Skip to main content

Functional Selectivity at Receptors for Cannabinoids and Other Lipids

  • Chapter
  • First Online:
Functional Selectivity of G Protein-Coupled Receptor Ligands

Part of the book series: The Receptors ((REC))

Abstract

CB1 and CB2 cannabinoid receptors are associated with Gi/o proteins to activate signal transduction pathways that include inhibition of adenylyl cyclase, activation of mitogen activated protein kinase (MAPK), and regulation of ion channels (CB1 only). Agonists for these receptors include structurally diverse cannabinoid, aminoalkylindole, and eicosanoid ligands. Arylpyrazole ligands generally behave as competitive antagonists and inverse agonists to block constitutive activity of the cannabinoid receptors. Allosteric regulators of the CB1 receptor have been identified. One mechanism for functional selectivity of these ligands to direct signal transduction is the ability of certain ligands to behave as agonists for some Gαi subtypes and as inverse agonists for other Gαi subtypes. Biochemical and modeling studies suggest that selectivity can be attributed to conformational changes initiated by interactions within the 7-transmembrane helical bundle that ultimately modulate either the juxtamembrane C-terminal domain to activate Gαi3 or Gαo, and intracellular loop 3 domains to activate Gαi1, Gαi2, or Gαs. Additional selectivity in signaling pathways is conferred by accessory proteins including CRIP1a, FAN, β-arrestin, and GASP1. Close physical association of the CB1 receptor with other pharmacologically distinct GPCRs, including D2 dopamine, opioid, orexin 1, and GABAB receptors, allows ligands acting on one partner to alter the efficacy of ligands for the partner receptors. These mechanisms of ligand-directed functional selectivity can be utilized in the design of pharmacological agents that initiate signal transduction pathways of therapeutic relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Howlett AC, Barth F, Bonner TI, et al. International Union of Pharmacology. XXVII. Classification of Cannabinoid Receptors. Pharmacol Rev 2002;54:161–202.

    PubMed  CAS  Google Scholar 

  2. Pertwee RG. Pharmacological actions of cannabinoids. Handb Exp Pharmacol 2005;1–51.

    Google Scholar 

  3. Di Marzo V, De Petrocellis L, Bisogno T. The biosynthesis, fate and pharmacological properties of endocannabinoids. Handb Exp Pharmacol 2005;147–185.

    Google Scholar 

  4. Howlett AC. Cannabinoid receptor signaling. Handb Exp Pharmacol 2005;53–79.

    Google Scholar 

  5. Barth F, Rinaldi-Carmona M. The development of cannabinoid antagonists. Curr Med Chem 1999;6:745–755.

    PubMed  CAS  Google Scholar 

  6. Thomas BF, Zhang Y, Brackeen M, Page KM, Mascarella SW, Seltzman HH. Conformational characteristics of the interaction of SR141716A with the CB1 cannabinoid receptor as determined through the use of conformationally constrained analogs. AAPS J 2006;8:E665–E671.

    PubMed  Google Scholar 

  7. Hagmann WK. The discovery of taranabant, a selective cannabinoid-1 receptor inverse agonist for the treatment of obesity. Arch Pharm (Weinheim) 2008;341:405–411.

    CAS  Google Scholar 

  8. Pertwee RG. Inverse agonism and neutral antagonism at cannabinoid CB1 receptors. Life Sci 2005;76:1307–1324.

    PubMed  CAS  Google Scholar 

  9. Hurst DP, Lynch DL, Barnett-Norris J et al. N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-p yrazole-3-carboxamide (SR141716A) interaction with LYS 3.28(192) is crucial for its inverse agonism at the cannabinoid CB1 receptor. Mol Pharmacol 2002;62:1274–1287.

    PubMed  CAS  Google Scholar 

  10. Chambers AP, Vemuri VK, Peng Y et al. A neutral CB1 receptor antagonist reduces weight gain in rat. Am J Physiol Regul Integr Comp Physiol 2007;293:R2185–R2193.

    PubMed  CAS  Google Scholar 

  11. Howlett AC. Efficacy in CB1 receptor-mediated signal transduction. Br J Pharmacol 2004;142:1209–1218.

    PubMed  CAS  Google Scholar 

  12. Mu J, Zhuang SY, Hampson RE, Deadwyler SA. Protein kinase-dependent phosphorylation and cannabinoid receptor modulation of potassium A current (IA) in cultured rat hippocampal neurons. Pflugers Arch 2000;439:541–546.

    PubMed  CAS  Google Scholar 

  13. Mackie K, Lai Y, Westenbroek R, Mitchell R. Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type calcium currents in AtT20 cells transfected with rat brain cannabinoid receptor. J Neurosci 1995;15:6552–6561.

    PubMed  CAS  Google Scholar 

  14. Henry DJ, Chavkin C. Activation of inwardly rectifying potassium channels (GIRK1) by co-expressed rat brain cannabinoid receptors in Xenopus oocytes. Neurosci Lett 1995;186:91–94.

    PubMed  CAS  Google Scholar 

  15. McAllister SD, Griffin G, Satin LS, Abood ME. Cannabinoid receptors can activate and inhibit G protein-coupled inwardly rectifying potassium channels in a Xenopus oocyte expression system. J Pharmacol Exp Ther 1999;291:618–626.

    PubMed  CAS  Google Scholar 

  16. Derkinderen P, Toutant M, Burgaya F et al. Regulation of a neuronal form of focal adhesion kinase by anandamide. Science 1996;273:1719–1722.

    PubMed  CAS  Google Scholar 

  17. Zhou D, Song ZH. CB1 cannabinoid receptor-mediated tyrosine phosphorylation of focal adhesion kinase-related non-kinase. FEBS Lett 2002;525:164–168.

    PubMed  CAS  Google Scholar 

  18. Zhou D, Song ZH. CB1 cannabinoid receptor-mediated neurite remodeling in mouse neuroblastoma N1E-115 cells. J Neurosci Res 2001;65:346–353.

    PubMed  CAS  Google Scholar 

  19. Derkinderen P, Toutant M, Kadare G, Ledent C, Parmentier M, Girault JA. Dual role of Fyn in the regulation of FAK + 6,7 by cannabinoids in hippocampus. J Biol Chem 2001;276:38289–38296.

    PubMed  CAS  Google Scholar 

  20. Derkinderen P, Valjent E, Toutant M et al. Regulation of extracellular signal-regulated kinase by cannabinoids in hippocampus. J Neurosci 2003;23:2371–2382.

    PubMed  CAS  Google Scholar 

  21. Maneuf YP, Brotchie JM. Paradoxical action of the cannabinoid WIN 55,212-2 in stimulated and basal cyclic AMP accumulation in rat globus pallidus slices. Br J Pharmacol 1997;120:1397–1398.

    PubMed  CAS  Google Scholar 

  22. Bonhaus DW, Chang LK, Kwan J, Martin GR. Dual activation and inhibition of adenylyl cyclase by cannabinoid receptor agonists: evidence for agonist-specific trafficking of intracellular responses. J Pharmacol Exp Ther 1998;287:884–888.

    PubMed  CAS  Google Scholar 

  23. Rhee MH, Bayewitch M, Avidor-Reiss T, Levy R, Vogel Z. Cannabinoid receptor activation differentially regulates the various adenylyl cyclase isozymes. J Neurochem 1998;71:1525–1534.

    PubMed  CAS  Google Scholar 

  24. Glass M, Felder CC. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: evidence for a Gs linkage to the CB1 receptor. J Neurosci 1997;17:5327–5333.

    PubMed  CAS  Google Scholar 

  25. Felder CC, Joyce KE, Briley EM et al. LY320135, a novel cannabinoid CB1 receptor antagonist, unmasks coupling of the CB1 receptor to stimulation of cAMP accumulation. J Pharmacol Exp Ther 1998;284:291–297.

    PubMed  CAS  Google Scholar 

  26. Bash R, Rubovitch V, Gafni M, Sarne Y. The stimulatory effect of cannabinoids on calcium uptake is mediated by Gs GTP-binding proteins and cAMP formation. Neurosignals 2003;12:39–44.

    PubMed  CAS  Google Scholar 

  27. Andersson M, Usiello A, Borgkvist A et al. Cannabinoid action depends on phosphorylation of dopamine- and cAMP-regulated phosphoprotein of 32 kDa at the protein kinase A site in striatal projection neurons. J Neurosci 2005;25:8432–8438.

    PubMed  CAS  Google Scholar 

  28. Borgkvist A, Marcellino D, Fuxe K, Greengard P, Fisone G. Regulation of DARPP-32 phosphorylation by Delta9-tetrahydrocannabinol. Neuropharmacology 2008;54:31–35.

    PubMed  CAS  Google Scholar 

  29. Hampson RE, Mu J, Deadwyler SA. Cannabinoid and kappa opioid receptors reduce potassium K current via activation of G(s) proteins in cultured hippocampal neurons. J Neurophysiol 2000;84:2356–2364.

    PubMed  CAS  Google Scholar 

  30. Felder CC, Veluz JS, Williams HL, Briley EM, Matsuda LA. Cannabinoid agonists stimulate both receptor- and non-receptor-mediated signal transduction pathways in cells transfected with and expressing cannabinoid receptor clones. Mol Pharmacol 1992;42:838–845.

    PubMed  CAS  Google Scholar 

  31. Felder CC, Joyce KE, Briley EM et al. Comparison of the pharmacology and signal transduction of the human cannabinoid CB1 and CB2 receptors. Mol Pharmacol 1995;48:443–450.

    PubMed  CAS  Google Scholar 

  32. Sugiura T, Kodaka T, Kondo S et al. 2-Arachidonoylglycerol, a putative endogenous cannabinoid receptor ligand, induces rapid, transient elevation of intracellular free Ca2+ in neuroblastoma x glioma hybrid NG108-15 cells. Biochem Biophys Res Commun 1996;229:58–64.

    PubMed  CAS  Google Scholar 

  33. Sugiura T, Kodaka T, Kondo S et al. Is the cannabinoid CB1 receptor a 2-arachidonoylglycerol receptor? Structural requirements for triggering a Ca2+ transient in NG108-15 cells. J Biochem (Tokyo) 1997;122:890–895.

    CAS  Google Scholar 

  34. Netzeband JG, Conroy SM, Parsons KL, Gruol DL. Cannabinoids enhance NMDA-elicited Ca2+ signals in cerebellar granule neurons in culture. J Neurosci 1999;19:8765–8777.

    PubMed  CAS  Google Scholar 

  35. Nah SY, Saya D, Vogel Z. Cannabinoids inhibit agonist-stimulated formation of inositol phosphates in rat hippocampal cultures. Eur J Pharmacol 1993;246:19–24.

    PubMed  CAS  Google Scholar 

  36. Zhuang SY, Bridges D, Grigorenko E et al. Cannabinoids produce neuroprotection by reducing intracellular calcium release from ryanodine-sensitive stores. Neuropharmacology 2005;48:1086–1096.

    PubMed  CAS  Google Scholar 

  37. Caulfield MP, Brown DA. Cannabinoid receptor agonists inhibit Ca current in NG108-15 neuroblastoma cells via a pertussis toxin-sensitive mechanism. Br J Pharmacol 1992;106:231–232.

    PubMed  CAS  Google Scholar 

  38. Mackie K, Hille B. Cannabinoids inhibit N-type calcium channels in neuroblastoma-glioma cells. Proc Natl Acad Sci USA 1992;89:3825–3829.

    PubMed  CAS  Google Scholar 

  39. Mackie K, Devane WA, Hille B. Anandamide, an endogenous cannabinoid, inhibits calcium currents as a partial agonist in N18 neuroblastoma cells. Mol Pharmacol 1993;44:498–503.

    PubMed  CAS  Google Scholar 

  40. Priller J, Briley EM, Mansouri J, Devane WA, Mackie K, Felder CC. Mead ethanolamide, a novel eicosanoid, is an agonist for the central (CB1) and peripheral (CB2) cannabinoid receptors. Mol Pharmacol 1995;48:288–292.

    PubMed  CAS  Google Scholar 

  41. Pan X, Ikeda SR, Lewis DL. Rat brain cannabinoid receptor modulates N-type Ca2+ channels in a neuronal expression system. Mol Pharmacol 1996;49:707–714.

    PubMed  CAS  Google Scholar 

  42. Hampson AJ, Bornheim LM, Scanziani M et al. Dual effects of anandamide on NMDA receptor-mediated responses and neurotransmission. J Neurochem 1998;70:671–676.

    PubMed  CAS  Google Scholar 

  43. Gebremedhin D, Lange AR, Campbell WB, Hillard CJ, Harder DR. Cannabinoid CB1 receptor of cat cerebral arterial muscle functions to inhibit L-type Ca2+ channel current. Am J Physiol 1999;276:H2085–H2093.

    PubMed  CAS  Google Scholar 

  44. Pan X, Ikeda SR, Lewis DL. SR 141716A acts as an inverse agonist to increase neuronal voltage-dependent Ca2+ currents by reversal of tonic CB1 cannabinoid receptor activity. Mol Pharmacol 1998;54:1064–1072.

    PubMed  CAS  Google Scholar 

  45. Vasquez C, Lewis DL. The CB1 cannabinoid receptor can sequester G-proteins, making them unavailable to couple to other receptors. J Neurosci 1999;19:9271–9280.

    PubMed  CAS  Google Scholar 

  46. Guo J, Ikeda SR. Endocannabinoids modulate N-type calcium channels and G-protein-coupled inwardly rectifying potassium channels via CB1 cannabinoid receptors heterologously expressed in mammalian neurons. Mol Pharmacol 2004;65:665–674.

    PubMed  CAS  Google Scholar 

  47. Bouaboula M, Poinot-Chazel C, Bourrié B et al. Activation of mitogen-activated protein kinases by stimulation of the central cannabinoid receptor CB1. Biochem J 1995;312 (Pt 2):637–641.

    PubMed  CAS  Google Scholar 

  48. Guzmán M, Sánchez C. Effects of cannabinoids on energy metabolism. Life Sci 1999;65:657–664.

    PubMed  Google Scholar 

  49. Sánchez C, Galve-Roperh I, Rueda D, Guzmán M. Involvement of sphingomyelin hydrolysis and the mitogen-activated protein kinase cascade in the Delta9-tetrahydrocannabinol-induced stimulation of glucose metabolism in primary astrocytes. Mol Pharmacol 1998;54:834–843.

    PubMed  Google Scholar 

  50. Wartmann M, Campbell D, Subramanian A, Burstein SH, Davis RJ. The MAP kinase signal transduction pathway is activated by the endogenous cannabinoid anandamide. FEBS Lett 1995;359:133–136.

    PubMed  CAS  Google Scholar 

  51. Galve-Roperh I, Rueda D, Gómez del Pulgar T, Velasco G, Guzmán M. Mechanism of extracellular signal-regulated kinase activation by the CB(1) cannabinoid receptor. Mol Pharmacol 2002;62:1385–1392.

    PubMed  CAS  Google Scholar 

  52. Gómez del Pulgar T, Velasco G, Guzmán M. The CB1 cannabinoid receptor is coupled to the activation of protein kinase B/Akt. Biochem J 2000;347:369–373.

    PubMed  Google Scholar 

  53. Davis MI, Ronesi J, Lovinger DM. A predominant role for inhibition of the adenylate cyclase/protein kinase A pathway in ERK activation by cannabinoid receptor 1 in N1E-115 neuroblastoma cells. J Biol Chem 2003;278:48973–48980.

    PubMed  CAS  Google Scholar 

  54. Rueda D, Galve-Roperh I, Haro A, Guzmán M. The CB(1) cannabinoid receptor is coupled to the activation of c-Jun N-terminal kinase. Mol Pharmacol 2000;58:814–820.

    PubMed  CAS  Google Scholar 

  55. Liu J, Gao B, Mirshahi F et al. Functional CB1 cannabinoid receptors in human vascular endothelial cells. Biochem J 2000;346 (Pt 3):835–840.

    PubMed  CAS  Google Scholar 

  56. Derkinderen P, Ledent C, Parmentier M, Girault JA. Cannabinoids activate p38 mitogen-activated protein kinases through CB1 receptors in hippocampus. J Neurochem 2001;77:957–960.

    PubMed  CAS  Google Scholar 

  57. Bouaboula M, Perrachon S, Milligan L et al. A selective inverse agonist for central cannabinoid receptor inhibits mitogen-activated protein kinase activation stimulated by insulin or insulin-like growth factor 1. Evidence for a new model of receptor/ligand interactions. J Biol Chem 1997;272:22330–22339.

    PubMed  CAS  Google Scholar 

  58. Bouaboula M, Desnoyer N, Carayon P, Combes T, Casellas P. Gi protein modulation induced by a selective inverse agonist for the peripheral cannabinoid receptor CB2: implication for intracellular signalization cross-regulation. Mol Pharmacol 1999;55:473–480.

    PubMed  CAS  Google Scholar 

  59. Hart S, Fischer OM, Ullrich A. Cannabinoids induce cancer cell proliferation via tumor necrosis factor alpha-converting enzyme (TACE/ADAM17)-mediated transactivation of the epidermal growth factor receptor. Cancer Res 2004;64:1943–1950.

    PubMed  CAS  Google Scholar 

  60. Berghuis P, Dobszay MB, Wang X et al. Endocannabinoids regulate interneuron migration and morphogenesis by transactivating the TrkB receptor. Proc Natl Acad Sci USA 2005;102:19115–19120.

    PubMed  CAS  Google Scholar 

  61. Rueda D, Navarro B, Martinez-Serrano A, Guzmán M, Galve-Roperh I. The endocannabinoid anandamide inhibits neuronal progenitor cell differentiation through attenuation of the Rap1/B-Raf/ERK pathway. J Biol Chem 2002;277:46645–46650.

    PubMed  CAS  Google Scholar 

  62. Rubovitch V, Gafni M, Sarne Y. The involvement of VEGF receptors and MAPK in the cannabinoid potentiation of Ca2+ flux into N18TG2 neuroblastoma cells. Brain Res Mol Brain Res 2004;120:138–144.

    PubMed  CAS  Google Scholar 

  63. Korzh A, Keren O, Gafni M, Bar-Josef H, Sarne Y. Modulation of extracellular signal-regulated kinase (ERK) by opioid and cannabinoid receptors that are expressed in the same cell. Brain Res 2008;1189:23–32.

    PubMed  CAS  Google Scholar 

  64. Nabemoto M, Mashimo M, Someya A et al. Release of arachidonic acid by 2-arachidonoyl glycerol and HU210 in PC12 cells; roles of Src, phospholipase C and cytosolic phospholipase A(2)alpha. Eur J Pharmacol 2008.

    Google Scholar 

  65. He JC, Neves SR, Jordan JD, Iyengar R. Role of the Go/i signaling network in the regulation of neurite outgrowth. Can J Physiol Pharmacol 2006;84:687–694.

    PubMed  CAS  Google Scholar 

  66. Jordan JD, He JC, Eungdamrong NJ et al. Cannabinoid receptor-induced neurite outgrowth is mediated by Rap1 activation through G(alpha)o/i-triggered proteasomal degradation of Rap1GAPII. J Biol Chem 2005;280:11413–11421.

    PubMed  CAS  Google Scholar 

  67. He JC, Gomes I, Nguyen T et al. The G alpha(o/i)-coupled cannabinoid receptor-mediated neurite outgrowth involves Rap regulation of Src and Stat3. J Biol Chem 2005;280:33426–33434.

    PubMed  CAS  Google Scholar 

  68. Stefano GB, Salzet M, Magazine HI, Bilfinger TV. Antagonism of LPS and IFN-gamma induction of iNOS in human saphenous vein endothelium by morphine and anandamide by nitric oxide inhibition of adenylate cyclase. J Cardiovasc Pharmacol 1998;31:813–820.

    PubMed  CAS  Google Scholar 

  69. Fimiani C, Mattocks D, Cavani F, Salzet M, Deutsch DG, Pryor S et al. Morphine and anandamide stimulate intracellular calcium transients in human arterial endothelial cells: coupling to nitric oxide release. Cell Signal 1999;11:189–193.

    PubMed  CAS  Google Scholar 

  70. Mombouli JV, Schaeffer G, Holzmann S, Kostner GM, Graier WF. Anandamide-induced mobilization of cytosolic Ca2+ in endothelial cells. Br J Pharmacol 1999;126:1593–1600.

    PubMed  CAS  Google Scholar 

  71. Maccarrone M, Bari M, Lorenzon T, Bisogno T, Di MV, Finazzi-Agro A. Anandamide uptake by human endothelial cells and its regulation by nitric oxide. J Biol Chem 2000;275:13484–13492.

    PubMed  CAS  Google Scholar 

  72. Stefano GB, Liu Y, Goligorsky MS. Cannabinoid receptors are coupled to nitric oxide release in invertebrate immunocytes, microglia, and human monocytes. J Biol Chem 1996;271:19238–19242.

    PubMed  CAS  Google Scholar 

  73. Prevot V, Rialas CM, Croix D et al. Morphine and anandamide coupling to nitric oxide stimulates GnRH and CRF release from rat median eminence: neurovascular regulation. Brain Res 1998;790:236–244.

    PubMed  CAS  Google Scholar 

  74. Mukhopadhyay S, Shim JY, Assi AA, Norford D, Howlett AC. CB(1) cannabinoid receptor-G protein association: a possible mechanism for differential signaling. Chem Phys Lipids 2002;121:91–109.

    PubMed  CAS  Google Scholar 

  75. Bisogno T, Maccarrone M, De Petrocellis L et al. The uptake by cells of 2-arachidonoylglycerol, an endogenous agonist of cannabinoid receptors. Eur J Biochem 2001;268:1982–1989.

    PubMed  CAS  Google Scholar 

  76. De Petrocellis L, Bisogno T, Maccarrone M, Davis JB, Finazzi-Agró A, Di Marzo V. The activity of anandamide at vanilloid VR1 receptors requires facilitated transport across the cell membrane and is limited by intracellular metabolism. J Biol Chem 2001;276:12856–12863.

    PubMed  CAS  Google Scholar 

  77. Jones JD, Carney ST, Vrana KE, Norford DC, Howlett AC. Cannabinoid receptor-mediated translocation of NO-sensitive guanylyl cyclase and production of cyclic GMP in neuronal cells. Neuropharmacology 2008;54:23–30.

    PubMed  CAS  Google Scholar 

  78. Simmons ML, Murphy S. Induction of nitric oxide synthase in glial cells. J Neurochem 1992;59:897–905.

    PubMed  CAS  Google Scholar 

  79. Hillard CJ, Muthian S, Kearn CS. Effects of CB(1) cannabinoid receptor activation on cerebellar granule cell nitric oxide synthase activity. FEBS Lett 1999;459:277–281.

    PubMed  CAS  Google Scholar 

  80. Kim SH, Won SJ, Mao XO, Jin K, Greenberg DA. Molecular mechanisms of cannabinoid protection from neuronal excitotoxicity. Mol Pharmacol 2006;69:691–696.

    PubMed  CAS  Google Scholar 

  81. Rameau GA, Chiu LY, Ziff EB. Bidirectional regulation of neuronal nitric-oxide synthase phosphorylation at serine 847 by the N-methyl-d-aspartate receptor. J Biol Chem 2004;279:14307–14314.

    PubMed  CAS  Google Scholar 

  82. Rameau GA, Tukey DS, Garcin-Hosfield ED et al. Biphasic coupling of neuronal nitric oxide synthase phosphorylation to the NMDA receptor regulates AMPA receptor trafficking and neuronal cell death. J Neurosci 2007;27:3445–3455.

    PubMed  CAS  Google Scholar 

  83. Jeon YJ, Yang KH, Pulaski JT, Kaminski NE. Attenuation of inducible nitric oxide synthase gene expression by delta 9-tetrahydrocannabinol is mediated through the inhibition of nuclear factor- kappa B/Rel activation. Mol Pharmacol 1996;50:334–341.

    PubMed  CAS  Google Scholar 

  84. Cabral GA, Harmon KN, Carlisle SJ. Cannabinoid-mediated inhibition of inducible nitric oxide production by rat microglial cells: evidence for CB1 receptor participation. Adv Exp Med Biol 2001;493:207–214.

    PubMed  CAS  Google Scholar 

  85. Molina-Holgado F, Lledó A, Guaza C. Anandamide suppresses nitric oxide and TNF-alpha responses to Theiler's virus or endotoxin in astrocytes. Neuroreport 1997;8:1929–1933.

    PubMed  CAS  Google Scholar 

  86. Molina-Holgado F, Molina-Holgado E, Guaza C, Rothwell NJ. Role of CB1 and CB2 receptors in the inhibitory effects of cannabinoids on lipopolysaccharide-induced nitric oxide release in astrocyte cultures. J Neurosci Res 2002;67:829–836.

    PubMed  CAS  Google Scholar 

  87. Esposito G, Ligresti A, Izzo AA et al. The endocannabinoid system protects rat glioma cells against HIV-1 Tat protein-induced cytotoxicity. Mechanism and regulation. J Biol Chem 2002;277:50348–50354.

    PubMed  CAS  Google Scholar 

  88. Molina-Holgado F, Pinteaux E, Moore JD et al. Endogenous interleukin-1 receptor antagonist mediates anti-inflammatory and neuroprotective actions of cannabinoids in neurons and glia. J Neurosci 2003;23:6470–6474.

    PubMed  CAS  Google Scholar 

  89. Glass M, Northup JK. Agonist selective regulation of G proteins by cannabinoid CB(1) and CB(2) receptors. Mol Pharmacol 1999;56:1362–1369.

    PubMed  CAS  Google Scholar 

  90. Prather PL, Martin NA, Breivogel CS, Childers SR. Activation of cannabinoid receptors in rat brain by WIN 55212-2 produces coupling to multiple G protein alpha-subunits with different potencies. Mol Pharmacol 2000;57:1000–1010.

    PubMed  CAS  Google Scholar 

  91. Mukhopadhyay S, Howlett AC. Chemically distinct ligands promote differential CB1 cannabinoid receptor-Gi protein interactions. Mol Pharmacol 2005;67:2016–2024.

    PubMed  CAS  Google Scholar 

  92. Houston DB, Howlett AC. Differential receptor-G-protein coupling evoked by dissimilar cannabinoid receptor agonists. Cell Signal 1998;10:667–674.

    PubMed  CAS  Google Scholar 

  93. Houston DB, Howlett AC. Solubilization of the cannabinoid receptor from rat brain and its functional interaction with guanine nucleotide-binding proteins. Mol Pharmacol 1993;43:17–22.

    PubMed  CAS  Google Scholar 

  94. Howlett AC, Mukhopadhyay S, Shim JY, Welsh WJ. Signal transduction of eicosanoid CB1 receptor ligands. Life Sci 1999;65:617–625.

    PubMed  CAS  Google Scholar 

  95. Mukhopadhyay S, McIntosh HH, Houston DB, Howlett AC. The CB(1) cannabinoid receptor juxtamembrane C-terminal peptide confers activation to specific G proteins in brain. Mol Pharmacol 2000;57:162–170.

    PubMed  CAS  Google Scholar 

  96. McAllister SD, Rizvi G, Anavi-Goffer S et al. An aromatic microdomain at the cannabinoid CB(1) receptor constitutes an agonist/inverse agonist binding region. J Med Chem 2003;46:5139–5152.

    PubMed  CAS  Google Scholar 

  97. Savinainen JR, Saario SM, Niemi R, Jarvinen T, Laitinen JT. An optimized approach to study endocannabinoid signaling: evidence against constitutive activity of rat brain adenosine A1 and cannabinoid CB1 receptors. Br J Pharmacol 2003;140:1451–1459.

    PubMed  CAS  Google Scholar 

  98. Landsman RS, Burkey TH, Consroe P, Roeske WR, Yamamura HI. SR141716A is an inverse agonist at the human cannabinoid CB1 receptor. Eur J Pharmacol 1997;334:R1–R2.

    PubMed  CAS  Google Scholar 

  99. MacLennan SJ, Reynen PH, Kwan J, Bonhaus DW. Evidence for inverse agonism of SR141716A at human recombinant cannabinoid CB1 and CB2 receptors. Br J Pharmacol 1998;124:619–622.

    PubMed  CAS  Google Scholar 

  100. Sim-Selley LJ, Brunk LK, Selley DE. Inhibitory effects of SR141716A on G-protein activation in rat brain. Eur J Pharmacol 2001;414:135–143.

    PubMed  CAS  Google Scholar 

  101. Meschler JP, Kraichely DM, Wilken GH, Howlett AC. Inverse agonist properties of N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2, 4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide HCl (SR141716A) and 1-(2-chlorophenyl)-4-cyano-5-(4-methoxyphenyl)-1H-pyrazole-3-carboxyl ic acid phenylamide (CP-272871) for the CB(1) cannabinoid receptor. Biochem Pharmacol 2000;60:1315–1323.

    PubMed  CAS  Google Scholar 

  102. Price MR, Baillie GL, Thomas A et al. Allosteric modulation of the cannabinoid CB1 receptor. Mol Pharmacol 2005;68:1484–1495.

    PubMed  CAS  Google Scholar 

  103. Horswill JG, Bali U, Shaaban S et al. PSNCBAM-1, a novel allosteric antagonist at cannabinoid CB1 receptors with hypophagic effects in rats. Br J Pharmacol 2007;152:805–814.

    PubMed  CAS  Google Scholar 

  104. Ross RA. Allosterism and cannabinoid CB(1) receptors: the shape of things to come. Trends Pharmacol Sci 2007;28:567–572.

    PubMed  CAS  Google Scholar 

  105. Howlett AC, Song C, Berglund BA, Wilken GH, Pigg JJ. Characterization of CB1 cannabinoid receptors using receptor peptide fragments and site-directed antibodies. Mol Pharmacol 1998;53:504–510.

    PubMed  CAS  Google Scholar 

  106. Mukhopadhyay S, Howlett AC. CB1 receptor-G protein association. Subtype selectivity is determined by distinct intracellular domains. Eur J Biochem 2001;268:499–505.

    PubMed  CAS  Google Scholar 

  107. Mukhopadhyay S, Cowsik SM, Lynn AM, Welsh WJ, Howlett AC. Regulation of Gi by the CB1 cannabinoid receptor C-terminal juxtamembrane region: structural requirements determined by peptide analysis. Biochemistry 1999;38:3447–3455.

    PubMed  CAS  Google Scholar 

  108. Ulfers AL, McMurry JL, Miller A, Wang L, Kendall DA, Mierke DF. Cannabinoid receptor-G protein interactions: G(alphai1)-bound structures of IC3 and a mutant with altered G protein specificity. Protein Sci 2002;11:2526–2531.

    PubMed  CAS  Google Scholar 

  109. Nie J, Lewis DL. The proximal and distal C-terminal tail domains of the CB1 cannabinoid receptor mediate G protein coupling. Neuroscience 2001;107:161–167.

    PubMed  CAS  Google Scholar 

  110. Bramblett RD, Panu AM, Ballesteros JA, Reggio PH. Construction of a 3D model of the cannabinoid CB1 receptor: determination of helix ends and helix orientation. Life Sci 1995;56:1971–1982.

    PubMed  CAS  Google Scholar 

  111. Choi G, Guo J, Makriyannis A. The conformation of the cytoplasmic helix 8 of the CB1 cannabinoid receptor using NMR and circular dichroism. Biochim Biophys Acta 2005;1668:1–9.

    PubMed  CAS  Google Scholar 

  112. Xie XQ, Chen JZ. NMR structural comparison of the cytoplasmic juxtamembrane domains of G-protein-coupled CB1 and CB2 receptors in membrane mimetic dodecylphosphocholine micelles. J Biol Chem 2005;280:3605–3612.

    PubMed  CAS  Google Scholar 

  113. Grace CR, Cowsik SM, Shim JY, Welsh WJ, Howlett AC. Unique helical conformation of the fourth cytoplasmic loop of the CB1 cannabinoid receptor in a negatively charged environment. J Struct Biol 2007;159:359–368.

    PubMed  CAS  Google Scholar 

  114. White SH, Ladokhin AS, Jayasinghe S, Hristova K. How membranes shape protein structure. J Biol Chem 2001;276:32395–32398.

    PubMed  CAS  Google Scholar 

  115. Fritze O, Filipek S, Kuksa V, Palczewski K, Hofmann KP, Ernst OP. Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation. Proc Natl Acad Sci USA 2003;100:2290–2295.

    PubMed  CAS  Google Scholar 

  116. Anavi-Goffer S, Fleischer D, Hurst DP et al. Helix 8 Leu in the CB1 cannabinoid receptor contributes to selective signal transduction mechanisms. J Biol Chem 2007;282:25100–25113.

    PubMed  CAS  Google Scholar 

  117. Ulfers AL, McMurry JL, Kendall DA, Mierke DF. Structure of the third intracellular loop of the human cannabinoid 1 receptor. Biochemistry 2002;41:11344–11350.

    PubMed  CAS  Google Scholar 

  118. Liu J, Conklin BR, Blin N, Yun J, Wess J. Identification of a receptor/G-protein contact site critical for signaling specificity and G-protein activation. Proc Natl Acad Sci USA 1995;92:11642–11646.

    PubMed  CAS  Google Scholar 

  119. Abadji V, Lucas-Lenard JM, Chin C, Kendall DA. Involvement of the carboxyl terminus of the third intracellular loop of the cannabinoid CB1 receptor in constitutive activation of Gs. J Neurochem 1999;72:2032–2038.

    PubMed  CAS  Google Scholar 

  120. Samama P, Cotecchia S, Costa T, Lefkowitz RJ. A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model. J Biol Chem 1993;268:4625–4636.

    PubMed  CAS  Google Scholar 

  121. Singh R, Hurst DP, Barnett-Norris J, Lynch DL, Reggio PH, Guarnieri F. Activation of the cannabinoid CB1 receptor may involve a W6.48/F3.36 rotamer toggle switch. J Pept Res 2002;60:357–370.

    PubMed  CAS  Google Scholar 

  122. Shim JY, Welsh WJ, Howlett AC. Homology model of the CB1 cannabinoid receptor: sites critical for non-classical cannabinoid agonist interaction. Biopolymers 2003; 71:169–89.

    PubMed  CAS  Google Scholar 

  123. Kapur A, Hurst DP, Fleischer D et al. Mutation studies of Ser7.39 and Ser2.60 in the human CB1 cannabinoid receptor: evidence for a serine-induced bend in CB1 transmembrane helix 7. Mol Pharmacol 2007;71:1512–1524.

    PubMed  CAS  Google Scholar 

  124. Hurst D, Umejiego U, Lynch D et al. Biarylpyrazole inverse agonists at the cannabinoid CB1 receptor: importance of the C-3 carboxamide oxygen/lysine3.28(192) interaction. J Med Chem 2006;49:5969–5987.

    PubMed  CAS  Google Scholar 

  125. Shim JY, Howlett AC. Steric trigger as a mechanism for CB1 cannabinoid receptor activation. J Chem Inf Comput Sci 2004;44:1466–1476.

    PubMed  CAS  Google Scholar 

  126. Barnett-Norris J, Hurst DP, Lynch DL, Guarnieri F, Makriyannis A, Reggio PH. Conformational memories and the endocannabinoid binding site at the cannabinoid CB1 receptor. J Med Chem 2002;45:3649–3659.

    PubMed  CAS  Google Scholar 

  127. Song ZH, Bonner TI. A lysine residue of the cannabinoid receptor is critical for receptor recognition by several agonists but not WIN55212-2. Mol Pharmacol 1996;49:891–896.

    PubMed  CAS  Google Scholar 

  128. Tong W, Collantes ER, Welsh WJ, Berglund BA, Howlett AC. Derivation of a pharmacophore model for anandamide using constrained conformational searching and comparative molecular field analysis. J Med Chem 1998;41:4207–4215.

    PubMed  CAS  Google Scholar 

  129. Thomas BF, Adams IB, Mascarella SW, Martin BR, Razdan RK. Structure-activity analysis of anandamide analogs: relationship to a cannabinoid pharmacophore. J Med Chem 1996;39:471–479.

    PubMed  CAS  Google Scholar 

  130. Berglund BA, Fleming PR, Rice KC, Shim JY, Welsh WJ, Howlett AC. Development of a novel class of monocyclic and bicyclic alkyl amides that exhibit CB1 and CB2 cannabinoid receptor affinity and receptor activation. Drug Des Discov 2000;16:281–294.

    PubMed  CAS  Google Scholar 

  131. Padgett LW, Howlett AC, Shim JY. Binding mode prediction of conformationally restricted anandamide analogs within the CB1 receptor. J Mol Signal 2008;3:5.

    PubMed  Google Scholar 

  132. Lynch DL, Reggio PH. Cannabinoid CB1 receptor recognition of endocannabinoids via the lipid bilayer: molecular dynamics simulations of CB1 transmembrane helix 6 and anandamide in a phospholipid bilayer. J Comput Aided Mol Des 2006;20:495–509.

    PubMed  CAS  Google Scholar 

  133. Song ZH, Slowey CA, Hurst DP, Reggio PH. The difference between the CB(1) and CB(2) cannabinoid receptors at position 5.46 is crucial for the selectivity of WIN55212-2 for CB(2). Mol Pharmacol 1999;56:834–840.

    PubMed  CAS  Google Scholar 

  134. Shim JY, Howlett AC. WIN55212-2 docking to the CB1 receptor and a mechanism for conformational induction. J Chem Inform Model 2006; 46:1286–1300.

    CAS  Google Scholar 

  135. Sealfon SC, Chi L, Ebersole BJ et al. Related contribution of specific helix 2 and 7 residues to conformational activation of the serotonin 5-HT2A receptor. J Biol Chem 1995;270:16683–16688.

    PubMed  CAS  Google Scholar 

  136. Nie J, Lewis DL. Structural domains of the CB1 cannabinoid receptor that contribute to constitutive activity and G-protein sequestration. J Neurosci 2001;21:8758–8764.

    PubMed  CAS  Google Scholar 

  137. Niehaus JL, Liu Y, Wallis KT et al. CB1 cannabinoid receptor activity is modulated by the cannabinoid receptor interacting protein CRIP 1a. Mol Pharmacol 2007;72:1557–1566.

    PubMed  CAS  Google Scholar 

  138. Sánchez C, Rueda D, Segui B, Galve-Roperh I, Levade T, Guzmán M. The CB(1) cannabinoid receptor of astrocytes is coupled to sphingomyelin hydrolysis through the adaptor protein fan. Mol Pharmacol 2001;59:955–959.

    PubMed  Google Scholar 

  139. Jin W, Brown S, Roche JP et al. Distinct domains of the CB1 cannabinoid receptor mediate desensitization and internalization. J Neurosci 1999;19:3773–3780.

    PubMed  CAS  Google Scholar 

  140. Daigle TL, Kearn CS, Mackie K. Rapid CB1 cannabinoid receptor desensitization defines the time course of ERK1/2 MAP kinase signaling. Neuropharmacology 2008;54:36–44.

    PubMed  CAS  Google Scholar 

  141. Bakshi K, Mercier RW, Pavlopoulos S. Interaction of a fragment of the cannabinoid CB1 receptor C-terminus with arrestin2. FEBS Lett 2007;581:5009–5016.

    PubMed  CAS  Google Scholar 

  142. Martini L, Waldhoer M, Pusch M et al. Ligand-induced down-regulation of the cannabinoid 1 receptor is mediated by the G-protein-coupled receptor-associated sorting protein GASP1. FASEB J 2007;21:802–811.

    PubMed  CAS  Google Scholar 

  143. Tappe-Theodor A, Agarwal N et al. A molecular basis of analgesic tolerance to cannabinoids. J Neurosci 2007;27:4165–4177.

    PubMed  CAS  Google Scholar 

  144. Leterrier C, Laine J, Darmon M, Boudin H, Rossier J, Lenkei Z. Constitutive activation drives compartment-selective endocytosis and axonal targeting of type 1 cannabinoid receptors. J Neurosci 2006;26:3141–3153.

    PubMed  CAS  Google Scholar 

  145. Simonin F, Karcher P, Boeuf JJ, Matifas A, Kieffer BL. Identification of a novel family of G protein-coupled receptor associated sorting proteins. J Neurochem 2004;89:766–775.

    PubMed  CAS  Google Scholar 

  146. Jarrahian A, Watts VJ, Barker EL. D2 dopamine receptors modulate Galpha-subunit coupling of the CB1 cannabinoid receptor. J Pharmacol Exp Ther 2004;308:880–886.

    PubMed  CAS  Google Scholar 

  147. Kearn CS, Blake-Palmer K, Daniel E, Mackie K, Glass M. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: a mechanism for receptor cross-talk? Mol Pharmacol 2005;67:1697–1704.

    PubMed  CAS  Google Scholar 

  148. Marcellino D, Carriba P, Filip M et al. Antagonistic cannabinoid CB1/dopamine D2 receptor interactions in striatal CB1/D2 heteromers. A combined neurochemical and behavioral analysis. Neuropharmacology 2008;54:815–823.

    PubMed  CAS  Google Scholar 

  149. Shapira M, Gafni M, Sarne Y. Independence of, and interactions between, cannabinoid and opioid signal transduction pathways in N18TG2 cells. Brain Res 1998;806:26–35.

    PubMed  CAS  Google Scholar 

  150. Shapira M, Vogel Z, Sarne Y. Opioid and cannabinoid receptors share a common pool of GTP-binding proteins in cotransfected cells, but not in cells which endogenously coexpress the receptors. Cell Mol Neurobiol 2000;20:291–304.

    PubMed  CAS  Google Scholar 

  151. Canals M, Milligan G. Constitutive activity of the cannabinoid CB1 receptor regulates the function of co-expressed Mu opioid receptors. J Biol Chem 2008;283:11424–11434.

    PubMed  CAS  Google Scholar 

  152. Rios C, Gomes I, Devi LA. mu opioid and CB1 cannabinoid receptor interactions: reciprocal inhibition of receptor signaling and neuritogenesis. Br J Pharmacol 2006;148:387–395.

    PubMed  CAS  Google Scholar 

  153. Hilairet S, Bouaboula M, Carriere D, Le Fur G, Casellas P. Hypersensitization of the Orexin 1 receptor by the CB1 receptor: evidence for cross-talk blocked by the specific CB1 antagonist, SR141716. J Biol Chem 2003;278:23731–23737.

    PubMed  CAS  Google Scholar 

  154. Ellis J, Pediani JD, Canals M, Milasta S, Milligan G. Orexin-1 receptor-cannabinoid CB1 receptor heterodimerization results in both ligand-dependent and -independent coordinated alterations of receptor localization and function. J Biol Chem 2006;281:38812–38824.

    PubMed  CAS  Google Scholar 

  155. Childers SR, Pacheco MA, Bennett BA et al. Cannabinoid receptors: G-protein-mediated signal transduction mechanisms. Biochem Soc Symp 1993;59:27–50.

    PubMed  CAS  Google Scholar 

  156. Pacheco MA, Ward SJ, Childers SR. Identification of cannabinoid receptors in cultures of rat cerebellar granule cells. Brain Res 1993;603:102–110.

    PubMed  CAS  Google Scholar 

  157. Cinar R, Freund TF, Katona I, Mackie K, Szucs M. Reciprocal inhibition of G-protein signaling is induced by CB1 cannabinoid and GABAB receptor interactions in rat hippocampal membranes. Neurochem Int 2008;52:1402–1409.

    PubMed  CAS  Google Scholar 

  158. Ross RA, Gibson TM, Brockie HC et al. Structure-activity relationship for the endogenous cannabinoid, anandamide, and certain of its analogues at vanilloid receptors in transfected cells and vas deferens. Br J Pharmacol 2001;132:631–640.

    PubMed  CAS  Google Scholar 

  159. Zygmunt PM, Petersson J, Andersson DA et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 1999;400:452–457.

    PubMed  CAS  Google Scholar 

  160. Duan Y, Zheng J, Nicholson RA. Inhibition of [3H]batrachotoxinin A-20alpha-benzoate binding to sodium channels and sodium channel function by endocannabinoids. Neurochem Int 2008;52:438–446.

    PubMed  CAS  Google Scholar 

  161. Baranowska U, Gothert M, Rudz R, Malinowska B. Methanandamide allosterically inhibits in vivo the function of peripheral nicotinic acetylcholine receptors containing the {alpha}7-subunit. J Pharmacol Exp Ther 2008.

    Google Scholar 

  162. Hejazi N, Zhou C, Oz M, Sun H, Ye JH, Zhang L. Delta9-tetrahydrocannabinol and endogenous cannabinoid anandamide directly potentiate the function of glycine receptors. Mol Pharmacol 2006;69:991–997.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allyn C. Howlett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Howlett, A.C. (2009). Functional Selectivity at Receptors for Cannabinoids and Other Lipids. In: Neve, K.A. (eds) Functional Selectivity of G Protein-Coupled Receptor Ligands. The Receptors. Humana Press. https://doi.org/10.1007/978-1-60327-335-0_11

Download citation

Publish with us

Policies and ethics