Skip to main content

In Vivo Evidence for and Consequences of Functional Selectivity

  • Chapter
  • First Online:
Functional Selectivity of G Protein-Coupled Receptor Ligands

Part of the book series: The Receptors ((REC))

  • 853 Accesses

Abstract

Functional selectivity refers to the ability of some ligands to stimulate a subset of the possible consequences of activation of a receptor. This chapter addresses two related issues that are critical for consideration of the therapeutic utility of functional selectivity: the evidence that functional selectivity is a pharmacologically relevant phenomenon that can be observed in vivo, and characterization of the unique in vivo properties of functionally selective ligands. Topics reviewed include G protein-biased agonists for μ-opioid and serotonin 5-HT2A receptors, arrestin-biased agonists for angiotensin II AT1 receptors and β - adrenergic receptors, antagonists that cause internalization of 5-HT2A receptors, and in vivo evidence for functionally selective dopamine receptor ligands. Barriers to using functional selectivity as a criterion for rational drug design are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Violin JD, Lefkowitz RJ. β-Arrestin-biased ligands at seven-transmembrane receptors. TIPS 2007;28:416–22.

    PubMed  CAS  Google Scholar 

  2. Pierce KL, Lefkowitz RJ. Classical and new roles of β-arrestins in the regulation of G-protein-coupled receptors. Nat Rev Neurosci 2001;2:727–33.

    PubMed  CAS  Google Scholar 

  3. Luttrell LM, Lefkowitz RJ. The role of β-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci 2002;115:455–65.

    PubMed  CAS  Google Scholar 

  4. Ren XR, Reiter E, Ahn S, Kim J, Chen W, Lefkowitz RJ. Different G protein-coupled receptor kinases govern G protein and β-arrestin-mediated signaling of V2 vasopressin receptor. Proc Natl Acad Sci USA 2005;102:1448–53.

    PubMed  CAS  Google Scholar 

  5. Reiter E, Lefkowitz RJ. GRKs and β-arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol Metab 2006;17:159–65.

    PubMed  CAS  Google Scholar 

  6. Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ. β-Arrestin: a protein that regulates β-adrenergic receptor function. Science 1990;248:1547–50.

    PubMed  CAS  Google Scholar 

  7. Yu SS, Lefkowitz RJ, Hausdorff WP. β-Adrenergic receptor sequestration - a potential mechanism of receptor resensitization. J Biol Chem 1993;268:337–41.

    PubMed  CAS  Google Scholar 

  8. Pippig S, Andexinger S, Lohse MJ. Sequestration and recycling of β2-adrenergic receptors permit receptor resensitization. Mol Pharmacol 1995;47:666–76.

    PubMed  CAS  Google Scholar 

  9. Arden JR, Segredo V, Wang Z, Lameh J, Sadée W. Phosphorylation and agonist-specific intracellular trafficking of an epitope-tagged μ-opioid receptor expressed in HEK 293 cells. J Neurochem 1995;65:1636–45.

    PubMed  CAS  Google Scholar 

  10. Keith DE, Anton B, Murray SR et al. μ-opioid receptor internalization: Opiate drugs have differential effects on a conserved endocytic mechanism in vitro and in the mammalian brain. Mol Pharmacol 1998;53:377–84.

    PubMed  CAS  Google Scholar 

  11. Dang VC, Williams JT. Morphine-Induced μ-opioid receptor desensitization. Mol Pharmacol 2005;68:1127–32.

    PubMed  CAS  Google Scholar 

  12. Haberstock-Debic H, Kim KA, Yu YJ, von Zastrow M. Morphine promotes rapid, arrestin-dependent endocytosis of μ-opioid receptors in striatal neurons. J Neurosci 2005;25:7847–57.

    PubMed  CAS  Google Scholar 

  13. Bohn LM, Gainetdinov RR, Lin FT, Lefkowitz RJ, Caron MG. μ-Opioid receptor desensitization by β-arrestin2 determines morphine tolerance but not dependence. Nature 2000;408:720–3.

    PubMed  CAS  Google Scholar 

  14. Bohn LM, Lefkowitz RJ, Caron MG. Differential mechanisms of morphine antinociceptive tolerance revealed in βarrestin2 knock-out mice. J Neurosci 2002;22:10494–500.

    PubMed  CAS  Google Scholar 

  15. Bohn LM, Dykstra LA, Lefkowitz RJ, Caron MG, Barak LS. Relative opioid efficacy is determined by the complements of the G protein-coupled receptor desensitization machinery. Mol Pharmacol 2004;66:106–12.

    PubMed  CAS  Google Scholar 

  16. Kim JA, Bartlett S, He L et al. Morphine-induced receptor endocytosis in a novel knockin mouse reduces tolerance and dependence. Curr Biol 2008;18:129–35.

    PubMed  CAS  Google Scholar 

  17. Zhang J, Ferguson SS, Barak LS et al. Role for G protein-coupled receptor kinase in agonist-specific regulation of μ-opioid receptor responsiveness. Proc Natl Acad Sci USA 1998;95:7157–62.

    PubMed  CAS  Google Scholar 

  18. Groer CE, Tidgewell K, Moyer RA et al. An opioid agonist that does not induce μ-opioid receptor--arrestin interactions or receptor internalization. Mol Pharmacol 2007;71:549–57.

    PubMed  CAS  Google Scholar 

  19. Raehal KM, Walker JK, Bohn LM. Morphine side effects in β-arrestin 2 knockout mice. J Pharmacol Exp Ther 2005;314:1195–201.

    PubMed  CAS  Google Scholar 

  20. Roth BL, Willins DL, Kristiansen K, Kroeze WK. 5-hydroxytryptamine2-family receptors (5-hydroxytryptamine2A, 5-hydroxytryptamine2B, 5-hydroxytryptamine2C): where structure meets function. Pharmacol Ther 1998;79:231–57.

    PubMed  CAS  Google Scholar 

  21. Egan CT, Herrick-Davis K, Miller K, Glennon RA, Teitler M. Agonist activity of LSD and lisuride at cloned 5HT2A and 5HT2C receptors. Psychopharmacology (Berl) 1998;136:409–14.

    CAS  Google Scholar 

  22. Nichols DE. Hallucinogens. Pharmacol Ther 2004;101:131–81.

    PubMed  CAS  Google Scholar 

  23. Gelber EI, Kroeze WK, Willins DL et al. Structure and function of the third intracellular loop of the 5-hydroxytryptamine2A receptor: the third intracellular loop is α-helical and binds purified arrestins. J Neurochem 1999;72:2206–14.

    PubMed  CAS  Google Scholar 

  24. Schmid CL, Raehal KM, Bohn LM. Agonist-directed signaling of the serotonin 2A receptor depends on β-arrestin2 interactions in vivo. Proc Natl Acad Sci USA 2008;105:1079–84.

    PubMed  CAS  Google Scholar 

  25. González-Maeso J, Weisstaub NV, Zhou M et al. Hallucinogens recruit specific cortical 5-HT2A receptor-mediated signaling pathways to affect behavior. Neuron 2007;53:439–52.

    PubMed  Google Scholar 

  26. Ahn S, Nelson CD, Garrison TR, Miller WE, Lefkowitz RJ. Desensitization, internalization, and signaling functions of β-arrestins demonstrated by RNA interference. Proc Natl Acad Sci USA 2003;100:1740–4.

    PubMed  CAS  Google Scholar 

  27. Zhai P, Yamamoto M, Galeotti J et al. Cardiac-specific overexpression of AT1 receptor mutant lacking Gαq/Gαi coupling causes hypertrophy and bradycardia in transgenic mice. J Clin Invest 2005;115:3045–56.

    PubMed  CAS  Google Scholar 

  28. Holloway AC, Qian H, Pipolo L et al. Side-chain substitutions within angiotensin II reveal different requirements for signaling, internalization, and phosphorylation of type 1A angiotensin receptors. Mol Pharmacol 2002;61:768–77.

    PubMed  CAS  Google Scholar 

  29. Wei H, Ahn S, Shenoy SK et al. Independent β -arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc Natl Acad Sci USA 2003;100:10782–7.

    PubMed  CAS  Google Scholar 

  30. Ahn S, Shenoy SK, Wei H, Lefkowitz RJ. Differential kinetic and spatial patterns of β-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J Biol Chem 2004;279:35518–25.

    PubMed  CAS  Google Scholar 

  31. Rajagopal K, Whalen EJ, Violin JD et al. β-arrestin2-mediated inotropic effects of the angiotensin II type 1A receptor in isolated cardiac myocytes. Proc Natl Acad Sci USA 2006;103:16284–9.

    PubMed  CAS  Google Scholar 

  32. Daniels D, Yee DK, aulconbridge LF, luharty SJ. Divergent behavioral roles of angiotensin receptor intracellular signaling cascades. Endocrinology 2005;146:5552–60.

    PubMed  CAS  Google Scholar 

  33. Wisler JW, DeWire SM, Whalen EJ et al. A unique mechanism of β-blocker action: carvedilol stimulates β-arrestin signaling. Proc Natl Acad Sci USA 2007;104:16657–62.

    PubMed  CAS  Google Scholar 

  34. Galandrin S, Bouvier M. Distinct signaling profiles of β1 and β2 adrenergic receptor ligands toward adenylyl cyclase and mitogen-activated protein kinase reveals the pluridimensionality of efficacy. Mol Pharmacol 2006;70:1575–84.

    PubMed  CAS  Google Scholar 

  35. Galandrin S, Oligny-Longpré G, Bonin H, Ogawa K, Galés C, Bouvier M. Conformational rearrangements and signaling cascades involved in ligand-biased mitogen-activated protein kinase signaling through the β1-adrenergic receptor. Mol Pharmacol 2008;74:162–72.

    PubMed  CAS  Google Scholar 

  36. Enjalbert A, Bockaert J. Pharmacological characterization of the D2 dopamine receptor negatively coupled with adenylate cyclase in rat anterior pituitary. Mol Pharmacol 1983;23:576–84.

    PubMed  CAS  Google Scholar 

  37. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. Physiol Rev 1998;78:189–225.

    PubMed  CAS  Google Scholar 

  38. Neve KA, Seamans JK, Trantham-Davidson H. Dopamine receptor signaling. J Recept Signal Transduct Res 2004;24:165–205.

    PubMed  CAS  Google Scholar 

  39. Beaulieu JM, Sotnikova TD, Yao W-D et al. Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci USA 2004;101:5099–104.

    PubMed  CAS  Google Scholar 

  40. Beaulieu JM, Tirotta E, Sotnikova TD et al. Regulation of Akt signaling by D2 and D3 dopamine receptors in vivo. J Neurosci 2007;27:881–5.

    PubMed  CAS  Google Scholar 

  41. Beaulieu JM, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG. An Akt/β-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 2005;122:261–73.

    PubMed  CAS  Google Scholar 

  42. Andjelkovic M, Jakubowicz T, Cron P, Ming XF, Han JW, Hemmings BA. Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proc Natl Acad Sci USA 1996;93:5699–704.

    PubMed  CAS  Google Scholar 

  43. Gould TD, Einat H, Bhat R, Manji HK. AR-A014418, a selective GSK-3 inhibitor, produces antidepressant-like effects in the forced swim test. Int J Neuropsychopharmacol 2004;7:387–90.

    PubMed  CAS  Google Scholar 

  44. Prickaerts J, Moechars D, Cryns K et al. Transgenic mice overexpressing glycogen synthase kinase 3β: a putative model of hyperactivity and mania. J Neurosci 2006;26:9022–9.

    PubMed  CAS  Google Scholar 

  45. Powell SB, Geyer MA. Overview of animal models of schizophrenia. Curr Protoc Neurosci 2007;Chapter 9:Unit 9.24.45. Powell SB, Geyer MA. Overview of animal models of schizophrenia. Curr Protoc Neurosci 2007;Chapter 9:Unit 9.24.

    Google Scholar 

  46. Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA. Convergent evidence for impaired AKT1-GSK3β signaling in schizophrenia. Nat Genet 2004;36:131–7.

    PubMed  CAS  Google Scholar 

  47. Beaulieu JM, Marion S, Rodriguiz RM et al. A β-arrestin 2 signaling complex mediates lithium action on behavior. Cell 2008;132:125–36.

    PubMed  CAS  Google Scholar 

  48. Beaulieu JM, Gainetdinov RR, Caron MG. The Akt-GSK-3 signaling cascade in the actions of dopamine. TIPS 2007;28:166–72.

    PubMed  CAS  Google Scholar 

  49. Tan HY, Nicodemus KK, Chen Q et al. Genetic variation in AKT1 is linked to dopamine-associated prefrontal cortical structure and function in humans. J Clin Invest 2008;118:2200–8.

    PubMed  CAS  Google Scholar 

  50. Fénelon G. Psychosis in Parkinson's disease: phenomenology, frequency, risk factors, and current understanding of pathophysiologic mechanisms. CNS Spectr 2008;13:18–25.

    PubMed  Google Scholar 

  51. Lan H, Liu Y, Bell MI, Gurevich VV, Neve KA. A dopamine D2 receptor mutant capable of G protein-mediated signaling but deficient in arrestin binding. Mol Pharmacol 2009; 75:113–23.

    PubMed  CAS  Google Scholar 

  52. Lan H, Teeter MM, Gurevich VV, Neve KA. An intracellular loop 2 amino acid residue determines differential binding of arrestin to the dopamine D2 and D3 receptors. Mol Pharmacol 2009;75:19–26.

    PubMed  CAS  Google Scholar 

  53. Masri B, Salahpour A, Didriksen M et al. Antagonism of dopamine D2 receptor/β-arrestin 2 interaction is a common property of clinically effective antipsychotics. Proc Natl Acad Sci USA 2008;105:13656–61.

    PubMed  CAS  Google Scholar 

  54. Berry SA, Shah MC, Khan N, Roth BL. Rapid agonist-induced internalization of the 5-hydroxytryptamine2A receptor occurs via the endosome pathway in vitro. Mol Pharmacol 1996;50:306–13.

    PubMed  CAS  Google Scholar 

  55. Willins DL, Berry SA, Alsayegh L et al. Clozapine and other 5-hydroxytryptamine-2A receptor antagonists alter the subcellular distribution of 5-hydroxytryptamine-2A receptors in vitro and in vivo. Neuroscience 1999;91:599–606.

    PubMed  CAS  Google Scholar 

  56. Gray JA, Roth BL. Paradoxical trafficking and regulation of 5-HT2A receptors by agonists and antagonists. Brain Res Bull 2001;56:441–51.

    PubMed  CAS  Google Scholar 

  57. Bhatnagar A, Willins DL, Gray JA, Woods J, Benovic JL, Roth BL. The dynamin-dependent, arrestin-independent internalization of 5-hydroxytryptamine 2A (5-HT2A) serotonin receptors reveals differential sorting of arrestins and 5-HT2A receptors during endocytosis. J Biol Chem 2001;276:8269–77.

    PubMed  CAS  Google Scholar 

  58. Navarro A, Zapata R, Canela EI, Mallol J, Lluis C, Franco R. Epidermal growth factor (EGF)-induced up-regulation and agonist- and antagonist-induced desensitization and internalization of A1 adenosine receptors in a pituitary-derived cell line. Brain Res 1999;816:47–57.

    PubMed  CAS  Google Scholar 

  59. Roettger BF, Ghanekar D, Rao R et al. Antagonist-stimulated internalization of the G protein-coupled cholecystokinin receptor. Mol Pharmacol 1997;51:357–62.

    PubMed  CAS  Google Scholar 

  60. Pfeiffer R, Kirsch J, Fahrenholz F. Agonist and antagonist-dependent internalization of the human vasopressin V2 receptor. Exp Cell Res 1998;244:327–39.

    PubMed  CAS  Google Scholar 

  61. Undie AS, Friedman E. Stimulation of a dopamine D1 receptor enhances inositol phosphates formation in rat brain. J Pharmacol Exp Ther 1990;253:987–92.

    PubMed  CAS  Google Scholar 

  62. Wang HY, Undie AS, Friedman E. Evidence for the coupling of Gq protein to D1-like dopamine sites in rat striatum: Possible role in dopamine-mediated inositol phosphate formation. Mol Pharmacol 1995;48:988–94.

    PubMed  CAS  Google Scholar 

  63. Pacheco MA, Jope RS. Comparison of [3H]phosphatidylinositol and [3H]phosphatidylinositol 4,5-bisphosphate hydrolysis in postmortem human brain membranes and characterization of stimulation by dopamine D1 receptors. J Neurochem 1997;69:639–44.

    PubMed  CAS  Google Scholar 

  64. Jin L-Q, Wang H-Y, Friedman E. Stimulated D1 dopamine receptors couple to multiple Gα proteins in different brain regions. J Neurochem 2001;78:981–90.

    PubMed  CAS  Google Scholar 

  65. Tang TS, Bezprozvanny I. Dopamine receptor-mediated Ca2+ signaling in striatal medium spiny neurons. J Biol Chem 2004;279:42082–94.

    PubMed  CAS  Google Scholar 

  66. Lee KW, Hong JH, Choi IY et al. Impaired D2 dopamine receptor function in mice lacking type 5 adenylyl cyclase. J Neurosci 2002;22:7931–40.

    PubMed  CAS  Google Scholar 

  67. Iwamoto T, Okumura S, Iwatsubo K et al. Motor dysfunction in type 5 adenylyl cyclase-null mice. J Biol Chem 2003;278:16936–40.

    PubMed  CAS  Google Scholar 

  68. Arnt J, Hyttel J, Sánchez C. Partial and full dopamine D1 receptor agonists in mice and rats: relation between behavioural effects and stimulation of adenylate cyclase activity in vitro. Eur J Pharmacol 1992;213:259–67.

    PubMed  CAS  Google Scholar 

  69. Deveney AM, Waddington JL. Pharmacological characterization of behavioural responses to SK&F 83959 in relation to ‘D1-like’ dopamine receptors not linked to adenylyl cyclase. Br J Pharmacol 1995;116:2120–6.

    PubMed  CAS  Google Scholar 

  70. Peacock L, Gerlach J. Aberrant behavioral effects of a dopamine D1 receptor antagonist and agonist in monkeys: evidence of uncharted dopamine D1 receptor actions. Biol Psychiatry 2001;50:501–9.

    PubMed  CAS  Google Scholar 

  71. Panchalingam S, Undie AS. SKF83959 exhibits biochemical agonism by stimulating [(35)S]GTP gamma S binding and phosphoinositide hydrolysis in rat and monkey brain. Neuropharmacology 2001;40:826–37.

    PubMed  CAS  Google Scholar 

  72. Jin LQ, Goswami S, Cai GP, Zhen XC, Friedman E. SKF83959 selectively regulates phosphatidylinositol-linked D1 dopamine receptors in rat brain. J Neurochem 2003;85:378–86.

    PubMed  CAS  Google Scholar 

  73. Zhen X, Goswami S, Friedman E. The role of the phosphatidyinositol-linked D1 dopamine receptor in the pharmacology of SKF83959. Pharmacol Biochem Behav 2005;80:597–601.

    PubMed  CAS  Google Scholar 

  74. Undie AS, Weinstock J, Sarau HM, Friedman E. Evidence for a distinct D1-like dopamine receptor that couples to activation of phosphoinositide metabolism in brain. J Neurochem 1994;62:2045–8.

    PubMed  CAS  Google Scholar 

  75. Tomiyama K, McNamara FN, Clifford JJ, Kinsella A, Koshikawa N, Waddington JL. Topographical assessment and pharmacological characterization of orofacial movements in mice: dopamine D1-like vs. D2-like receptor regulation. Eur J Pharmacol 2001;418:47–54.

    PubMed  CAS  Google Scholar 

  76. O'Sullivan GJ, Roth BL, Kinsella A, Waddington JL. SK&F 83822 distinguishes adenylyl cyclase from phospholipase C-coupled dopamine D1-like receptors: behavioural topography. Eur J Pharmacol 2004;486:273–80.

    PubMed  Google Scholar 

  77. Clifford JJ, Tighe O, Croke DT et al. Conservation of behavioural topography to dopamine D1-like receptor agonists in mutant mice lacking the D1A receptor implicates a D1-like receptor not coupled to adenylyl cyclase. Neuroscience 1999;93:1483–9.

    PubMed  CAS  Google Scholar 

  78. Tomiyama K, McNamara FN, Clifford JJ et al. Phenotypic resolution of spontaneous and D1-like agonist-induced orofacial movement topographies in congenic dopamine D1A receptor ‘knockout’ mice. Neuropharmacology 2002;42:644–52.

    PubMed  CAS  Google Scholar 

  79. Friedman E, Jin LQ, Cai GP et al. D1-like dopaminergic activation of phosphoinositide hydrolysis is independent of D1A dopamine receptors: evidence from D1A knockout mice. Mol Pharmacol 1997;51:6–11.

    PubMed  CAS  Google Scholar 

  80. Rashid AJ, So CH, Kong MM et al. D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc Natl Acad Sci USA 2007;104:654–9.

    PubMed  CAS  Google Scholar 

  81. Lee SP, So CH, Rashid AJ et al. Dopamine D1 and D2 receptor co-activation generates a novel phospholipase C-mediated calcium signal. J Biol Chem 2004;279:35671–8.

    PubMed  CAS  Google Scholar 

  82. Dziedzicka-Wasylewska M, Faron-Górecka A, Andrecka J, Polit A, Kusmider M, Wasylewski Z. Fluorescence studies reveal heterodimerization of dopamine D1 and D2 receptors in the plasma membrane. Biochemistry 2006;45:8751–9.

    PubMed  CAS  Google Scholar 

  83. Shuen JA, Chen M, Gloss B, Calakos N. Drd1a-tdTomato BAC transgenic mice for simultaneous visualization of medium spiny neurons in the direct and indirect pathways of the basal ganglia. J Neurosci 2008;28:2681–5.

    PubMed  CAS  Google Scholar 

  84. Lovenberg TW, Brewster WK, Mottola DM et al. Dihydrexidine, a novel selective high potency full dopamine D-1 receptor agonist. Eur J Pharmacol 1989;166:111–3.

    PubMed  CAS  Google Scholar 

  85. Brewster WK, Nichols DE, Riggs RM et al. trans-10,11-dihydroxyl-5,6,6a,7,8,12b-hexahydrobenxo[a]phenanthridine: a highly potent selective dopamine D1 full agonist. J Med Chem 1990;33:1756–64.

    PubMed  CAS  Google Scholar 

  86. Mottola DM, Brewster WK, Cook LL, Nichols DE, Mailman RB. Dihydrexidine, a novel full efficacy D1 dopamine receptor agonist. J Pharmacol Exp Ther 1992;262:383–93.

    PubMed  CAS  Google Scholar 

  87. Mottola DM, Kilts JD, Lewis MM et al. Functional selectivity of dopamine receptor agonists. I. Selective activation of postsynaptic dopamine D2 receptors linked to adenylate cyclase. J Pharmacol Exp Ther 2002;301:1166–78.

    PubMed  CAS  Google Scholar 

  88. Kilts JD, Connery HS, Arrington EG et al. Functional selectivity of dopamine receptor agonists. II. Actions of dihydrexidine in D2L receptor-transfected MN9D cells and pituitary lactotrophs. J Pharmacol Exp Ther 2002;301:1179–89.

    PubMed  CAS  Google Scholar 

  89. Darney KJ, Jr., Lewis MH, Brewster WK, Nichols DE, Mailman RB. Behavioral effects in the rat of dihydrexidine, a high-potency, full-efficacy D1 dopamine receptor agonist. Neuropsychopharmacology 1991;5:187–95.

    PubMed  CAS  Google Scholar 

  90. Smith HP, Nichols DE, Mailman RB, Lawler CP. Locomotor inhibition, yawning and vacuous chewing induced by a novel dopamine D2 post-synaptic receptor agonist. Eur J Pharmacol 1997;323:27–36.

    PubMed  CAS  Google Scholar 

  91. Kikuchi T, Tottori K, Uwahodo Y et al. 7-{4-[4-(2,3-dichlorophenyl)-1-piperazinyl]butyloxy}-3,4-dihydro- 2(1H)-quinolinone (OPC-14597), a new putative antipsychotic drug with both presynaptic dopamine autoreceptor agonistic activity and postsynaptic D2 receptor antagonistic activity. J Pharmacol Exp Ther 1995;274:329–36.

    PubMed  CAS  Google Scholar 

  92. Tamminga CA. Partial dopamine agonists in the treatment of psychosis. J Neur Transm 2002;109:411–20.

    CAS  Google Scholar 

  93. Kane JM, Carson WH, Saha AR et al. Efficacy and safety of aripiprazole and haloperidol versus placebo in patients with schizophrenia and schizoaffective disorder. J Clin Psychiatry 2002;63:763–71.

    PubMed  CAS  Google Scholar 

  94. Leite JV, Guimaraes FS, Moreira FA. Aripiprazole, an atypical antipsychotic, prevents the motor hyperactivity induced by psychotomimetics and psychostimulants in mice. Eur J Pharmacol 2008;578:222–7.

    PubMed  CAS  Google Scholar 

  95. Lawler CP, Prioleau C, Lewis MM et al. Interactions of the novel antipsychotic aripiprazole (OPC-14597) with dopamine and serotonin receptor subtypes. Neuropsychopharmacology 1999;20:612–27.

    PubMed  CAS  Google Scholar 

  96. Burris KD, Molski TF, Xu C et al. Aripiprazole, a novel antipsychotic, is a high-affinity partial agonist at human dopamine D2 receptors. J Pharmacol Exp Ther 2002;302:381–9.

    PubMed  CAS  Google Scholar 

  97. Cosi C, Carilla-Durand E, Assié MB et al. Partial agonist properties of the antipsychotics SSR181507, aripiprazole and bifeprunox at dopamine D2 receptors: G protein activation and prolactin release. Eur J Pharmacol 2006;535:135–44.

    PubMed  CAS  Google Scholar 

  98. Shapiro DA, Renock S, Arrington E et al. Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 2003;28:1400–11.

    PubMed  CAS  Google Scholar 

  99. Urban JD, Vargas GA, von Zastrow M, Mailman RB. Aripiprazole has functionally selective actions at dopamine D2 receptor-mediated signaling pathways. Neuropsychopharmacology 2007;32:67–77.

    PubMed  CAS  Google Scholar 

  100. Klewe IV, Nielsen SM, Tarpø L et al. Recruitment of β-arrestin2 to the dopamine D2 receptor: insights into anti-psychotic and anti-parkinsonian drug receptor signaling. Neuropharmacology 2008;54:1215–22.

    PubMed  CAS  Google Scholar 

  101. Wang Y, Xu R, Sasaoka T, Tonegawa S, Kung MP, Sankoorikal EB. Dopamine D2 long receptor-deficient mice display alterations in striatum-dependent functions. J Neurosci 2000;20:8305–14.

    PubMed  CAS  Google Scholar 

  102. Usiello A, Baik JH, Rouge-Pont F et al. Distinct functions of the two isoforms of dopamine D2 receptors. Nature 2000;408:199–203.

    PubMed  CAS  Google Scholar 

  103. Khan ZU, Mrzljak L, Gutierrez A, De la Calle A, Goldman-Rakic PS. Prominence of the dopamine D2 short isoform in dopaminergic pathways. Proc Natl Acad Sci USA 1998;95:7731–6.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Martin Beaulieu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Neve, K.A., Caron, M.G., Beaulieu, JM. (2009). In Vivo Evidence for and Consequences of Functional Selectivity. In: Neve, K.A. (eds) Functional Selectivity of G Protein-Coupled Receptor Ligands. The Receptors. Humana Press. https://doi.org/10.1007/978-1-60327-335-0_6

Download citation

Publish with us

Policies and ethics