Skip to main content

Functional Selectivity at Non-Opioid Peptide Receptors

  • Chapter
  • First Online:
  • 808 Accesses

Part of the book series: The Receptors ((REC))

Abstract

Pleiotropic signaling pathways activated by peptide hormone G protein-coupled receptors (GPCRs) are thought to mediate the physiological and pathogenic actions of these hormones. The mechanism by which the same ligand–receptor system mediates multiple effects is unclear. In general, cell-based discrepancy in signaling is thought to be responsible and accordingly drug development efforts have been refocused on modulating molecules downstream of receptors. Recent developments suggest that ligand–receptor systems are binary interaction units. A change in receptor or ligand will result in a specific change in functional outcome such as selective activation of pathways or skipping certain steps of a pathway. This phenomenon of ligand-induced functional selectivity is a new paradigm that could potentially lead to design of “smart” drugs that can enhance therapeutic potential of receptors and minimize potential adverse effects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Karnik SS, Gogonea C, Patil S, Saad Y, Takezako T. Activation of G-protein-coupled receptors: a common molecular mechanism. Trends in Endocrinol Metab. 2003; 14 (9): 431–7.

    Article  CAS  Google Scholar 

  2. Kenakin T. Ligand-selective receptor conformations revisited: the promise and the problem. Trends Pharmacol Sci. 2003; 24(7): 346–54.

    Article  PubMed  CAS  Google Scholar 

  3. Kenakin T. Predicting therapeutic value in the lead optimization phase of drug discovery. Nat Rev Drug Discov. 2003; 2(6): 429–38.

    Article  PubMed  CAS  Google Scholar 

  4. Kenakin T. Functional selectivity through protean and biased agonism: who steers the ship? Mol Pharmacol. 2007; 72(6):1393–401.

    Article  PubMed  CAS  Google Scholar 

  5. Perez DM, Karnik SS. Multiple signaling states of G-protein-coupled receptors. Pharmacol Rev. 2005; 57(2): 147–61.

    Article  PubMed  CAS  Google Scholar 

  6. Urban JD, Clarke WP, von Zastrow M, et al. Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther. 2007; 320(1): 1–13.

    PubMed  CAS  Google Scholar 

  7. Sun Y, McGarrigle D, Huang XY. When a G protein-coupled receptor does not couple to a G protein. Mol Biosyst. 2007; 3(12):849–54.

    Article  PubMed  CAS  Google Scholar 

  8. Luttrell LM, Lefkowitz RJ. The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci. 2002; 115:455–65.

    PubMed  CAS  Google Scholar 

  9. Bhatnagar A, Sheffler DJ, Kroeze WK, Compton-Toth B, Roth BL. Caveolin-1 interacts with 5-HT2A serotonin receptors and profoundly modulates the signaling of selected Galpha-coupled protein receptors. J Biol Chem. 2004; 279(33): 34614–23.

    Article  PubMed  CAS  Google Scholar 

  10. Oppermann M, Mack M, Amanda E. Proudfoot I, Olbrich H. Differential effects of CC chemokines on CC chemokine receptor 5 (CCR5): phosphorylation and identification of phosphorylation sites on the CCR5 carboxyl terminus J Biol Chem. 1999; 274: 8875–85.

    Article  PubMed  CAS  Google Scholar 

  11. Koenig JA and Edwardson JM. Endocytosis and recycling of G protein-coupled receptors. Trends Pharmacol Sci. 1997; 18: 276–87.

    PubMed  CAS  Google Scholar 

  12. Arey BJ, Yanofsky SD, Claudia Pérez M, et al. Differing pharmacological activities of thiazolidinone analogs at the FSH receptor. Biochem Biophys Res Commun. 2008; 368(3): 723–8.

    Article  PubMed  CAS  Google Scholar 

  13. Bliss SP, Navratil AM, Breed M, Skinner DC, Clay CM, Roberson MS. Signaling complexes associated with the type I gonadotropin-releasing hormone (GnRH) receptor: colocalization of extracellularly regulated kinase 2 and GnRH receptor within membrane rafts. Mol Endocrinol. 2007; 21(2):538–49.

    Article  PubMed  CAS  Google Scholar 

  14. Mao Y, Jin J, Kunapuli SP. Characterization of a new peptide agonist of the protease-activated receptor-1 Biochem Pharmacol. 2008; 75(2): 438–47.

    Article  PubMed  CAS  Google Scholar 

  15. Roettger BF, Ghanekar D, Rao R, et al. Antagonist-stimulated internalization of the G protein-coupled cholecystokinin receptor, Mol Pharmacol. 1997; 51: 357–62.

    PubMed  CAS  Google Scholar 

  16. Azzi M, Pascale G. Charest, SA, et al. β−Arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors, Proc Natl Acad Sci USA 2003; 100: 11406–11.

    Article  PubMed  CAS  Google Scholar 

  17. Baranski TJ, Herzmark P, Lichtarge O, et al. C5a receptor activation. Genetic identification of critical residues in four transmembrane helices. J Biol Chem. 1999; 274(22): 15757–65.

    Article  PubMed  CAS  Google Scholar 

  18. Whistler JL, Gerber BO, Meng EC, Baranski TJ, von Zastrow M, Bourne HR. Constitutive activation and endocytosis of the complement factor 5a receptor: evidence for multiple activated conformations of a G protein-coupled receptor. Traffic. 2002; 3(12):866–77.

    Article  PubMed  CAS  Google Scholar 

  19. Simmons G, Clapham PR, Picard L, et al. Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science, 1997; 276: 276–79.

    Article  PubMed  CAS  Google Scholar 

  20. Amara A, Le Gall S, Schwartz O, et al. HIV coreceptor downregulation as antiviral principle: SDF-1 alpha -dependent internalization of the chemokine receptor CXCR4 contributes to inhibition of HIV replication J Exp Med. 1997; 186: 139–46.

    Article  PubMed  CAS  Google Scholar 

  21. Rodriguez-Frade JM. Similarities and Differences in RANTES- and (AOP)-RANTES-triggered signals: implications for chemotaxis. J Cell Biol. 1999; 144: 755.

    Article  PubMed  CAS  Google Scholar 

  22. Feldman BJ, Rosenthal SM, Vargas GA, et al. Nephrogenic syndrome of inappropriate antidiuresis. N Engl J Med. 2005; 352(18): 1884–90.

    Article  PubMed  CAS  Google Scholar 

  23. Rosenthal SM, Feldman BJ, Vargas GA, Gitelman SE. Nephrogenic syndrome of inappropriate antidiuresis (NSIAD): a paradigm for activating mutations causing endocrine dysfunction. Pediatr Endocrinol Rev. 2006; 4Suppl 1:66–70.

    PubMed  Google Scholar 

  24. Yin G, Yan C, Berk BC. Angiotensin II signaling pathways mediated by tyrosine kinases. Int J Biochem Cell Biol. 2003; 35(6): 780–3.

    Article  PubMed  CAS  Google Scholar 

  25. Biorn AC, Cocklin S, Madani N, et al. Mode of action for linear peptide inhibitors of HIV-1 gp120 interactions. Biochemistry 2004; 43(7):1928–38.

    Article  PubMed  CAS  Google Scholar 

  26. Hunyady L and Catt KJ. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol Endocrinol. 2006; 20(5): 953–70.

    Article  PubMed  CAS  Google Scholar 

  27. Lefkowitz RJ and Shenoy SK. Transduction of receptor signals by β-arrestins, Science 2005; 308: 512–17.

    Article  PubMed  CAS  Google Scholar 

  28. Miura S, Feng YH, Husain A, Karnik SS. Role of aromaticity of agonist switches of angiotensin II in the activation of the AT1 receptor. J Biol Chem. 1999; 274 (11): 7103–10.

    Article  PubMed  CAS  Google Scholar 

  29. Feng YH, Karnik SS. Role of transmembrane helix IV in G-protein specificity of the angiotensin II type 1 receptor. J Biol Chem. 1999; 274(50): 35546–52.

    Article  PubMed  CAS  Google Scholar 

  30. Feng YH, Miura S, Husain A, Karnik SS. Mechanism of constitutive activation of the AT1 receptor: influence of the size of the agonist switch-binding residue Asn (111). Biochemistry 1998; 37(45): 15791–8.

    Article  PubMed  CAS  Google Scholar 

  31. Holloway AC, Qian H, Pipolo L, et al. Side-chain substitutions within angiotensin II reveal different requirements for signaling, internalization, and phosphorylation of type 1A angiotensin receptors. Mol Pharmacol. 2002; 61(4): 768–77.

    Article  PubMed  CAS  Google Scholar 

  32. Wei H, Ahn S, Shenoy SK, et al. Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc Natl Acad Sci USA 2003; 100(19):10782–7.

    Article  PubMed  CAS  Google Scholar 

  33. Thomas WG, Qian H, Chang CS, Karnik S. Agonist-induced phosphorylation of the angiotensin II (AT(1A)) receptor requires generation of a conformation that is distinct from the inositol phosphate-signaling state. J Biol Chem. 2000; 275(4): 2893–900.

    Article  PubMed  CAS  Google Scholar 

  34. Wei H, Ahn S, Barnes WG, Lefkowitz RJ. Stable interaction between beta-arrestin 2 and angiotensin type 1A receptor is required for beta-arrestin 2-mediated activation of extracellular signal-regulated kinases 1 and 2. J Biol Chem. 2004; 279(46): 48255–61.

    Article  PubMed  CAS  Google Scholar 

  35. Daniels D, Yee DK, Faulconbridge LF, and Fluharty SJ. Divergent behavioral roles of angiotensin receptor intracellular signaling cascades. Endocrinology, 2005; 146: 5552–60.

    Article  PubMed  CAS  Google Scholar 

  36. Rajagopal K, Whalen EJ, Violin JD, Stiber JA, Rosenberg PB, Premont RT. Beta-arrestin2-mediated inotropic effects of the angiotensin II type 1A receptor in isolated cardiac myocytes. Coffman TM, Rockman HA, Lefkowitz RJ. Proc Natl Acad Sci USA 2006; 103(44): 16284–9.

    Google Scholar 

  37. Aplin M, Christensen GL, Schneider M, et al. Differential extracellular signal-regulated kinases 1 and 2 activation by the angiotensin type 1 receptor supports distinct phenotypes of cardiac myocytes. Basic Clin Pharmacol Toxicol. 2007; 100 (5): 296–301.

    Article  PubMed  CAS  Google Scholar 

  38. Aplin M, Christensen GL, Schneider M, et al. The angiotensin type 1 receptor activates extracellular signal-regulated kinases 1 and 2 by G protein-dependent and -independent pathways in cardiac myocytes and langendorff-perfused hearts. Basic Clin Pharmacol Toxicol. 2007; 100(5): 289–95.

    Article  PubMed  CAS  Google Scholar 

  39. Hunton DL, Barnes WG, Kim J, et al. Beta-arrestin 2-dependent angiotensin II type 1A receptor-mediated pathway of chemotaxis. Mol Pharmacol. 2005; 67(4): 1229–36.

    Article  PubMed  CAS  Google Scholar 

  40. DeWire SM. Beta-arrestins and cell signaling. Annu Rev Physiol. 2007; 69, 483–510.

    Article  PubMed  CAS  Google Scholar 

  41. Morello JP, Salahpour A, Laperriere A, et al. Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J Clin Invest. 2000; 105:887–95.

    Article  PubMed  CAS  Google Scholar 

  42. Hawtin SR. Charged residues of the conserved DRY triplet of the vasopressin V1a receptor provide molecular determinants for cell surface delivery and internalization. Mol Pharmacol. 2005; 68(4): 1172–82.

    Article  PubMed  CAS  Google Scholar 

  43. Robben JH, Sze M, Knoers, NVAM, Deen PMT. Functional rescue of vasopressin V2 receptor mutants in MDCK cells by pharmacochaperones: relevance to therapy of nephrogenic diabetes insipidus, Am J Physiol Renal Physiol. 2007; 292(1): F253–F260.

    PubMed  CAS  Google Scholar 

  44. Bernier V, Lagacé M, Lonergan M, Arthus MF, Bichet DG, Bouvier M. Functional rescue of the constitutively internalized V2 vasopressin receptor mutant R137H by the pharmacological chaperone action of SR49059. Mol Endocrinol. 2004; 18(8): 2074–84.

    Article  PubMed  CAS  Google Scholar 

  45. Lee C, Bhatt S, Shukla S, et al. Site-specific cleavage of GPCR-engaged Beta-arrestin: Influence of the AT1 receptor conformation on scissile site selection. J Biol Chem. 2008; M803062200.

    Google Scholar 

  46. Tateyama M and Kubo Y. Dual signaling is differentially activated by different active states of the metabotropic glutamate receptor 1a. Proc Natl Acad Sci USA 2006; 103 (4) 1124–8.

    Article  PubMed  CAS  Google Scholar 

  47. Mathew D, Ataman B, Chen J, Zhang Y, Cumberledge S, Budnik V. Wingless signaling at synapses is through cleavage and nuclear import of receptor DFrizzled2. Science 2005; 310: 1344–7.

    Article  PubMed  CAS  Google Scholar 

  48. Waldhoer M, Fong J, Jones RM, Lunzer MM, Sharma SK, Kostenis E, Portoghese PS, Whistler JL. A heterodimer-selective agonist shows in vivo relevance of G protein-coupled receptor dimers. Proc Natl Acad Sci USA 2005; 102 (25): 9050–5.

    Article  PubMed  CAS  Google Scholar 

  49. Lee C, Hwang SA, Jang SH, Chung HS, Bhat MB, Karnik SS. Manifold active-state conformations in GPCRs: agonist-activated constitutively active mutant AT1 receptor preferentially couples to Gq compared to the wild-type AT1 receptor. FEBS Lett. 2007; 581(13): 2517–22.

    Article  PubMed  CAS  Google Scholar 

  50. Hunyady L. Molecular mechanisms of angiotensin II receptor internalization. J Am Soc Nephrol. 1999; 10 Suppl 11:S47–56.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by NRSA grant # F32 HL088893 to Anushree Bhatnagar and RO1 grant # HL57470 to Sadashiva Karnik

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadashiva Karnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bhatnagar, A., Karnik, S. (2009). Functional Selectivity at Non-Opioid Peptide Receptors. In: Neve, K.A. (eds) Functional Selectivity of G Protein-Coupled Receptor Ligands. The Receptors. Humana Press. https://doi.org/10.1007/978-1-60327-335-0_13

Download citation

Publish with us

Policies and ethics