Skip to main content

Selectivity for G Protein or Arrestin-Mediated Signaling

  • Chapter
  • First Online:
Functional Selectivity of G Protein-Coupled Receptor Ligands

Part of the book series: The Receptors ((REC))

Abstract

G protein-coupled receptors (GPCR) are expressed throughout the body in various cell types and organs. The cellular complement of proteins and the immediate scaffolds assembled in proximity to the receptor can determine how a receptor will signal in response to a given agonist. Furthermore, a particular agonist may promote receptor activation such that it favors interactions with different signaling partners within a cell. Therefore, a given receptor may have diverse functions depending on where it is expressed or what ligand is binding to it. β-arrestins are ubiquitously expressed cellular regulatory proteins that can play multifaceted roles in GPCR signaling. This chapter focuses on how different ligands can reveal differential roles of β-arrestins in determining GPCR signaling and regulation. We will focus on the neurotransmitter receptors for serotonin and opioids for specific examples of such functional selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gilchrist A. Modulating G-protein-coupled receptors: from traditional pharmacology to allosterics. Trends Pharmacol Sci 2007;28(8):431–7.

    Article  PubMed  CAS  Google Scholar 

  2. Mailman RB. GPCR functional selectivity has therapeutic impact. Trends Pharmacol Sci 2007;28(8):390–6.

    Article  PubMed  CAS  Google Scholar 

  3. Urban JD, Clarke WP, von Zastrow M, et al. Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 2007;320(1):1–13.

    Article  PubMed  CAS  Google Scholar 

  4. Kelly E, Bailey CP, Henderson G. Agonist-selective mechanisms of GPCR desensitization. Br J Pharmacol 2008;153 Suppl 1:S379–88.

    Google Scholar 

  5. Premont RT, Inglese J, Lefkowitz RJ. Protein kinases that phosphorylate activated G protein-coupled receptors. Faseb J 1995;9(2):175–82.

    PubMed  CAS  Google Scholar 

  6. Premont RT, Gainetdinov RR. Physiological roles of G protein-coupled receptor kinases and arrestins. Annu Rev Physiol 2007;69:511–34.

    Article  PubMed  CAS  Google Scholar 

  7. Pierce KL, Lefkowitz RJ. Classical and new roles of beta-arrestins in the regulation of G-protein-coupled receptors. Nat Rev Neurosci 2001;2(10):727–33.

    Article  PubMed  CAS  Google Scholar 

  8. Luttrell LM, Lefkowitz RJ. The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci 2002;115(Pt 3):455–65.

    PubMed  CAS  Google Scholar 

  9. Alvarez C. On the origins of arrestin and rhodopsin. BMC Evolutinary Biology 2008;8:222.

    Article  Google Scholar 

  10. Violin JD, Lefkowitz RJ. Beta-arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol Sci 2007;28(8):416–22.

    Article  PubMed  CAS  Google Scholar 

  11. Freedman NJ, Liggett SB, Drachman DE, Pei G, Caron MG, Lefkowitz RJ. Phosphorylation and desensitization of the human beta 1-adrenergic receptor. Involvement of G protein-coupled receptor kinases and cAMP-dependent protein kinase. J Biol Chem 1995;270(30):17953–61.

    Article  PubMed  CAS  Google Scholar 

  12. Freedman NJ, Ament AS, Oppermann M, Stoffel RH, Exum ST, Lefkowitz RJ. Phosphorylation and desensitization of human endothelin A and B receptors. Evidence for G protein-coupled receptor kinase specificity. J Biol Chem 1997;272(28):17734–43.

    Article  PubMed  CAS  Google Scholar 

  13. Ferguson SS, Downey WE, 3rd, Colapietro AM, Barak LS, Menard L, Caron MG. Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 1996;271(5247):363–6.

    Article  PubMed  CAS  Google Scholar 

  14. Menard L, Ferguson SS, Barak LS, et al. Members of the G protein-coupled receptor kinase family that phosphorylate the beta2-adrenergic receptor facilitate sequestration. Biochemistry 1996;35(13):4155–60.

    Article  PubMed  CAS  Google Scholar 

  15. Zhang J, Ferguson SS, Barak LS, et al. Role for G protein-coupled receptor kinase in agonist-specific regulation of mu-opioid receptor responsiveness. Proc Natl Acad Sci USA 1998;95(12):7157–62.

    Article  PubMed  CAS  Google Scholar 

  16. Mundell SJ, Luty JS, Willets J, Benovic JL, Kelly E. Enhanced expression of G protein-coupled receptor kinase 2 selectively increases the sensitivity of A2A adenosine receptors to agonist-induced desensitization. Br J Pharmacol 1998;125(2):347–56.

    Article  PubMed  CAS  Google Scholar 

  17. Appleyard SM, Celver J, Pineda V, Kovoor A, Wayman GA, Chavkin C. Agonist-dependent desensitization of the kappa opioid receptor by G protein receptor kinase and beta-arrestin. J Biol Chem 1999;274(34):23802–7.

    Article  PubMed  CAS  Google Scholar 

  18. Koch WJ, Rockman HA, Samama P, et al. Cardiac function in mice overexpressing the beta-adrenergic receptor kinase or a beta ARK inhibitor. Science 1995;268(5215):1350–3.

    Article  PubMed  CAS  Google Scholar 

  19. Rockman HA, Choi DJ, Rahman NU, Akhter SA, Lefkowitz RJ, Koch WJ. Receptor-specific in vivo desensitization by the G protein-coupled receptor kinase-5 in transgenic mice. Proc Natl Acad Sci USA 1996;93(18):9954–9.

    Article  PubMed  CAS  Google Scholar 

  20. Iaccarino G, Tomhave ED, Lefkowitz RJ, Koch WJ. Reciprocal in vivo regulation of myocardial G protein-coupled receptor kinase expression by beta-adrenergic receptor stimulation and blockade. Circulation 1998;98(17):1783–9.

    PubMed  CAS  Google Scholar 

  21. Rockman HA, Hamilton RA, Jones LR, Milano CA, Mao L, Lefkowitz RJ. Enhanced myocardial relaxation in vivo in transgenic mice overexpressing the beta2-adrenergic receptor is associated with reduced phospholamban protein. J Clin Invest 1996;97(7):1618–23.

    Article  PubMed  CAS  Google Scholar 

  22. Kohout TA, Lin FS, Perry SJ, Conner DA, Lefkowitz RJ. beta-Arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking. Proc Natl Acad Sci USA 2001;98(4):1601–6.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang X, Wang F, Chen X, et al. Beta-arrestin1 and beta-arrestin2 are differentially required for phosphorylation-dependent and -independent internalization of delta-opioid receptors. J Neurochem 2005;95(1):169–78.

    Article  PubMed  CAS  Google Scholar 

  24. Ren XR, Reiter E, Ahn S, Kim J, Chen W, Lefkowitz RJ. Different G protein-coupled receptor kinases govern G protein and beta-arrestin-mediated signaling of V2 vasopressin receptor. Proc Natl Acad Sci USA 2005;102(5):1448–53.

    Article  PubMed  CAS  Google Scholar 

  25. Paing MM, Stutts AB, Kohout TA, Lefkowitz RJ, Trejo J. beta -Arrestins regulate protease-activated receptor-1 desensitization but not internalization or Down-regulation. J Biol Chem 2002;277(2):1292–300.

    Article  PubMed  CAS  Google Scholar 

  26. Qiu Y, Loh HH, Law PY. Phosphorylation of the delta-opioid receptor regulates its beta-arrestins selectivity and subsequent receptor internalization and adenylyl cyclase desensitization. J Biol Chem 2007;282(31):22315–23.

    Article  PubMed  CAS  Google Scholar 

  27. Gainetdinov RR, Bohn LM, Walker JK, et al. Muscarinic supersensitivity and impaired receptor desensitization in G protein-coupled receptor kinase 5-deficient mice. Neuron 1999;24(4):1029–36.

    Article  PubMed  CAS  Google Scholar 

  28. Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG. Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci 2004;27:107–44.

    Article  PubMed  CAS  Google Scholar 

  29. Schmid CL, Raehal KM, Bohn LM. Agonist-directed signaling of the serotonin 2A receptor depends on beta-arrestin2 interactions in vivo. Proc Natl Acad Sci USA 2008;105(3):1079–84.

    Article  PubMed  CAS  Google Scholar 

  30. Matthes HW, Maldonado R, Simonin F, et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 1996;383(6603):819–23.

    Article  PubMed  CAS  Google Scholar 

  31. Sora I, Takahashi N, Funada M, et al. Opiate receptor knockout mice define mu receptor roles in endogenous nociceptive responses and morphine-induced analgesia. Proc Natl Acad Sci USA 1997;94(4):1544–9.

    Article  PubMed  CAS  Google Scholar 

  32. Kieffer BL. Opioids: first lessons from knockout mice. Trends Pharmacol Sci 1999;20(1):19–26.

    Article  PubMed  CAS  Google Scholar 

  33. Whistler JL, von Zastrow M. Morphine-activated opioid receptors elude desensitization by beta-arrestin. Proc Natl Acad Sci USA 1998;95(17):9914–9.

    Article  PubMed  CAS  Google Scholar 

  34. Kovoor A, Celver JP, Wu A, Chavkin C. Agonist induced homologous desensitization of mu-opioid receptors mediated by G protein-coupled receptor kinases is dependent on agonist efficacy. Mol Pharmacol 1998;54(4):704–11.

    PubMed  CAS  Google Scholar 

  35. Bohn LM, Dykstra LA, Lefkowitz RJ, Caron MG, Barak LS. Relative opioid efficacy is determined by the complements of the G protein-coupled receptor desensitization machinery. Mol Pharmacol 2004;66(1):106–12.

    Article  PubMed  CAS  Google Scholar 

  36. Johnson EA, Oldfield S, Braksator E, et al. Agonist-selective mechanisms of mu-opioid receptor desensitization in human embryonic kidney 293 cells. Mol Pharmacol 2006;70(2):676–85.

    Article  PubMed  CAS  Google Scholar 

  37. Wolf R, Koch T, Schulz S, et al. Replacement of threonine 394 by alanine facilitates internalization and resensitization of the rat mu opioid receptor. Mol Pharmacol 1999;55(2):263–8.

    PubMed  CAS  Google Scholar 

  38. Schulz S, Mayer D, Pfeiffer M, Stumm R, Koch T, Hollt V. Morphine induces terminal micro-opioid receptor desensitization by sustained phosphorylation of serine-375. Embo J 2004;23(16):3282–9.

    Article  PubMed  CAS  Google Scholar 

  39. Laporte SA, Oakley RH, Zhang J, et al. The beta2-adrenergic receptor/betaarrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Natl Acad Sci USA 1999;96(7):3712–7.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang J, Ferguson SS, Barak LS, et al. Molecular mechanisms of G protein-coupled receptor signaling: role of G protein-coupled receptor kinases and arrestins in receptor desensitization and resensitization. Recept Channels 1997;5(3–4):193–9.

    PubMed  CAS  Google Scholar 

  41. Claing A, Laporte SA, Caron MG, Lefkowitz RJ. Endocytosis of G protein-coupled receptors: roles of G protein-coupled receptor kinases and beta-arrestin proteins. Prog Neurobiol 2002;66(2):61–79.

    Article  PubMed  CAS  Google Scholar 

  42. Arden JR, Segredo V, Wang Z, Lameh J, Sadee W. Phosphorylation and agonist-specific intracellular trafficking of an epitope-tagged mu-opioid receptor expressed in HEK 293 cells. J Neurochem 1995;65(4):1636–45.

    Article  PubMed  CAS  Google Scholar 

  43. Keith DE, Murray SR, Zaki PA, et al. Morphine activates opioid receptors without causing their rapid internalization. J Biol Chem 1996;271(32):19021–4.

    Article  PubMed  CAS  Google Scholar 

  44. Sternini C, Spann M, Anton B, et al. Agonist-selective endocytosis of mu opioid receptor by neurons in vivo. Proc Natl Acad Sci USA 1996;93(17):9241–6.

    Article  PubMed  CAS  Google Scholar 

  45. Groer CE, Tidgewell K, Moyer RA, et al. An opioid agonist that does not induce micro-opioid receptor--arrestin interactions or receptor internalization. Mol Pharmacol 2007;71(2):549–57.

    Article  PubMed  CAS  Google Scholar 

  46. Koch T, Hollt V. Role of receptor internalization in opioid tolerance and dependence. Pharmacol Ther 2008;117(2):199–206.

    Article  PubMed  Google Scholar 

  47. Christie MJ. Cellular neuroadaptations to chronic opioids: tolerance, withdrawal and addiction. Br J Pharmacol 2008;154(2):384–96.

    Article  PubMed  CAS  Google Scholar 

  48. Haberstock-Debic H, Wein M, Barrot M, et al. Morphine acutely regulates opioid receptor trafficking selectively in dendrites of nucleus accumbens neurons. J Neurosci 2003;23(10):4324–32.

    PubMed  CAS  Google Scholar 

  49. Sim LJ, Selley DE, Dworkin SI, Childers SR. Effects of chronic morphine administration on mu opioid receptor-stimulated [35S]GTPgammaS autoradiography in rat brain. J Neurosci 1996;16(8):2684–92.

    PubMed  CAS  Google Scholar 

  50. Sim-Selley LJ, Selley DE, Vogt LJ, Childers SR, Martin TJ. Chronic heroin self-administration desensitizes mu opioid receptor-activated G-proteins in specific regions of rat brain. J Neurosci 2000;20(12):4555–62.

    PubMed  CAS  Google Scholar 

  51. Noble F, Cox BM. Differential desensitization of mu- and delta- opioid receptors in selected neural pathways following chronic morphine treatment. Br J Pharmacol 1996;117(1):161–9.

    PubMed  CAS  Google Scholar 

  52. Arttamangkul S, Quillinan N, Low M, Vonzastrow M, Pintar J, Williams JT. Differential activation and trafficking of mu-opioid receptors in brain slices. Mol Pharmacol 2008;74:972–9.

    Article  PubMed  CAS  Google Scholar 

  53. Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, Lin FT. Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science 1999;286(5449):2495–8.

    Article  PubMed  CAS  Google Scholar 

  54. Bohn LM, Gainetdinov RR, Lin FT, Lefkowitz RJ, Caron MG. Mu-opioid receptor desensitization by beta-arrestin2 determines morphine tolerance but not dependence. Nature 2000;408(6813):720–3.

    Article  PubMed  CAS  Google Scholar 

  55. Bohn LM, Lefkowitz RJ, Caron MG. Differential mechanisms of morphine antinociceptive tolerance revealed in (beta)arrestin2 knock-out mice. J Neurosci 2002;22(23):10494–500.

    PubMed  CAS  Google Scholar 

  56. Harding WW, Tidgewell K, Byrd N, et al. Neoclerodane diterpenes as a novel scaffold for mu opioid receptor ligands. J Med Chem 2005;48(15):4765–71.

    Article  PubMed  CAS  Google Scholar 

  57. Tidgewell K, Groer CE, Harding WW, et al. Herkinorin analogues with differential beta-arrestin2 interactions. J Med Chem 2008;51(8):2421–31.

    Article  PubMed  CAS  Google Scholar 

  58. Shenoy SK, Lefkowitz RJ. Seven-transmembrane receptor signaling through beta-arrestin. Sci STKE 2005;2005(308):cm10.

    Article  PubMed  Google Scholar 

  59. Luttrell LM, Ferguson SS, Daaka Y, et al. Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 1999;283(5402):655–61.

    Article  PubMed  CAS  Google Scholar 

  60. Daaka Y, Luttrell LM, Ahn S, et al. Essential role for G protein-coupled receptor endocytosis in the activation of mitogen-activated protein kinase. J Biol Chem 1998;273(2):685–8.

    Article  PubMed  CAS  Google Scholar 

  61. Zheng H, Loh HH, Law PY. Beta-arrestin-dependent mu-opioid receptor-activated extracellular signal-regulated kinases (ERKs) Translocate to Nucleus in Contrast to G protein-dependent ERK activation. Mol Pharmacol 2008;73(1):178–90.

    Article  PubMed  CAS  Google Scholar 

  62. Gesty-Palmer D, Chen M, Reiter E, et al. Distinct beta-arrestin- and G protein-dependent pathways for parathyroid hormone receptor-stimulated ERK1/2 activation. J Biol Chem 2006;281(16):10856–64.

    Article  PubMed  CAS  Google Scholar 

  63. Shenoy SK, Drake MT, Nelson CD, et al. beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. J Biol Chem 2006;281(2):1261–73.

    Article  PubMed  CAS  Google Scholar 

  64. Rozenfeld R, Devi LA. Receptor heterodimerization leads to a switch in signaling: beta-arrestin2-mediated ERK activation by mu-delta opioid receptor heterodimers. Faseb J 2007;21(10):2455–65.

    Article  PubMed  CAS  Google Scholar 

  65. Raehal KM, Walker JK, Bohn LM. Morphine side effects in beta-arrestin 2 knockout mice. J Pharmacol Exp Ther 2005;314(3):1195–201.

    Article  PubMed  CAS  Google Scholar 

  66. Bohn LM, Raehal KM. Opioid receptor signaling: relevance for gastrointestinal therapy. Curr Opin Pharmacol 2006;6(6):559–63.

    Article  PubMed  CAS  Google Scholar 

  67. Bruns IR, Chhum S, Dinh AT, et al. A potential novel strategy to separate therapeutic- and side-effects that are mediated via the same receptor: beta-arrestin2/G-protein coupling antagonists. J Clin Pharm Ther 2006;31(2):119–28.

    Article  PubMed  CAS  Google Scholar 

  68. Ross GR, Gabra BH, Dewey WL, Akbarali HI. Morphine tolerance in the mouse ileum and colon. J Pharmacol Exp Ther 2008;372:561–72.

    Article  Google Scholar 

  69. Berg KA, Maayani S, Goldfarb J, Scaramellini C, Leff P, Clarke WP. Effector pathway-dependent relative efficacy at serotonin type 2A and 2C receptors: evidence for agonist-directed trafficking of receptor stimulus. Mol Pharmacol 1998;54(1):94–104.

    PubMed  CAS  Google Scholar 

  70. Kurrasch-Orbaugh DM, Parrish JC, Watts VJ, Nichols DE. A complex signaling cascade links the serotonin2A receptor to phospholipase A2 activation: the involvement of MAP kinases. J Neurochem 2003;86(4):980–91.

    Article  PubMed  CAS  Google Scholar 

  71. Nichols DE. Hallucinogens. Pharmacol Ther 2004;101(2):131–81.

    Article  PubMed  CAS  Google Scholar 

  72. McLean TH, Parrish JC, Braden MR, Marona-Lewicka D, Gallardo-Godoy A, Nichols DE. 1-Aminomethylbenzocycloalkanes: conformationally restricted hallucinogenic phenethylamine analogues as functionally selective 5-HT2A receptor agonists. J Med Chem 2006;49(19):5794–803.

    Article  PubMed  CAS  Google Scholar 

  73. Gonzalez-Maeso J, Weisstaub NV, Zhou M, et al. Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 2007;53(3):439–52.

    Article  PubMed  CAS  Google Scholar 

  74. Gray JA, Sheffler DJ, Bhatnagar A, et al. Cell-type specific effects of endocytosis inhibitors on 5-hydroxytryptamine(2A) receptor desensitization and resensitization reveal an arrestin-, GRK2-, and GRK5-independent mode of regulation in human embryonic kidney 293 cells. Mol Pharmacol 2001;60(5):1020–30.

    PubMed  CAS  Google Scholar 

  75. Gelber EI, Kroeze WK, Willins DL, et al. Structure and function of the third intracellular loop of the 5-hydroxytryptamine2A receptor: the third intracellular loop is alpha-helical and binds purified arrestins. J Neurochem 1999;72(5):2206–14.

    Article  PubMed  CAS  Google Scholar 

  76. Xia Z, Hufeisen SJ, Gray JA, Roth BL. The PDZ-binding domain is essential for the dendritic targeting of 5-HT2A serotonin receptors in cortical pyramidal neurons in vitro. Neuroscience 2003;122(4):907–20.

    Article  PubMed  CAS  Google Scholar 

  77. Gray JA, Roth BL. Paradoxical trafficking and regulation of 5-HT(2A) receptors by agonists and antagonists. Brain Res Bull 2001;56(5):441–51.

    Article  PubMed  CAS  Google Scholar 

  78. Roth BL, Hanizavareh SM, Blum AE. Serotonin receptors represent highly favorable molecular targets for cognitive enhancement in schizophrenia and other disorders. Psychopharmacology (Berl) 2004;174(1):17–24.

    Article  CAS  Google Scholar 

  79. Willins DL, Alsayegh L, Berry SA, et al. Serotonergic antagonist effects on trafficking of serotonin 5-HT2A receptors in vitro and in vivo. Ann N Y Acad Sci 1998;861:121–7.

    Article  PubMed  CAS  Google Scholar 

  80. Willins DL, Berry SA, Alsayegh L, et al. Clozapine and other 5-hydroxytryptamine-2A receptor antagonists alter the subcellular distribution of 5-hydroxytryptamine-2A receptors in vitro and in vivo. Neuroscience 1999;91(2):599–606.

    Article  PubMed  CAS  Google Scholar 

  81. Bhatnagar A, Willins DL, Gray JA, Woods J, Benovic JL, Roth BL. The dynamin-dependent, arrestin-independent internalization of 5-hydroxytryptamine 2A (5-HT2A) serotonin receptors reveals differential sorting of arrestins and 5-HT2A receptors during endocytosis. J Biol Chem 2001;276(11):8269–77.

    Article  PubMed  CAS  Google Scholar 

  82. Corne SJ, Pickering RW. A possible correlation between drug-induced hallucinations in man and a behavioural response in mice. Psychopharmacologia 1967;11(1):65–78.

    Article  PubMed  CAS  Google Scholar 

  83. Meltzer HY. Mechanism of Action of Atypical Antipsychotic Drugs. In: Davis KL, Charney D, Coyle JT, Nemeroff C, eds. Neuropsychopharmacology: The Fifth Generation of Progress. New York: Raven Press; 2002:819–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura M. Bohn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bohn, L.M. (2009). Selectivity for G Protein or Arrestin-Mediated Signaling. In: Neve, K.A. (eds) Functional Selectivity of G Protein-Coupled Receptor Ligands. The Receptors. Humana Press. https://doi.org/10.1007/978-1-60327-335-0_5

Download citation

Publish with us

Policies and ethics