Skip to main content

Functional Selectivity at Adrenergic Receptors

  • Chapter
  • First Online:
  • 842 Accesses

Part of the book series: The Receptors ((REC))

Abstract

The adrenergic receptors have been a model for understanding the structure, function, regulation, and biology of GPCRs. They play a similar role with respect to ligand functional selectivity (or ligand-dependent differential signaling). The β-adrenergic receptor has provided key structural information about ligand binding and also rich biophysical data demonstrating that different ligands can produce different conformational states of the receptor. There is also substantial data in cell systems showing that ligands can produce distinct spectrums of response including differential roles of the Gi and Gs-type G proteins as well as contrasting agonist and inverse agonist actions at G protein-dependent and G protein-independent (largely β-arrestin-dependent) signals. There is also in vivo evidence for physiologically important roles for these different signals. The clinical importance of β-adrenergic blockers in cardiovascular disease and emerging evidence for ligand-specific vs. class-specific effects in clinical studies makes a full understanding of ligand functional selectivity very important. Challenges in the future will be to determine the unique receptor conformations produced by the binding of different ligands, show how those conformations interact with the complex cellular context and regulatory processes to result in unique signal output patterns, and finally to translate that basic knowledge into novel therapeutics that take advantage of the additional specificity provided by ligand functional selectivity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AC:

Adenylyl cyclase

βArr:

Beta arrestin

cAMP:

3′5′ cyclic adenosine monophopshpate

CHO:

Chinese hamster ovary cell line

ERK:

Extracellular signal regulated kinase

Gi:

Inhibitory guanine nucleotide binding protein

GPCR:

G protein coupled receptor

Gs:

Stimulatory guanine nucleotide binding protein

HEK:

Human embryonic kidney cell line

MAP kinase:

Mitogen activated protein kinases

mBB:

Monobromobimane

PDZ:

Pleckstrin, discs large, Zo-1 homology domain

PI3K:

Phosphatidyl inositol 3-kinase

PKA:

cAMP dependent protein kinase (protein kinase A)

RET:

Resonance energy transfer

References

  1. Black J. Drugs from emasculated hormones: the principle of syntopic antagonism. Science 1989;245:486–93.

    Article  PubMed  CAS  Google Scholar 

  2. Dixon RA, Kobilka BK, Strader DJ, et al. Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature 1986;321:75–9.

    Article  PubMed  CAS  Google Scholar 

  3. Ross EM, Gilman AG. Biochemical properties of hormone-sensitive adenylate cyclase. Annu Rev Biochem 1980;49:533–64.

    Article  PubMed  CAS  Google Scholar 

  4. Wettschureck N, Offermanns S. Mammalian G proteins and their cell type specific functions. Physiol Rev 2005;85:1159–204.

    Article  PubMed  CAS  Google Scholar 

  5. DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK. Beta-arrestins and cell signaling. Annu Rev Physiol 2007;69:483–510.

    Article  PubMed  CAS  Google Scholar 

  6. Cao W, Luttrell LM, Medvedev AV, et al. Direct binding of activated c-Src to the beta 3-adrenergic receptor is required for MAP kinase activation. J Biol Chem 2000;275:38131–4.

    Article  PubMed  CAS  Google Scholar 

  7. Smith NJ, Luttrell LM. Signal switching, crosstalk, and arrestin scaffolds: novel G protein-coupled receptor signaling in cardiovascular disease. Hypertension 2006;48:173–9.

    Article  PubMed  CAS  Google Scholar 

  8. Warne T, Serrano-Vega MJ, Baker JG, et al. Structure of a beta(1)-adrenergic G-protein-coupled receptor. Nature 2008;454:486–91.

    Article  PubMed  CAS  Google Scholar 

  9. Cherezov V, Rosenbaum DM, Hanson MA, et al. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 2007;318:1258–65.

    Article  PubMed  CAS  Google Scholar 

  10. Rasmussen SG, Choi HJ, Rosenbaum DM, et al. Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 2007;450:383–7.

    Article  PubMed  CAS  Google Scholar 

  11. Audet M, Bouvier M. Insights into signaling from the beta2-adrenergic receptor structure. Nat Chem Biol 2008;4:397–403.

    Article  PubMed  CAS  Google Scholar 

  12. Kobilka BK, Deupi X. Conformational complexity of G-protein-coupled receptors. Trends Pharmacol Sci 2007;28:397–406.

    Article  PubMed  CAS  Google Scholar 

  13. Xiao RP, Ji X, Lakatta EG. Functional coupling of the beta 2-adrenoceptor to a pertussis toxin-sensitive G protein in cardiac myocytes. Mol Pharmacol 1995;47:322–9.

    PubMed  CAS  Google Scholar 

  14. Daaka Y, Luttrell LM, Lefkowitz RJ. Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature 1997;390:88–91.

    Article  PubMed  CAS  Google Scholar 

  15. Galandrin S, Oligny-Longpre G, Bonin H, Ogawa K, Gales C, Bouvier M. Conformational rearrangements and signaling cascades involved in ligand-biased mitogen-activated protein kinase signaling through the beta1-adrenergic receptor. Mol Pharmacol 2008;74:162–72.

    Article  PubMed  CAS  Google Scholar 

  16. Gutkind JS. Regulation of mitogen-activated protein kinase signaling networks by G protein-coupled receptors. Sci STKE 2000;2000:RE1.

    Article  PubMed  CAS  Google Scholar 

  17. Werry TD, Christopoulos A, Sexton PM. Mechanisms of ERK1/2 regulation by seven-transmembrane-domain receptors. Curr Pharm Des 2006;12:1683–702.

    Article  PubMed  CAS  Google Scholar 

  18. Luttrell LM. ‘Location, location, location’: activation and targeting of MAP kinases by G protein-coupled receptors. J Mol Endocrinol 2003;30:117–26.

    Article  PubMed  CAS  Google Scholar 

  19. Shenoy SK, Drake MT, Nelson CD, et al. beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. J Biol Chem 2006;281:1261–73.

    Article  PubMed  CAS  Google Scholar 

  20. Katada T, Amano T, Ui M. Modulation by islet-activating protein of adenylate cyclase activity in C6 glioma cells. J Biol Chem 1982;257:3739–46.

    PubMed  CAS  Google Scholar 

  21. Hazeki O, Ui M. Modification by islet-activating protein of receptor-mediated regulation of cyclic AMP accumulation in isolated rat heart cells. J Biol Chem 1981;256:2856–62.

    PubMed  CAS  Google Scholar 

  22. Abramson SN, Martin MW, Hughes AR, et al. Interaction of beta-adrenergic receptors with the inhibitory guanine nucleotide-binding protein of adenylate cyclase in membranes prepared from cyc- S49 lymphoma cells. Biochem Pharmacol 1988;37:4289–97.

    Article  PubMed  CAS  Google Scholar 

  23. Xiao RP. Beta-adrenergic signaling in the heart: dual coupling of the beta2-adrenergic receptor to G(s) and G(i) proteins. Sci STKE 2001;2001:RE15.

    Article  PubMed  CAS  Google Scholar 

  24. Xiao RP, Avdonin P, Zhou YY, et al. Coupling of beta2-adrenoceptor to Gi proteins and its physiological relevance in murine cardiac myocytes. Circ Res 1999;84:43–52.

    PubMed  CAS  Google Scholar 

  25. Xiang Y, Rybin VO, Steinberg SF, Kobilka B. Caveolar localization dictates physiologic signaling of beta 2-adrenoceptors in neonatal cardiac myocytes. J Biol Chem 2002;277:34280–6.

    Article  PubMed  CAS  Google Scholar 

  26. Foerster K, Groner F, Matthes J, Koch WJ, Birnbaumer L, Herzig S. Cardioprotection specific for the G protein Gi2 in chronic adrenergic signaling through beta 2-adrenoceptors. Proc Natl Acad Sci USA 2003;100:14475–80.

    Article  PubMed  CAS  Google Scholar 

  27. Fu Y, Huang X, Zhong H, Mortensen RM, D'Alecy LG, Neubig RR. Endogenous RGS proteins and Galpha subtypes differentially control muscarinic and adenosine-mediated chronotropic effects. Circ Res 2006;98:659–66.

    Article  PubMed  CAS  Google Scholar 

  28. He JQ, Balijepalli RC, Haworth RA, Kamp TJ. Crosstalk of beta-adrenergic receptor subtypes through Gi blunts beta-adrenergic stimulation of L-type Ca2+ channels in canine heart failure. Circ Res 2005;97:566–73.

    Article  PubMed  CAS  Google Scholar 

  29. Heubach JF, Ravens U, Kaumann AJ. Epinephrine activates both Gs and Gi pathways, but norepinephrine activates only the Gs pathway through human beta2-adrenoceptors overexpressed in mouse heart. Mol Pharmacol 2004;65:1313–22.

    Article  PubMed  CAS  Google Scholar 

  30. Wang Y, De Arcangelis V, Gao X, Ramani B, Jung YS, Xiang Y. Norepinephrine- and epinephrine-induced distinct beta2-adrenoceptor signaling is dictated by GRK2 phosphorylation in cardiomyocytes. J Biol Chem 2008;283:1799–807.

    Article  PubMed  CAS  Google Scholar 

  31. Xiao RP, Zhang SJ, Chakir K, et al. Enhanced G(i) signaling selectively negates beta2-adrenergic receptor (AR)–but not beta1-AR-mediated positive inotropic effect in myocytes from failing rat hearts. Circulation 2003;108:1633–9.

    Article  PubMed  CAS  Google Scholar 

  32. Ponicke K, Groner F, Heinroth-Hoffmann I, Brodde OE. Agonist-specific activation of the beta2-adrenoceptor/Gs-protein and beta2-adrenoceptor/Gi-protein pathway in adult rat ventricular cardiomyocytes. Br J Pharmacol 2006;147:714–9.

    Article  PubMed  Google Scholar 

  33. Zhu WZ, Zheng M, Koch WJ, Lefkowitz RJ, Kobilka BK, Xiao RP. Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. Proc Natl Acad Sci USA 2001;98:1607–12.

    Article  PubMed  CAS  Google Scholar 

  34. Bisognano JD, Weinberger HD, Bohlmeyer TJ, et al. Myocardial-directed overexpression of the human beta(1)-adrenergic receptor in transgenic mice. J Mol Cell Cardiol 2000;32:817–30.

    Article  PubMed  CAS  Google Scholar 

  35. Dorn GW, 2nd, Tepe NM, Lorenz JN, Koch WJ, Liggett SB. Low- and high-level transgenic expression of beta2-adrenergic receptors differentially affect cardiac hypertrophy and function in Galphaq-overexpressing mice. Proc Natl Acad Sci USA 1999;96:6400–5.

    Article  PubMed  CAS  Google Scholar 

  36. Luttrell LM, Daaka Y, Lefkowitz RJ. Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr Opin Cell Biol 1999;11:177–83.

    Article  PubMed  CAS  Google Scholar 

  37. Gutkind JS. Cell growth control by G protein-coupled receptors: from signal transduction to signal integration. Oncogene 1998;17:1331–42.

    Article  PubMed  CAS  Google Scholar 

  38. Lefkowitz RJ, Pierce KL, Luttrell LM. Dancing with different partners: protein kinase a phosphorylation of seven membrane-spanning receptors regulates their G protein-coupling specificity. Mol Pharmacol 2002;62:971–4.

    Article  PubMed  CAS  Google Scholar 

  39. Azzi M, Charest PG, Angers S, et al. Beta-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc Natl Acad Sci USA 2003;100:11406–11.

    Article  PubMed  CAS  Google Scholar 

  40. Wisler JW, DeWire SM, Whalen EJ, et al. A unique mechanism of beta-blocker action: carvedilol stimulates beta-arrestin signaling. Proc Natl Acad Sci USA 2007;104:16657–62.

    Article  PubMed  CAS  Google Scholar 

  41. Brzostowski JA, Kimmel AR. Signaling at zero G: G-protein-independent functions for 7-TM receptors. Trends Biochem Sci 2001;26:291–7.

    Article  PubMed  CAS  Google Scholar 

  42. Baker JG, Hall IP, Hill SJ. Agonist and inverse agonist actions of beta-blockers at the human beta 2-adrenoceptor provide evidence for agonist-directed signaling. Mol Pharmacol 2003;64:1357–69.

    Article  PubMed  CAS  Google Scholar 

  43. Galandrin S, Bouvier M. Distinct signaling profiles of beta1 and beta2 adrenergic receptor ligands toward adenylyl cyclase and mitogen-activated protein kinase reveals the pluridimensionality of efficacy. Mol Pharmacol 2006;70:1575–84.

    Article  PubMed  CAS  Google Scholar 

  44. Drake MT, Violin JD, Whalen EJ, Wisler JW, Shenoy SK, Lefkowitz RJ. beta-arrestin-biased agonism at the beta2-adrenergic receptor. J Biol Chem 2008;283:5669–76.

    Article  PubMed  CAS  Google Scholar 

  45. Baker JG, Hall IP, Hill SJ. Agonist actions of “beta-blockers” provide evidence for two agonist activation sites or conformations of the human beta1-adrenoceptor. Mol Pharmacol 2003;63:1312–21.

    Article  PubMed  CAS  Google Scholar 

  46. Baker JG. Site of action of beta-ligands at the human beta1-adrenoceptor. J Pharmacol Exp Ther 2005;313:1163–71.

    Article  PubMed  CAS  Google Scholar 

  47. Baker JG. Evidence for a secondary state of the human beta3-adrenoceptor. Mol Pharmacol 2005;68:1645–55.

    PubMed  CAS  Google Scholar 

  48. Gerhardt CC, Gros J, Strosberg AD, Issad T. Stimulation of the extracellular signal-regulated kinase 1/2 pathway by human beta-3 adrenergic receptor: new pharmacological profile and mechanism of activation. Mol Pharmacol 1999;55:255–62.

    PubMed  CAS  Google Scholar 

  49. Sato M, Horinouchi T, Hutchinson DS, Evans BA, Summers RJ. Ligand-directed signaling at the beta3-adrenoceptor produced by 3-(2-Ethylphenoxy)-1-[(1,S)-1,2,3,4-tetrahydronapth-1-ylamino]-2S-2-propan ol oxalate (SR59230A) relative to receptor agonists. Mol Pharmacol 2007;72:1359–68.

    Article  PubMed  CAS  Google Scholar 

  50. Sato M, Hutchinson DS, Bengtsson T, et al. Functional domains of the mouse beta3-adrenoceptor associated with differential G protein coupling. J Pharmacol Exp Ther 2005;315:1354–61.

    Article  PubMed  CAS  Google Scholar 

  51. Perez DM, Karnik SS. Multiple signaling states of G-protein-coupled receptors. Pharmacol Rev 2005;57:147–61.

    Article  PubMed  CAS  Google Scholar 

  52. Perez DM, DeYoung MB, Graham RM. Coupling of expressed alpha 1B- and alpha 1D-adrenergic receptor to multiple signaling pathways is both G protein and cell type specific. Mol Pharmacol 1993;44:784–95.

    PubMed  CAS  Google Scholar 

  53. Hu ZW, Shi XY, Lin RZ, Hoffman BB. Alpha1 adrenergic receptors activate phosphatidylinositol 3-kinase in human vascular smooth muscle cells. Role in mitogenesis. J Biol Chem 1996;271:8977–82.

    Article  PubMed  CAS  Google Scholar 

  54. Nishio E, Nakata H, Arimura S, Watanabe Y. alpha-1-Adrenergic receptor stimulation causes arachidonic acid release through pertussis toxin-sensitive GTP-binding protein and JNK activation in rabbit aortic smooth muscle cells. Biochem Biophys Res Commun 1996;219:277–82.

    Article  PubMed  CAS  Google Scholar 

  55. Otani H, Oshiro A, Yagi M, Inagaki C. Pertussis toxin-sensitive and -insensitive mechanisms of alpha1-adrenoceptor-mediated inotropic responses in rat heart. Eur J Pharmacol 2001;419:249–52.

    Article  PubMed  CAS  Google Scholar 

  56. O-Uchi J, Sasaki H, Morimoto S, et al. Interaction of alpha1-adrenoceptor subtypes with different G proteins induces opposite effects on cardiac L-type Ca2+ channel. Circ Res 2008;102:1378–88.

    Article  PubMed  CAS  Google Scholar 

  57. Limbird LE. Receptors linked to inhibition of adenylate cyclase: additional signaling mechanisms. FASEB J 1988;2:2686–95.

    PubMed  CAS  Google Scholar 

  58. Wang Q, Lu R, Zhao J, Limbird LE. Arrestin serves as a molecular switch, linking endogenous alpha2-adrenergic receptor to SRC-dependent, but not SRC-independent, ERK activation. J Biol Chem 2006;281:25948–55.

    Article  PubMed  CAS  Google Scholar 

  59. Kribben A, Herget-Rosenthal S, Lange B, Erdbrugger W, Philipp T, Michel MC. Alpha2-adrenoceptors in opossum kidney cells couple to stimulation of mitogen-activated protein kinase independently of adenylyl cyclase inhibition. Naunyn Schmiedebergs Arch Pharmacol 1997;356:225–32.

    Article  PubMed  CAS  Google Scholar 

  60. Eason MG, Kurose H, Holt BD, Raymond JR, Liggett SB. Simultaneous coupling of alpha 2-adrenergic receptors to two G-proteins with opposing effects. Subtype-selective coupling of alpha 2C10, alpha 2C4, and alpha 2C2 adrenergic receptors to Gi and Gs. J Biol Chem 1992;267:15795–801.

    PubMed  CAS  Google Scholar 

  61. Eason MG, Liggett SB. Identification of a Gs coupling domain in the amino terminus of the third intracellular loop of the alpha 2A-adrenergic receptor. Evidence for distinct structural determinants that confer Gs versus Gi coupling. J Biol Chem 1995;270:24753–60.

    Article  PubMed  CAS  Google Scholar 

  62. Wade SM, Lim WK, Lan KL, Chung DA, Nanamori M, Neubig RR. G(i) activator region of alpha(2A)-adrenergic receptors: distinct basic residues mediate G(i) versus G(s) activation. Mol Pharmacol 1999;56:1005–13.

    PubMed  CAS  Google Scholar 

  63. Brink CB, Wade SM, Neubig RR. Agonist-directed trafficking of porcine alpha(2A)-adrenergic receptor signaling in Chinese hamster ovary cells: l-isoproterenol selectively activates G(s). J Pharmacol Exp Ther 2000;294:539–47.

    PubMed  CAS  Google Scholar 

  64. Eason MG, Jacinto MT, Liggett SB. Contribution of ligand structure to activation of alpha 2-adrenergic receptor subtype coupling to Gs. Mol Pharmacol 1994;45:696–702.

    PubMed  CAS  Google Scholar 

  65. Surprenant A, Horstman DA, Akbarali H, Limbird LE. A point mutation of the alpha 2-adrenoceptor that blocks coupling to potassium but not calcium currents. Science 1992;257:977–80.

    Article  PubMed  CAS  Google Scholar 

  66. Tan CM, Wilson MH, MacMillan LB, Kobilka BK, Limbird LE. Heterozygous alpha 2A-adrenergic receptor mice unveil unique therapeutic benefits of partial agonists. Proc Natl Acad Sci USA 2002;99:12471–6.

    Article  PubMed  CAS  Google Scholar 

  67. Poole-Wilson PA, Swedberg K, Cleland JG, et al. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. Lancet 2003;362:7–13.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the author’s lab described here was supported by NIH R01GM39561.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard R. Neubig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Neubig, R.R. (2009). Functional Selectivity at Adrenergic Receptors. In: Neve, K.A. (eds) Functional Selectivity of G Protein-Coupled Receptor Ligands. The Receptors. Humana Press. https://doi.org/10.1007/978-1-60327-335-0_7

Download citation

Publish with us

Policies and ethics