. Felder CC. Muscarinic acetylcholine receptors: signal transduction through multiple effectors. FASEB J 1995;9:619–625.

    PubMed  CAS  Google Scholar 

  9. Lanzafame AA, Christopoulos A, Mitchelson F. Cellular signaling mechanisms for muscarinic acetylcholine receptors. Recep Channels 2003;9:241–260.

    CAS  Google Scholar 

  10. Wess J, Eglen RM, Gautam D. Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov 2007;6:721–733.

    PubMed  CAS  Google Scholar 

  11. Potter LT. Snake toxins that bind specifically to individual subtypes of muscarinic receptors. Life Sci 2001;68:2541–2547.

    PubMed  CAS  Google Scholar 

  12. Onali P, Adem A, Karlsson E, Olianas MC. The pharmacological action of MT-7. Life Sci 2005;76:1547–1552.

    PubMed  CAS  Google Scholar 

  13. Spalding TA, Trotter C, Skjaerbaek N, et al. Discovery of an ectopic activation site on the M1 muscarinic receptor. Mol Pharmacol 2002;61:1297–1302.

    PubMed  CAS  Google Scholar 

  14. Langmead CJ, Fry VA, Forbes IT, et al. Probing the molecular mechanism of interaction between 4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine (AC-42) and the muscarinic M1 receptor: direct pharmacological evidence that AC-42 is an allosteric agonist. Mol Pharmacol 2006;69:236–246.

    PubMed  CAS  Google Scholar 

  15. Brown JH, Brown SL. Agonists differentiate muscarinic receptors that inhibit cyclic AMP formation from those that stimulate phosphoinositide metabolism. J Biol Chem 1984;259:3777–3781.

    PubMed  CAS  Google Scholar 

  16. Peralta EG, Ashkenazi A, Winslow JW, Ramachandran J, Capon DJ. Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature 1988;334:434–437.

    PubMed  CAS  Google Scholar 

  17. Jones SV, Heilman CJ, Brann MR. Functional responses of cloned muscarinic receptors expressed in CHO-K1 cells. Mol Pharmacol 1991;40:242–47.

    PubMed  CAS  Google Scholar 

  18. Bonner TI, Buckley NJ, Young AC, Brann MR. Identification of a family of muscarinic acetylcholine receptor genes. Science 1987;237:527–532.

    PubMed  CAS  Google Scholar 

  19. Bonner TI, Young AC, Brann MR, Buckley NJ. Cloning and expression of the human and rat m5 muscarinic acetylcholine receptor genes. Neuron 1988;1:403–410.

    PubMed  CAS  Google Scholar 

  20. Baumgold J, Fishman PH. Muscarinic receptor-mediated increase in cAMP levels in SK-N-SH human neuroblastoma cells. Biochem Biophys Res Commun 1988;154:1137–1143.

    PubMed  CAS  Google Scholar 

  21. Stein R, Pinkas-Kramarski R, Sokolovsky M. Cloned M1 muscarinic receptors mediate both adenylate cyclase inhibition and phosphoinositide turnover. EMBO J 1988;7:3031–3035.

    PubMed  CAS  Google Scholar 

  22. Conklin BR, Brann MR, Buckley NJ, Ma AL, Bonner TI, Axelrod J. Stimulation of arachidonic acid release and inhibition of mitogenesis by cloned genes for muscarinic receptor subtypes stably expressed in A9 L cells. Proc Natl Acad Sci USA 1988;85:8698–8702.

    PubMed  CAS  Google Scholar 

  23. Sandmann J, Peralta EG, Wurtmann RJ. Coupling of transfected muscarinic acetylcholine receptor subtypes to phospholipase D. J Biol Chem 1991;266:6031–6034.

    PubMed  CAS  Google Scholar 

  24. Ashkenazi A, Peralta EG, Winslow JW, Ramachandran J, Capon DJ. Functionally distinct G proteins selectively couple different receptors to PI hydrolysis in the same cell. Cell 1989;56:487–493.

    PubMed  CAS  Google Scholar 

  25. Schmidt M, Bienek C, van Koppen CJ, Michel MC, Jakobs KH. Differential calcium signalling by m2 and m3 muscarinic acetylcholine receptors in a single cell type. Naunyn-Schmiedeberg's Arch Pharmacol 1995;352:469–476.

    CAS  Google Scholar 

  26. Cooper DM, Mons N, Karpen JW. Adenylyl cyclases and the interaction between calcium and cAMP signalling. Nature 1995;374:421–424.

    PubMed  CAS  Google Scholar 

  27. Hanoune J, Defer N. Regulation and role of adenylyl cyclase isoforms. Ann Rev Pharmacol Toxicol 2001;41:145–174.

    CAS  Google Scholar 

  28. Sunahara RK, Taussig R. Isoforms of mammalian adenylyl cyclase: multiplicities of signaling. Mol Interv 2002;2:168–184.

    PubMed  CAS  Google Scholar 

  29. Bender AT, Beavo JA. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 2006;58:488–520.

    PubMed  CAS  Google Scholar 

  30. Migeon JC, Nathanson NM. Differential regulation of cAMP-mediated gene transcription by m1 and m4 muscarinic acetylcholine receptors. Preferential coupling of m4 receptors to Giα-2. J Biol Chem 1994;269:9767–9773.

    PubMed  CAS  Google Scholar 

  31. Migeon JC, Thomas SL, Nathanson NM. Regulation of cAMP-mediated gene transcription by wild type and mutated G-protein α-subunits. J Biol Chem 1994;269:29146–29152.

    PubMed  CAS  Google Scholar 

  32. Migeon JC, Thomas SL, Nathanson NM. Differential coupling of m2 and m4 muscarinic receptors to inhibition of adenylyl cyclase by Giα and Goα subunits. J Biol Chem 1995;270:16070–16074.

    PubMed  CAS  Google Scholar 

  33. Liu YF, Ghahremani MH, Rasenick MM, Jakobs KH, Albert PR. Stimulation of cAMP synthesis by Gi-coupled receptors upon ablation of distinct Gαi protein expression. J Biol Chem 1999;274:16444–16450.

    PubMed  CAS  Google Scholar 

  34. Dittman AH, Weber JP, Hinds TR, et al. A novel mechanism for coupling of m4 muscarinic acetylcholine receptors to calmodulin-sensitive adenylyl cyclases: crossover from G protein-coupled inhibition to stimulation. Biochemistry 1994;33:943–951.

    PubMed  CAS  Google Scholar 

  35. Vogel WK, Mosser VA, Bulseco DA, Schimerlik MI. Porcine m2 muscarinic acetylcholine receptor-effector coupling in Chinese hamster ovary cells. J Biol Chem 1995;270:15485–15493.

    PubMed  CAS  Google Scholar 

  36. Michal P, Lysíková M, Tucek S. Dual effects of muscarinic M2 acetylcholine receptors on the synthesis of cyclic AMP in CHO cells: dependence on time, receptor density and receptor agonists. Br J Pharmacol 2001;132:1217–1228.

    PubMed  CAS  Google Scholar 

  37. Mistry R, Dowling MR, Challiss RAJ. An investigation of whether agonist-selective receptor conformations occur with respect to M2 and M4 muscarinic acetylcholine receptor signalling via Gi/o and Gs proteins. Br J Pharmacol 2005;144:566–575.

    PubMed  CAS  Google Scholar 

  38. Michal P, El-Fakahany EE, Doleal V. Muscarinic M2 receptors directly activate Gq/11 and Gs G-proteins. J Pharmacol Exp Ther 2007;320:607–614.

    PubMed  CAS  Google Scholar 

  39. Burford NT, Tobin AB, Nahorski SR. Differential coupling of m1, m2 and m3 muscarinic receptor subtypes to inositol 1,4,5-trisphosphate and adenosine 3′,5′-cyclic monophosphate accumulation in Chinese hamster ovary cells. J Pharmacol Exp Ther 1995;274:134–142.

    PubMed  CAS  Google Scholar 

  40. Felder CC, Kanterman RY, Ma AL, Axelrod J. A transfected m1 muscarinic acetylcholine receptor stimulates adenylate cyclase via phosphatidylinositol hydrolysis. J Biol Chem 1989;264:20356–20362.

    PubMed  CAS  Google Scholar 

  41. Zhou XM, Curran P, Baumgold J, Fishman PH. Modulation of adenylylcyclase by protein kinase C in human neurotumor SK-N-MC cells: evidence that the α isozyme mediates both potentiation and desensitization. J Neurochem 1994;63:1361–1370.

    PubMed  CAS  Google Scholar 

  42. Meeker RB, Harden TK. Muscarinic cholinergic receptor-mediated control of cyclic AMP metabolism. Agonist-induced changes in nucleotide synthesis and degradation. Mol Pharmacol 1983;23:384–392.

    PubMed  CAS  Google Scholar 

  43. Gurwitz D, Haring R, Heldman E, Fraser CM, Manor D, Fisher A. Discrete activation of transduction pathways associated with acetylcholine m1 receptor by several muscarinic ligands. Eur J Pharmacol 1994;267:21–31.

    PubMed  CAS  Google Scholar 

  44. Burford NT, Nahorski SR. Muscarinic m1 receptor-stimulated adenylate cyclase activity in Chinese hamster ovary cells is mediated by Gsα and is not a consequence of phosphoinositidase C activation. Biochem J 1996;315:883–888.

    PubMed  CAS  Google Scholar 

  45. Heldman E, Barg J, Fisher A, et al. Pharmacological basis for functional selectivity of partial muscarinic receptor agonists. Eur J Pharmacol 1996;297:283–291.

    PubMed  CAS  Google Scholar 

  46. Evellin S, Nolte J, Tysack K, et al. Stimulation of phospholipase C-ε by the M3 muscarinic acetylcholine receptor mediated by cyclic AMP and the GTPase Rap2B. J Biol Chem 2002;277:16805–16813.

    PubMed  CAS  Google Scholar 

  47. Offermanns S, Wieland T, Homann D, et al. Transfected muscarinic acetylcholine receptors selectively couple to Gi-type G proteins and Gq/11. Mol Pharmacol 1994;45:890–898.

    PubMed  CAS  Google Scholar 

  48. Akam EC, Challiss RA, Nahorski SR. Gq/11 and Gi/o activation profiles in CHO cells expressing human muscarinic acetylcholine receptors: dependence on agonist as well as receptor-subtype. Br J Pharmacol 2001;132:950–958.

    PubMed  CAS  Google Scholar 

  49. Hokin MR, Hokin LE. Effects of acetylcholine on phospholipides in the pancreas. J Biol Chem 1954;209:549–558.

    PubMed  CAS  Google Scholar 

  50. Rhee SG. Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 2001;70:281–312.

    PubMed  CAS  Google Scholar 

  51. Suh PG, Park JI, Manzoli L, et al. Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep 2008;41:415–434.

    PubMed  CAS  Google Scholar 

  52. Gusovsky F, Lueders JE, Kohn EC, Felder CC. Muscarinic receptor-mediated tyrosine phosphorylation of phospholipase C-γ. An alternative mechanism for cholinergic-induced phosphoinositide breakdown. J Biol Chem 1993;268:7768–7772.

    PubMed  CAS  Google Scholar 

  53. Nishida M, Sugimoto K, Hara Y, et al. Amplification of receptor signalling by Ca2+ entry-mediated translocation and activation of PLCγ2 in B lymphocytes. EMBO J 2003;22:4677–4688.

    PubMed  CAS  Google Scholar 

  54. Mitchell CJ, Kelly MM, Blewitt M, Wilson JR, Biden TJ. Phospholipase C-γ mediates the hydrolysis of phosphatidylinositol, but not of phosphatidylinositol 4,5-bisphoshate, in carbamylcholine-stimulated islets of Langerhans. J Biol Chem 2001;276:19072–19077.

    PubMed  CAS  Google Scholar 

  55. Willars GB, Nahorski SR, Challiss RAJ. Differential regulation of muscarinic acetylcholine receptor-sensitive polyphosphoinositide pools and consequences for signaling in human neuroblastoma cells. J Biol Chem 1998;273:5037–5046.

    PubMed  CAS  Google Scholar 

  56. Suh BC, Hille B. Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr Opin Neurobiol 2005;15:370–378.

    PubMed  CAS  Google Scholar 

  57. Halstead JR, Jalink K, Divecha N. An emerging role for PtdIns(4,5)P2-mediated signalling in human disease. Trends Pharmacol Sci 2005;26:654–660.

    PubMed  CAS  Google Scholar 

  58. Sternweis PC, Smrcka AV. Regulation of phospholipase C by G proteins. Trends Biochem Sci 1992;17:502–506.

    PubMed  CAS  Google Scholar 

  59. Berstein G, Blank JL, Smrcka AV, et al. Reconstitution of agonist-stimulated phosphatidylinositol 4,5-bisphosphate hydrolysis using purified m1 muscarinic receptor, Gq/11, and phospholipase C-β1. J Biol Chem 1992;267:8081–8088.

    PubMed  CAS  Google Scholar 

  60. DeLapp NW, McKinzie JH, Sawyer BD, et al. Determination of [35S]guanosine-5'-O-(3-thio)triphosphate binding mediated by cholinergic muscarinic receptors in membranes from Chinese hamster ovary cells and rat striatum using an anti-G protein scintillation proximity assay. J Pharmacol Exp Ther 1999;289:946–955.

    PubMed  CAS  Google Scholar 

  61. Dippel E, Kalkbrenner F, Wittig B, Schultz G. A heterotrimeric G protein complex couples the muscarinic m1 receptor to phospholipase C-β. Proc Natl Acad Sci USA 1996;93:1391–1396.

    PubMed  CAS  Google Scholar 

  62. Delmas P, Crest M, Brown DA. Functional organization of PLC signaling microdomains in neurons. Trends Neurosci 2004;27:41–47.

    PubMed  CAS  Google Scholar 

  63. Delmas P, Wanaverbecq N, Abogadie FC, Mistry M, Brown DA. Signaling microdomains define the specificity of receptor-mediated InsP3 pathways in neurons. Neuron 2002;34:209–220.

    PubMed  CAS  Google Scholar 

  64. Vogel WK, Mosser VA, Bulseco DA, Schimerlik MI. Porcine m2 muscarinic acetylcholine receptor-effector coupling in Chinese hamster ovary cells. J Biol Chem 1995;270:15485–15493.

    PubMed  CAS  Google Scholar 

  65. Katz A, Wu D, Simon MI. Subunits βγ of heterotrimeric G protein activate β2 isoform of phospholipase C. Nature 1992;360:686–689.

    PubMed  CAS  Google Scholar 

  66. Schmidt M, Bienek C, van Koppen CJ, Michel MC, Jakobs KH. Differential calcium signalling by m2 and m3 muscarinic acetylcholine receptors in a single cell type. Naunyn Schmiedeberg's Arch Pharmacol 1995;352:469–476.

    CAS  Google Scholar 

  67. Martinson EA, Goldstein D, Brown JH. Muscarinic receptor activation of phosphatidylcholine hydrolysis. Relationship to phosphoinositide hydrolysis and diacylglycerol metabolism. J Biol Chem 1989;264:14748–14754.

    PubMed  CAS  Google Scholar 

  68. Bayon Y, Hernandez M, Alonso A, et al. Cytosolic phospholipase A2 is coupled to muscarinic receptors in the human astrocytoma cell line 1321N1: characterization of the transducing mechanism. Biochem J 1997;323:281–287.

    PubMed  CAS  Google Scholar 

  69. Cho HW, Kim JH, Choi S, Kim HJ. Phospholipase A2 is involved in muscarinic receptor-mediated sAPPα release independently of cyclooxygenase or lypoxygenase activity in SH-SY5Y cells. Neurosci Lett 2006;397:214–218.

    PubMed  CAS  Google Scholar 

  70. Cockcroft S. Signalling roles of mammalian phospholipase D1 and D2. Cell Mol Life Sci 2001;58:1674–1687.

    PubMed  CAS  Google Scholar 

  71. Oude Weernink PA, López de Jesús M, Schmidt M. Phospholipase D signaling: orchestration by PIP2 and small GTPases. Naunyn Schmiedeberg's Arch Pharmacol 2007;374:399–411.

    CAS  Google Scholar 

  72. Rümenapp U, Asmus M, Schablowski H, et al. The M3 muscarinic acetylcholine receptor expressed in HEK-293 cells signals to phospholipase D via G12, but not Gq-type G proteins. J Biol Chem 2001;276:2474–2479.

    PubMed  Google Scholar 

  73. Lutz S, Shankaranarayanan A, Coco C, et al. Structure of Gαq-p63RhoGEF-RhoA complex reveals a pathway for the activation of RhoA by GPCRs. Science 2007;318:1923–1927.

    PubMed  CAS  Google Scholar 

  74. Strassheim D, May LG, Varker KA, et al. M3 muscarinic acetylcholine receptors regulate cytoplasmic myosin by a process involving RhoA and requiring conventional protein kinase C isoforms. J Biol Chem 1999;274:18675–18685.

    PubMed  CAS  Google Scholar 

  75. Vogt S, Grosse R, Schultz G, Offermanns S. Receptor-dependent RhoA activation in G12/G13-deficient cells. J Biol Chem 2003;278:28743–28749.

    PubMed  CAS  Google Scholar 

  76. Street M, Marsh SJ, Stabach PR, Morrow JS, Brown DA, Buckley NJ. Stimulation of Gαq-coupled M1 muscarinic receptor causes reversible spectrin redistribution mediated by PLC, PKC and ROCK. J Cell Sci 2006;119:1528–1536.

    PubMed  CAS  Google Scholar 

  77. Gohla A, Offermanns S, Wilkie TM, Schultz G. Differential involvement of Gα12 and Gα13 in receptor-mediated stress fiber formation. J Biol Chem 1999;274:17901–17907.

    PubMed  CAS  Google Scholar 

  78. Tang X, Batty IH, Downes CP. Muscarinic receptors mediate phospholipase C-dependent activation of protein kinase B via Ca2+, ErbB3, and phosphoinositide 3-kinase in 1321N1 astrocytoma cells. J Biol Chem 2002;277:338–344.

    PubMed  CAS  Google Scholar 

  79. Nelson CP, Challiss RAJ. “Phenotypic” pharmacology: the influence of cellular environment on G protein-coupled receptor antagonist and inverse agonist pharmacology. Biochem Pharmacol 2007;73:737–751.

    PubMed  CAS  Google Scholar 

  80. Gutkind JS. The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J Biol Chem 1998;273:1839–1842.

    PubMed  CAS  Google Scholar 

  81. Marinissen MJ, Gutkind JS. G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci 2001;22:368–376.

    PubMed  CAS  Google Scholar 

  82. Pierce KL, Luttrell LM, Lefkowitz RJ. New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades. Oncogene 2001;20:1532–1539.

    PubMed  CAS  Google Scholar 

  83. Offermanns S, Bombien E, Schultz G. Stimulation of tyrosine phosphorylation and mitogen-activated-protein (MAP) kinase activity in human SH-SY5Y neuroblastoma cells by carbachol. Biochem J 1993;294:545–550.

    PubMed  CAS  Google Scholar 

  84. Crespo P, Xu N, Simonds WF, Gutkind JS. Ras-dependent activation of MAP kinase pathway mediated by G protein βγ-subunits. Nature 1994;369:418–420.

    PubMed  CAS  Google Scholar 

  85. Wylie PG, Challiss RA, Blank JL. Regulation of extracellular-signal regulated kinase and c-Jun N-terminal kinase by G protein-linked muscarinic acetylcholine receptors. Biochem J 1999;338:619–628.

    PubMed  CAS  Google Scholar 

  86. Winitz S, Russell M, Qian NX, Gardner A, Dwyer L, Johnson GL. Involvement of Ras and Raf in the Gi-coupled acetylcholine muscarinic m2 receptor activation of mitogen-activated protein (MAP) kinase kinase and MAP kinase. J Biol Chem 1993;268:19196–19199.

    PubMed  CAS  Google Scholar 

  87. Koch WJ, Hawes BE, Allen LF, Lefkowitz RJ. Direct evidence that Gi-coupled receptor stimulation of mitogen-activated protein kinase is mediated by Gβγ activation of p21ras. Proc Natl Acad Sci USA 1994;91:12706–12710.

    PubMed  CAS  Google Scholar 

  88. Lopez-Ilasaca M, Crespo P, Pellici PG, Gutkind JS, Wetzker R. Linkage of G protein-coupled receptors to the MAPK signaling pathway through PI3-kinaseγ. Science 1997;275:394–397.

    PubMed  CAS  Google Scholar 

  89. Mochizuki N, Ohba Y, Kiyokawa E, et al. Activation of the ERK/MAPK pathway by an isoform of rap1GAP associated with Gαi. Nature 1999;400:891–894.

    PubMed  CAS  Google Scholar 

  90. Guo FF, Kumahara E, Saffen D. A CalDAG-GEFI/Rap1/B-Raf cassette couples M1 muscarinic acetylcholine receptors to the activation of ERK1/2. J Biol Chem 2001;276:25568–25581.

    PubMed  CAS  Google Scholar 

  91. Yang H, Cooley D, Legakis JE, Ge Q, Andrade R, Mattingly RR. Phosphorylation of the Ras-GRF1 exchange factor at Ser916/898 reveals activation of Ras signaling in the cerebral cortex. J Biol Chem 2003;278:13278–13285.

    PubMed  CAS  Google Scholar 

  92. Coso OA, Teramoto H, Simonds WF, Gutkind JS. Signaling from G protein-coupled receptors to c-Jun kinase involves βγ subunits of heterotrimeric G proteins acting on a Ras and Rac1-dependent pathway. J Biol Chem 1996;271:3963–3966.

    PubMed  CAS  Google Scholar 

  93. Yamauchi J, Nagao M, Kaziro Y, Itoh H. Activation of p38 mitogen-activated protein kinase by signaling through G protein-coupled receptors. Involvement of Gβγ and Gαq/11 subunits. J Biol Chem 1997;272:27771–27777.

    PubMed  CAS  Google Scholar 

  94. Marinissen MJ, Chiariello M, Pallante M, Gutkind JS. A network of mitogen-activated protein kinases links G protein-coupled receptors to the c-jun promoter: a role for c-Jun NH2-terminal kinase, p38s, and extracellular signal-regulated kinase 5. Mol Cell Biol 1999;19:4289–4301.

    PubMed  CAS  Google Scholar 

  95. Fukuhara S, Marinissen MJ, Chiariello M, Gutkind JS. Signaling from G protein-coupled receptors to ERK5/Big MAPK 1 involves Gαq and Gα12/13 families of heterotrimeric G proteins. J Biol Chem 2000;275:21730–21736.

    PubMed  CAS  Google Scholar 

  96. van Corven EJ, Hordijk PL, Medema RH, Bos JL, Moolenaar WH. Pertussis toxin-sensitive activation of p21ras by G protein-coupled receptor agonists in fibroblasts. Proc Natl Acad Sci USA 1993;90:1257–1261.

    PubMed  CAS  Google Scholar 

  97. Wan Y, Kurosaki T, Huang XY. Tyrosine kinases in activation of the MAP kinase cascade by G-protein-coupled receptors. Nature 1996;380:541–544.

    PubMed  CAS  Google Scholar 

  98. Nagao M, Yamauchi J, Kaziro Y, Itoh H. Involvement of protein kinase C and Src family tyrosine kinase in Gαq/11-induced activation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. J Biol Chem 1998;273:22892–22898.

    PubMed  CAS  Google Scholar 

  99. Daub H, Weiss FU, Wallasch C, Ullrich A. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 1996;379:557–560.

    PubMed  CAS  Google Scholar 

  100. 100 Keely SJ, Uribe JM, Barrett KE. Carbachol stimulates transactivation of epidermal growth factor receptor and mitogen-activated protein kinase in T84 cells. Implications for carbachol-stimulated chloride secretion. J Biol Chem 1998;273:27111–27117.

    PubMed  CAS  Google Scholar 

  101. 101 Prenzel N, Zwick E, Daub H, et al. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 1999;402:884–888.

    PubMed  CAS  Google Scholar 

  102. 102 Slack BE. The m3 muscarinic acetylcholine receptor is coupled to mitogen-activated protein kinase via protein kinase C and epidermal growth factor receptor kinase. Biochem J 2000;348:381–387.

    PubMed  CAS  Google Scholar 

  103. 103 Stirnweiss J, Valkova C, Ziesché E, Drube S, Liebmann C. Muscarinic M2 receptors mediate transactivation of EGF receptor through Fyn kinase and without matrix metalloproteases. Cell Signal 2006;18:1338–1349.

    PubMed  CAS  Google Scholar 

  104. 104 McCole DF, Truong A, Bunz M, Barrett KE. Consequences of direct versus indirect activation of epidermal growth factor receptor in intestinal epithelial cells are dictated by protein-tyrosine phosphatase 1B. J Biol Chem 2007;282:13303–13315.

    PubMed  CAS  Google Scholar 

  105. 105 Luttrell LM, Daaka Y, Della Rocca GJ, Lefkowitz RJ. G protein-coupled receptors mediate two functionally distinct pathways of tyrosine phosphorylation in rat 1a fibroblasts. Shc phosphorylation and receptor endocytosis correlate with activation of ERK kinases. J Biol Chem 1997;272:31648–31656.

    PubMed  CAS  Google Scholar 

  106. 106 McDonald PH, Chow CW, Miller WE, et al. β-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 2000;290:1574–1577.

    PubMed  CAS  Google Scholar 

  107. 107 Sun Y, Cheng Z, Ma L, Pei G. β-arrestin2 is critically involved in CXCR4-mediated chemotaxis, and this is mediated by its enhancement of p38 MAPK activation. J Biol Chem 2002;277:49212–49219.

    PubMed  CAS  Google Scholar 

  108. 108 Vögler O, Nolte B, Voss M, Schmidt M, Jakobs KH, van Koppen CJ. Regulation of muscarinic acetylcholine receptor sequestration and function by β-arrestin. J Biol Chem 1999;274:12333–12338.

    PubMed  Google Scholar 

  109. 109 Scott MG, Pierotti V, Storez H, et al. Cooperative regulation of extracellular signal-regulated kinase activation and cell shape change by filamin A and β-arrestins. Mol Cell Biol 2006;26:3432–445.

    PubMed  CAS  Google Scholar 

  110. 110 Budd DC, Rae A, Tobin AB. Activation of the mitogen-activated protein kinase pathway by a Gq/11-coupled muscarinic receptor is independent of receptor internalization. J Biol Chem 1999;274:12355–12360.

    PubMed  CAS  Google Scholar 

  111. 111 Budd DC, Willars GB, McDonald JE, Tobin AB. Phosphorylation of the Gq/11-coupled m3-muscarinic receptor is involved in receptor activation of the ERK-1/2 mitogen-activated protein kinase pathway. J Biol Chem 2001;276:4581–4587.

    PubMed  CAS  Google Scholar 

  112. 112 Lin AL, Zhu B, Zhang W, et al. Distinct pathways of ERK activation by the muscarinic agonists pilocarpine and carbachol in a human salivary cell line. Am J Physiol 2008;294:C1454-C1464.

    CAS  Google Scholar 

  113. 113 Blaukat A, Barac A, Cross MJ, Offermanns S, Dikic I. G protein-coupled receptor-mediated mitogen-activated protein kinase activation through cooperation of Gαq and Gαi signals. Mol Cell Biol 2000;20:6837–6848.

    PubMed  CAS  Google Scholar 

  114. 114 Hornigold DC, Mistry R, Raymond PD, Blank JL, Challiss RA. Evidence for cross-talk between M2 and M3 muscarinic acetylcholine receptors in the regulation of second messenger and extracellular signal-regulated kinase signalling pathways in Chinese hamster ovary cells. Br J Pharmacol 2003;138:1340–1350.

    PubMed  CAS  Google Scholar 

  115. 115 Delmas P, Brown DA. Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci 2005;6:850–862.

    PubMed  CAS  Google Scholar 

  116. 116 Hernandez CC, Zaika O, Tolstykh GP, Shapiro MS. Regulation of neural KCNQ channels: signalling pathways, structural motifs and functional implications. J Physiol 2008;586:1811–1821.

    PubMed  CAS  Google Scholar 

  117. 117 Mark MD, Herlitze S. G-protein mediated gating of inward-rectifier K+ channels. Eur J Biochem 2000;267:5830–5836.

    PubMed  CAS  Google Scholar 

  118. 118 Baruscotti M, Bucchi A, Difrancesco D. Physiology and pharmacology of the cardiac pacemaker (“funny”) current. Pharmacol Ther 2005;107:59–79.

    PubMed  CAS  Google Scholar 

  119. 119 Harvey RD, Belevych AE. Muscarinic regulation of cardiac ion channels. Br J Pharmacol 2003;139:1074–1084.

    PubMed  CAS  Google Scholar 

  120. 120 Ferguson SS. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 2001;53:1–24.

    PubMed  CAS  Google Scholar 

  121. 121 Hanyaloglu AC, von Zastrow M. Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annu Rev Pharmacol Toxicol 2008;48:537–568.

    PubMed  CAS  Google Scholar 

  122. 122 van Koppen CJ, Kaiser B. Regulation of muscarinic acetylcholine receptor signaling. Pharmacol Ther 2003;98:197–220.

    PubMed  CAS  Google Scholar 

  123. 123 Torrecilla I, Tobin AB. Co-ordinated covalent modification of G protein-coupled receptors. Curr Pharm Des 2006;12:1797–1808.

    PubMed  CAS  Google Scholar 

  124. 124 Nathanson NM. Synthesis, trafficking, and localization of muscarinic acetylcholine receptors. Pharmacol Ther 2008;119:33–43.

    PubMed  CAS  Google Scholar 

  125. 125 Hausdorff WP, Caron MG, Lefkowitz RJ. Turning off the signal: desensitization of β-adrenergic receptor function. FASEB J 1990;4:2881–2889.

    PubMed  CAS  Google Scholar 

  126. 126 Pierce KL, Lefkowitz RJ. Classical and new roles of β-arrestins in the regulation of G protein-coupled receptors. Nat Rev Neurosci 2001;2:727–733.

    PubMed  CAS  Google Scholar 

  127. 127 Lefkowitz RJ, Shenoy SK. Transduction of receptor signals by β-arrestins. Science 2005;308:512–517.

    PubMed  CAS  Google Scholar 

  128. 128 Nelson CD, Perry SJ, Regier DS, Prescott SM, Topham MK, Lefkowitz RJ. Targeting of diacylglycerol degradation to M1 muscarinic receptors by β-arrestins. Science 2007;315:663–666.

    PubMed  CAS  Google Scholar 

  129. 129 Perry SJ, Baillie GS, Kohout TA, et al. Targeting of cyclic AMP degradation to β2-adrenergic receptors by β-arrestins. Science 2002;298:834–836.

    PubMed  CAS  Google Scholar 

  130. 130 Ma L, Pei G. β-arrestin signaling and regulation of transcription. J Cell Sci 2007;120:213–218.

    PubMed  CAS  Google Scholar 

  131. 131 Kenakin T. New concepts in drug discovery: collateral efficacy and permissive antagonism. Nat Rev Drug Discov 2005;4:919–927.

    PubMed  CAS  Google Scholar 

  132. 132 Violin JD, Lefkowitz RJ. β-arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol Sci 2007;28:416–422.

    PubMed  CAS  Google Scholar 

  133. 133 Kwatra MM, Leung E, Maan AC, et al. Correlation of agonist-induced phosphorylation of chick heart muscarinic receptors with receptor desensitization. J Biol Chem 1987;262:16314–16321.

    PubMed  CAS  Google Scholar 

  134. 134 Haga K, Haga T, Ichiyama A. Phosphorylation by protein kinase C of the muscarinic acetylcholine receptor. J Neurochem 1990;54:1639–1644.

    PubMed  CAS  Google Scholar 

  135. 135 Richardson RM, Hosey MM. Agonist-independent phosphorylation of purified cardiac muscarinic cholinergic receptors by protein kinase C. Biochemistry 1990;29:8555–8561.

    PubMed  CAS  Google Scholar 

  136. 136 Habecker BA, Nathanson NM. Regulation of muscarinic acetylcholine receptor mRNA expression by activation of homologous and heterologous receptors. Proc Natl Acad Sci USA 1992;89:5035–5038.

    PubMed  CAS  Google Scholar 

  137. 137 Tobin AB, Lambert DG, Nahorski SR. Rapid desensitization of muscarinic m3 receptor-stimulated polyphosphoinositide responses. Mol Pharmacol 1992;42:1042–1048.

    PubMed  CAS  Google Scholar 

  138. 138 Tobin AB, Nahorski SR. Rapid agonist-mediated phosphorylation of m3-muscarinic receptors revealed by immunoprecipitation. J Biol Chem 1993;268:9817–9823.

    PubMed  CAS  Google Scholar 

  139. 139 Wojcikiewicz RJ, Tobin AB, Nahorski SR. Muscarinic receptor-mediated inositol 1,4,5-trisphosphate formation in SH-SY5Y neuroblastoma cells is regulated acutely by cytosolic Ca2+ and by rapid desensitization. J Neurochem 1994;63:177–185.

    PubMed  CAS  Google Scholar 

  140. 140 Gurevich VV, Richardson RM, Kim CM, Hosey MM, Benovic JL. Binding of wild type and chimeric arrestins to the m2 muscarinic cholinergic receptor. J Biol Chem 1993;268:16879–16882.

    PubMed  CAS  Google Scholar 

  141. 141 Richardson RM, Kim C, Benovic JL, Hosey MM. Phosphorylation and desensitization of human m2 muscarinic cholinergic receptors by two isoforms of the β-adrenergic receptor kinase. J Biol Chem 1993;268:13650–13656.

    PubMed  CAS  Google Scholar 

  142. 142 Willets JM, Challiss RA, Nahorski SR. Non-visual GRKs: are we seeing the whole picture? Trends Pharmacol Sci 2003;24:626–633.

    PubMed  CAS  Google Scholar 

  143. 143 Gurevich VV, Gurevich EV. Rich tapestry of G protein-coupled receptor signaling and regulatory mechanisms. Mol Pharmacol 2008;74:312–316.

    PubMed  CAS  Google Scholar 

  144. 144 Willets JM, Nash MS, Challiss RA, Nahorski SR. Imaging of muscarinic acetylcholine receptor signaling in hippocampal neurons: evidence for phosphorylation-dependent and -independent regulation by G-protein-coupled receptor kinases. J Neurosci 2004;24:4157–4162.

    PubMed  CAS  Google Scholar 

  145. 145 Willets JM, Nahorski SR, Challiss RA. Roles of phosphorylation-dependent and -independent mechanisms in the regulation of M1 muscarinic acetylcholine receptors by G protein-coupled receptor kinase 2 in hippocampal neurons. J Biol Chem 2005;280:18950–18958.

    PubMed  CAS  Google Scholar 

  146. 146 Willets JM, Nelson CP, Nahorski SR, Challiss RA. The regulation of M1 muscarinic acetylcholine receptor desensitization by synaptic activity in cultured hippocampal neurons. J Neurochem 2007;103:2268–2280.

    PubMed  CAS  Google Scholar 

  147. 147 Willets JM, Mistry R, Nahorski SR, Challiss RA. Specificity of G protein-coupled receptor kinase 6-mediated phosphorylation and regulation of single-cell M3 muscarinic acetylcholine receptor signaling. Mol Pharmacol 2003;64:1059–1068.

    PubMed  CAS  Google Scholar 

  148. 148 DebBurman SK, Kunapuli P, Benovic JL, Hosey MM. Agonist-dependent phosphorylation of human muscarinic receptors in Spodoptera frugiperda insect cell membranes by G protein-coupled receptor kinases. Mol Pharmacol 1995;47:224–233.

    PubMed  CAS  Google Scholar 

  149. 149 Wu G, Bogatkevich GS, Mukhin YV, Benovic JL, Hildebrandt JD, Lanier SM. Identification of Gβγ binding sites in the third intracellular loop of the M3-muscarinic receptor and their role in receptor regulation. J Biol Chem 2000;275:9026–9034.

    PubMed  CAS  Google Scholar 

  150. 150 Gainetdinov RR, Bohn LM, Walker JK, et al. Muscarinic super-sensitivity and impaired receptor desensitization in G protein-coupled receptor kinase 5-deficient mice. Neuron 1999:1029–1036.

    Google Scholar 

  151. 151 Walker JK, Gainetdinov RR, Feldman DS, et al. G protein-coupled receptor kinase 5 regulates airway responses induced by muscarinic receptor activation. Am J Physiol 2004;286:L312-L319.

    CAS  Google Scholar 

  152. 152 Schlador ML, Nathanson NM. Synergistic regulation of m2 muscarinic acetylcholine receptor desensitization and sequestration by G protein-coupled receptor kinase-2 and β-arrestin-1. J Biol Chem 1997;272:18882–18890.

    PubMed  CAS  Google Scholar 

  153. 153 Tsuga H, Okuno E, Kameyama K, Haga T. Sequestration of human muscarinic acetylcholine receptor hm1-hm5 subtypes: effect of G protein-coupled receptor kinases GRK2, GRK4, GRK5 and GRK6. J Pharmacol Exp Ther 1998;284:1218–1226.

    PubMed  CAS  Google Scholar 

  154. 154 Urban JD, Clarke WP, von Zastrow M, et al. Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 2007;320:1–13.

    PubMed  CAS  Google Scholar 

  155. 155 Torrecilla I, Spragg EJ, Poulin B, et al. Phosphorylation and regulation of a G protein-coupled receptor by protein kinase CK2. J Cell Biol 2007;177:127–137.

    PubMed  CAS  Google Scholar 

  156. 156 Pals-Rylaarsdam R, Gurevich VV, Lee KB, Ptasienski JA, Benovic JL, Hosey MM. Internalization of the m2 muscarinic acetylcholine receptor. Arrestin-independent and -dependent pathways. J Biol Chem 1997;272:23682–23689.

    PubMed  CAS  Google Scholar 

  157. 157 Claing A, Perry SJ, Achiriloaie M, et al. Multiple endocytic pathways of G protein-coupled receptors delineated by GIT1 sensitivity. Proc Natl Acad Sci USA 2000;97:1119–1124.

    PubMed  CAS  Google Scholar 

  158. 158 Wu G, Krupnick JG, Benovic JL, Lanier SM. Interaction of arrestins with intracellular domains of muscarinic and α2-adrenergic receptors. J Biol Chem 1997;272:17836–17842.

    PubMed  CAS  Google Scholar 

  159. 159 Lee KB, Pals-Rylaarsdam R, Benovic JL, Hosey MM. Arrestin-independent internalization of the m1, m3, and m4 subtypes of muscarinic cholinergic receptors. J Biol Chem 1998;273:12967–12972.

    PubMed  CAS  Google Scholar 

  160. 160 Popova JS, Rasenick MM. Clathrin-mediated endocytosis of m3 muscarinic receptors. Roles for Gβγ and tubulin. J Biol Chem 2004;279:30410–30418.

    PubMed  CAS  Google Scholar 

  161. 161 Pals-Rylaarsdam R, Xu Y, Witt-Enderby P, Benovic JL, Hosey MM. Desensitization and internalization of the m2 muscarinic acetylcholine receptor are directed by independent mechanisms. J Biol Chem 1995;270:29004–29011.

    PubMed  CAS  Google Scholar 

  162. 162 Vögler O, Bogatkewitsch GS, Wriske C, Krummenerl P, Jakobs KH, van Koppen CJ. Receptor subtype-specific regulation of muscarinic acetylcholine receptor sequestration by dynamin. Distinct sequestration of m2 receptors. J Biol Chem 1998;273:12155–12160.

    PubMed  Google Scholar 

  163. 163 Delaney KA, Murphy MM, Brown LM, Radhakrishna H. Transfer of M2 muscarinic acetylcholine receptors to clathrin-derived early endosomes following clathrin-independent endocytosis. J Biol Chem 2002;277:33439–33446.

    PubMed  CAS  Google Scholar 

  164. 164 Dessy C, Kelly RA, Balligand JL, Feron O. Dynamin mediates caveolar sequestration of muscarinic cholinergic receptors and alteration in NO signaling. EMBO J 2000;19:4272–4280.

    PubMed  CAS  Google Scholar 

  165. 165 Volpicelli LA, Lah JJ, Fang G, Goldenring JR, Levey AI. Rab11a and myosin Vb regulate recycling of the M4 muscarinic acetylcholine receptor. J Neurosci 2002;22:9776–9784.

    PubMed  CAS  Google Scholar 

  166. 166 Reiner C, Nathanson NM. The internalization of the M2 and M4 muscarinic acetylcholine receptors involves distinct subsets of small G-proteins. Life Sci 2008;82:718–27.

    PubMed  CAS  Google Scholar 

  167. 167 Iverson HA, Fox D, Nadler LS, Klevit RE, Nathanson NM. Identification and structural determination of the M3 muscarinic acetylcholine receptor basolateral sorting signal. J Biol Chem 2005;280:24568–24575.

    PubMed  CAS  Google Scholar 

  168. 168 Hashimoto Y, Morisawa K, Saito H, Jojima E, Yoshida N, Haga T. Muscarinic M4 receptor recycling requires a motif in the third intracellular loop. J Pharmacol Exp Ther 2008;325:947–953.

    PubMed  CAS  Google Scholar 

  169. 169 Sawyer GW, Ehlert FJ, Shults CA. Cysteine pairs in the third intracellular loop of the muscarinic m1 acetylcholine receptor play a role in agonist-induced internalization. J Pharmacol Exp Ther 2008;324:196–205.

    PubMed  CAS  Google Scholar 

  170. 170 Berg KA, Maayani S, Goldfarb J, Scaramellini C, Leff P, Clarke WP. Effector pathway-dependent relative efficacy at serotonin type 2A and 2C receptors: evidence for agonist-directed trafficking of receptor stimulus. Mol Pharmacol 1998;54:94–104.

    PubMed  CAS  Google Scholar 

  171. 171 Gay EA, Urban JD, Nichols DE, Oxford GS, Mailman RB. Functional selectivity of D2 receptor ligands in a Chinese hamster ovary hD2L cell line: evidence for induction of ligand-specific receptor states. Mol Pharmacol 2004;66:97–105.

    PubMed  CAS  Google Scholar 

  172. 172 Galandrin S, Bouvier M. Distinct signaling profiles of beta1 and β2 adrenergic receptor ligands toward adenylyl cyclase and mitogen-activated protein kinase reveals the pluridimensionality of efficacy. Mol Pharmacol 2006;70:1575–1584.

    PubMed  CAS  Google Scholar 

  173. 173 Kobilka BK, Deupi X. Conformational complexity of G-protein-coupled receptors. Trends Pharmacol Sci 2007;28:397–406.

    PubMed  CAS  Google Scholar 

  174. 174 Yeagle PL, Albert AD. G-protein coupled receptor structure. Biochim Biophys Acta 2007;1768:808–824.

    PubMed  CAS  Google Scholar 

  175. 175 Li JH, Han SJ, Hamdan FF, et al. Distinct structural changes in a G protein-coupled receptor caused by different classes of agonist ligands. J Biol Chem 2007;282:26284–26293.

    PubMed  CAS  Google Scholar 

  176. 176 Li JH, Hamdan FF, Kim SK, et al. Ligand-specific changes in M3 muscarinic acetylcholine receptor structure detected by a disulfide scanning strategy. Biochemistry 2008;47:2776–2788.

    PubMed  CAS  Google Scholar 

  177. 177 Wess J, Liu J, Blin N, Yun J, Lerche C, Kostenis E. Structural basis of receptor/G protein coupling selectivity studied with muscarinic receptors as model systems. Life Sci 1997;60:1007–1014.

    PubMed  CAS  Google Scholar 

  178. 178 Hulme EC, Lu ZL, Ward SD, Allman K, Curtis CA. The conformational switch in 7-transmembrane receptors: the muscarinic receptor paradigm. Eur J Pharmacol 1999;375:247–260.

    PubMed  CAS  Google Scholar 

  179. 179 Birdsall NJ, Lazareno S. Allosterism at muscarinic receptors: ligands and mechanisms. Mini Rev Med Chem 2005;5:523–543.

    PubMed  CAS  Google Scholar 

  180. 180 Gregory KJ, Sexton PM, Christopoulos A. Allosteric modulation of muscarinic acetylcholine receptors. Curr Neuropharmacol 2007;5:157–167.

    PubMed  CAS  Google Scholar 

  181. 181 Shirey JK, Xiang Z, Orton D, et al. An allosteric potentiator of M4 mAChR modulates hippocampal synaptic transmission. Nat Chem Biol 2008;4:42–50.

    PubMed  CAS  Google Scholar 

  182. 182 Lu ZL, Saldanha JW, Hulme EC. Seven-transmembrane receptors: crystals clarify. Trends Pharmacol Sci 2002;23:140–146.

    PubMed  CAS  Google Scholar 

  183. 183 Vistoli G, Pedretti A, Dei S, Scapecchi S, Marconi C, Romanelli MN. Docking analyses on human muscarinic receptors: unveiling the subtypes peculiarities in agonists binding. Bioorg Med Chem 2008;16:3049–3058.

    PubMed  CAS  Google Scholar 

  184. 184 Gurwitz D, Sokolovsky M. Rat brain and heart muscarinic receptors: modification with tetranitromethane. Biochem Biophys Res Commun 1985;131:1124–1131.

    PubMed  CAS  Google Scholar 

  185. 185 van Koppen CJ, Sokolovsky M. Chemical modification of rat cerebral cortex M1 muscarinic receptors: role of histidyl residues in antagonist and agonist binding. Biochem Biophys Res Commun 1988;151:1069–1073.

    PubMed  CAS  Google Scholar 

  186. 186 Spalding TA, Ma JN, Ott TR, et al. Structural requirements of transmembrane domain 3 for activation by the M1 muscarinic receptor agonists AC-42, AC-260584, clozapine, and N-desmethylclozapine: evidence for three distinct modes of receptor activation. Mol Pharmacol 2006;70:1974–1983.

    PubMed  CAS  Google Scholar 

  187. 187 Bouvier M. Oligomerization of G-protein-coupled transmitter receptors. Nat Rev Neurosci 2001;2:274–286.

    PubMed  CAS  Google Scholar 

  188. 188 Milligan G. G protein-coupled receptor dimerization: function and ligand pharmacology. Mol Pharmacol 2004;66:1–7.

    PubMed  CAS  Google Scholar 

  189. 189 Devi LA. Heterodimerization of G-protein-coupled receptors: pharmacology, signaling and trafficking. Trends Pharmacol Sci 2001;22:532–537.

    PubMed  CAS  Google Scholar 

  190. 190 Springael JY, Urizar E, Costagliola S, Vassart G, Parmentier M. Allosteric properties of G protein-coupled receptor oligomers. Pharmacol Ther 2007;115:410–418.

    PubMed  CAS  Google Scholar 

  191. 191 Avissar S, Amitai G, Sokolovsky M. Oligomeric structure of muscarinic receptors is shown by photoaffinity labeling: subunit assembly may explain high- and low-affinity agonist states. Proc Natl Acad Sci USA 1983;80:156–159.

    PubMed  CAS  Google Scholar 

  192. 192 Wreggett KA, Wells JW. Cooperativity manifest in the binding properties of purified cardiac muscarinic receptors. J Biol Chem 1995;270:22488–22499.

    PubMed  CAS  Google Scholar 

  193. 193 Zeng FY, Wess J. Identification and molecular characterization of m3 muscarinic receptor dimers. J Biol Chem 1999;274:19487–19497.

    PubMed  CAS  Google Scholar 

  194. 194 Goin JC, Nathanson NM. Quantitative analysis of muscarinic acetylcholine receptor homo- and heterodimerization in live cells: regulation of receptor down-regulation by heterodimerization. J Biol Chem 2006;281:5416–5425.

    PubMed  CAS  Google Scholar 

  195. 195 Okamoto T, Ikezu T, Murayama Y, Ogata E, Nishimoto I. Measurement of GTPγS binding to specific G proteins in membranes using G-protein antibodies. FEBS Lett 1992;305:125–128.

    PubMed  CAS  Google Scholar 

  196. 196 Meurs H, Roffel AF, Postema JB, et al. Evidence for a direct relationship between phosphoinositide metabolism and airway smooth muscle contraction induced by muscarinic agonists. Eur J Pharmacol 1988;156:271–274.

    PubMed  CAS  Google Scholar 

  197. 197 Somlyo AP, Somlyo AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 2003;83:1325–1358.

    PubMed  CAS  Google Scholar 

  198. 198 Schaafsma D, Boterman M, de Jong AM, et al. Differential Rho-kinase dependency of full and partial muscarinic receptor agonists in airway smooth muscle contraction. Br J Pharmacol 2006;147:737–743.

    PubMed  CAS  Google Scholar 

  199. 199 Koenig JA, Edwardson JM. Intracellular trafficking of the muscarinic acetylcholine receptor: importance of subtype and cell type. Mol Pharmacol 1996;49:351–359.

    PubMed  CAS  Google Scholar 

  200. 200 Stope MB, Kunkel C, Kories C, Schmidt M, Michel MC. Differential agonist-induced regulation of human M2 and M3 muscarinic receptors. Biochem Pharmacol 2003;66:2099–2105.

    PubMed  CAS  Google Scholar 

  201. 201 Lazareno S, Dolezal V, Popham A, Birdsall NJ. Thiochrome enhances acetylcholine affinity at muscarinic M4 receptors: receptor subtype selectivity via cooperativity rather than affinity. Mol Pharmacol 2004;65:257–266.

    PubMed  CAS  Google Scholar 

  202. 202 Lazareno S, Gharagozloo P, Kuonen D, Popham A, Birdsall NJ. Subtype-selective positive cooperative interactions between brucine analogues and acetylcholine at muscarinic receptors: radioligand binding studies. Mol Pharmacol 1998;53:573–589.

    PubMed  CAS  Google Scholar 

  203. 203 Zahn K, Eckstein N, Tränkle C, Sadée W, Mohr K. Allosteric modulation of muscarinic receptor signaling: alcuronium-induced conversion of pilocarpine from an agonist into an antagonist. J Pharmacol Exp Ther 2002;301:720–728.

    PubMed  CAS  Google Scholar 

  204. 204 Langmead CJ, Austin NE, Branch CL, et al. Characterization of a CNS penetrant, selective M1 muscarinic receptor agonist, 77-LH-28–1. Br J Pharmacol 2008;154:1104–1115.

    PubMed  CAS  Google Scholar 

  205. 205 Thomas RL, Mistry R, Langmead CJ, Wood MD, Challiss RAJ. G protein-coupling and signaling pathway activation by M1 muscarinic acetylcholine receptor orthosteric and allosteric agonists. J Pharmacol Exp Ther 2008;327:365–74.

    PubMed  CAS  Google Scholar 

  206. 206 Eglen RM. Muscarinic receptor subtype pharmacology and physiology. Prog Med Chem 2005;43:105–136.

    PubMed  CAS  Google Scholar 

  207. 207 Gosens R, Stelmack GL, Dueck G, et al. Caveolae facilitate muscarinic receptor-mediated intracellular Ca2+ mobilization and contraction in airway smooth muscle. Am J Physiol 2007;293:L1406–L1418.

    CAS  Google Scholar 

  208. 208 Shmuel M, Nodel-Berner E, Hyman T, Rouvinski A, Altschuler Y. Caveolin 2 regulates endocytosis and trafficking of the M1 muscarinic receptor in MDCK epithelial cells. Mol Biol Cell 2007;18:1570–1585.

    PubMed  CAS  Google Scholar 

  209. 209 Hollinger S, Hepler JR. Cellular regulation of RGS proteins: modulators and integrators of G protein signaling. Pharmacol Rev 2002;54:527–559.

    PubMed  CAS  Google Scholar 

  210. 210 Zeng W, Xu X, Popov S, et al. The N-terminal domain of RGS4 confers receptor-selective inhibition of G protein signaling. J Biol Chem 1998;273:34687–34690.

    PubMed  CAS  Google Scholar 

  211. 211 Xu X, Zeng W, Popov S, et al. RGS proteins determine signaling specificity of Gq-coupled receptors. J Biol Chem 1999;274:3549–3556.

    PubMed  CAS  Google Scholar 

  212. 212 Bernstein LS, Ramineni S, Hague C, et al. RGS2 binds directly and selectively to the M1 muscarinic acetylcholine receptor third intracellular loop to modulate Gq/11α signaling. J Biol Chem 2004;279:21248–21256.

    PubMed  CAS  Google Scholar 

  213. 213 Melliti K, Meza U, Adams B. Muscarinic stimulation of α1E Ca channels is selectively blocked by the effector antagonist function of RGS2 and phospholipase C-β1. J Neurosci 2000;20:7167–7173.

    PubMed  CAS  Google Scholar 

  214. 214 Melliti K, Meza U, Adams BA. RGS2 blocks slow muscarinic inhibition of N-type Ca2+ channels reconstituted in a human cell line. J Physiol 2001;532:337–347.

    PubMed  CAS  Google Scholar 

  215. 215 Itoh M, Nagatomo K, Kubo Y, Saitoh O. Alternative splicing of RGS8 gene changes the binding property to the M1 muscarinic receptor to confer receptor type-specific Gq regulation. J Neurochem 2006;99:1505–1516.

    PubMed  CAS  Google Scholar 

  216. 216 Dallanoce C, De Amici M, Barocelli E, et al. Novel oxotremorine-related heterocyclic derivatives: Synthesis and in vitro pharmacology at the muscarinic receptor subtypes. Bioorg Med Chem 2007;15:7626–7637.

    PubMed  CAS  Google Scholar 

  217. 217 Lewis LM, Sheffler D, Williams R, et al. Synthesis and SAR of selective muscarinic acetylcholine receptor subtype 1 (M1 mAChR) antagonists. Bioorg Med Chem Lett 2008;18:885–890.

    PubMed  Google Scholar 

  218. 218 Christopoulos A, Kenakin T. G protein-coupled receptor allosterism and complexing. Pharmacol Rev 2002;54:323–374.

    PubMed  CAS  Google Scholar 

  219. 219 Jakubík J, Bacáková L, El-Fakahany EE, Tucek S. Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors. Mol Pharmacol 1997;52:172–179.

    PubMed  Google Scholar 

  220. 220 Hejnová L, Tucek S, el-Fakahany EE. Positive and negative allosteric interactions on muscarinic receptors. Eur J Pharmacol 1995;291:427–430.

    PubMed  Google Scholar 

  221. 221 Proska J, Tucek S. Mechanisms of steric and cooperative actions of alcuronium on cardiac muscarinic acetylcholine receptors. Mol Pharmacol 1994;45:709–717.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.A. John Challiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Challiss, R.J., Thomas, R.L. (2009). Signaling Diversity Mediated by Muscarinic Acetylcholine Receptor Subtypes and Evidence for Functional Selectivity. In: Neve, K.A. (eds) Functional Selectivity of G Protein-Coupled Receptor Ligands. The Receptors. Humana Press. https://doi.org/10.1007/978-1-60327-335-0_8

Download citation

Publish with us

Policies and ethics