Skip to main content

Part of the book series: Infectious Disease ((ID))

The gastrointestinal (GI) tract is the largest lymphoid organ in the human body and, therefore, any defects in the cellular and/or humoral immune responses may be indicators of a strong disposition to a multitude of enteric viral, bacterial, protozoan, and fungal pathogens (1). The identification of enteric pathogens in the GI tract has been especially important in patients with AIDS, where the HIV-induced immunodeficiency greatly increases the possibility of opportunistic infections (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Georgiev, V. St. (1998) Gastrointestinal infections in the immunocompromised hosts. In: Infectious Diseases in Immunocompromised Hosts, CRC Press, Boca Raton, FL, pp. 473–480.

    Google Scholar 

  2. Smith, P. D. and Janoff, E. N. (1988) Infectious diarrhea in human immunodeficiency virus infection, Gastrointerol. Clin. North Am., 17, 587.

    CAS  Google Scholar 

  3. World Health Organization. (2006) Wkly Epidemiol. Rec. (WER), 81, 97–104 [March 17, 2006].

    Google Scholar 

  4. Centers for Disease Control and Prevention (2005) Final 2005 reports of notifiable diseases, Morb. Mortal. Wkly Rep., 55(32), 880–881.

    Google Scholar 

  5. Finkelstein, R. A., Sciortino, C. V., and McIntosh, M. A. (1983) Role of iron in microbe–host interactions, Rev. Infect. Dis., 5(Suppl. 4), S759–S577.

    Google Scholar 

  6. Perry, R. D. and Brubaker, R. R. (1979). Accumulation of iron in Yersinia, J. Bacteriol., 137, 1290–1298.

    Google Scholar 

  7. Heesemann, J., Hantke, K., Vocke, T., Saken, E., Rakin, A., Stojilkovic, I., and Berner, R. (1993) Virulence of Yersinia enterocolitica is closely associated with siderophore production, expression of an iron-repressible outer membrane polypeptide of 65,000 Da and pesticin sensitivity, Mol. Microbiol., 8(2), 397–408.

    Article  PubMed  CAS  Google Scholar 

  8. Richardson, N. J., Koornhof, H. J., and Bokkenheuser, V. D. (1981) Long-term infections with Campylobacter fetus subsp. jejuni, J. Clin. Microbiol., 13(5), 846–849.

    PubMed  CAS  Google Scholar 

  9. DuPont, H. L., Ericsson, C. D., Robinson, A., and Johnson, P. C. (1987) Current problems in antimicrobial therapy for bacterial enteric infection, Am. J. Med., 82(Suppl. 4A), 324–328.

    Google Scholar 

  10. Keat, A. (1983) Reiter’s syndrome and reactive arthritis in perspective, N. Engl. J. Med., 309(26), 1606–1615.

    Article  PubMed  CAS  Google Scholar 

  11. Hagensee, M. E., Benyunes, M., Miller, J. A., and Spach, D. H. (1994) Campylobacter jejuni bacteremia and Guillain-Barrè syndrome in a patients with GVHD after alogeneic BMT, Bone Marrow Transplant., 13(3), 349–351.

    PubMed  CAS  Google Scholar 

  12. Cohen, S. P., McMurry, L. M., Hooper, D. C., Wolfson, J. S., and Levy, J. S. (1989) Cross-resistance to fluoroquinolones in multiple-antibiotic resistant (Mar) Escherichia coli selected by tetracycline or chloramphenicol decreased drug accumulation associated with membrane changes in addition to OmpF reduction, Antimicrob. Agents Chemother., 33(8), 1318–1325.

    Google Scholar 

  13. Cozzarelli, N. R. (1980) DNA gyrase and supercoiling of DNA, Science, 207(4434), 953–960.

    Article  PubMed  CAS  Google Scholar 

  14. Wiedemann, B. and Heisig, P. (1994) Mechanisms of quinolone resistance, Infection, 22(Suppl. 2), S73–S79.

    Google Scholar 

  15. Segreti, J., Gootz, T. D., Goodman, L. J., Parkhurst, G. W., Quinn, J. P., Martin, B. A., and Trenholme, G. M. (1992) High-level quinoline resistance in clinical isolates of Campylobacter jejuni, J. Infect Dis., 165(4), 667–670.

    CAS  Google Scholar 

  16. Gootz, T. D. and Martin, B. A. (1991) Characteristics of high-level quinolone resistance in Campylobacter jejuni, Antimicrob. Agents Chemother., 35(5), 840–845.

    CAS  Google Scholar 

  17. Nikaido, H. and Rosenberg, E. Y. (1983) Porin channels in Escherichia coli: studies with liposomes reconstituted from purified proteins, J. Bacteriol., 153(1), 241–252.

    PubMed  CAS  Google Scholar 

  18. Cohen, S. P., Hooper, D. C., Wolfson, J. S., Souza, K. S., McMurry, L. M., and Levy, S. B. (1988) Endogenous active efflux of norfloxacin in susceptible Escherichia coli, Antimicrob. Agents Chemother., 32(8), 1187–1193.

    CAS  Google Scholar 

  19. Arnon, S. S., Schechter, R., Inglesby, T. V., Henderson, D. A., Bartlett, J. G., Ascher, M. S., Eitzen, E., Fine, A. D., Hauer, J., Layton, M., Lillibridge, S., Osterholm, M. T., O’Toole, T., Parker, G., Perl, T. M., Russell, P. K., Swerdlow, D. L., and Tonat, K. for the Working Group on Civillian Defense (2001) Botulinum toxin as a biological weapon: medical and public health management, N. Engl. J. Med., 285(8), 1059–1070.

    Google Scholar 

  20. Schuchat, A., Deaver, K. A., Wenger, J. D., Plikaytis, B. D., Mascola, L., Pinner, R. W., Reingold, A. L., and Broome, C. V. (1992) Role of food in sporadic listeriosis. I. Case-control study of dietary risk factors. The Listeria Study Group, J. Am. Med. Assoc., 267, 2041–2045.

    Article  CAS  Google Scholar 

  21. Nataro, J. P. and Kaper, J. B. (1998) Diarrheagenic Escherichia coli, Clin. Microbiol. Rev., 11, 142–201.

    CAS  Google Scholar 

  22. Trabulsi, L. R., Keller, R., and Tardelli Gomes, T. A. (2002) Typical and atypical enteropathogenic Escherichia coli, Emerg. Infect. Dis., 8(5), 508–513.

    Google Scholar 

  23. Sperandio, V., Kaper, J. B., Bortolini, M. R., Neves, B. C., Keller, R., and Trabulsi, L. R. (1998) Characterization of the locus of enterocyte effacement (LEE) in different enteropathogenic Escherichia coli (EPEC) and Shiga toxin-producing Escherichia coli (STEC) serotypes, FEMS Microbiol. Lett., 164, 133–139.

    Article  PubMed  CAS  Google Scholar 

  24. Gasser, C., Gautier, E., Steck, A., Siebenmann, R. E., and Oechslin, R. (1955) Hämolytisch-urämische syndrome: bilaterale nierenrindennekrosen bei akuten erworben hämolytischen anämien, Schweiz. Med. Wochenschr., 85(38–39), 905–909.

    Google Scholar 

  25. Leaf, A. N., Laubenstein, L. J., Raphael, B., Hochster, H., Baez, L., and Karpatkin, S. (1988) Thrombotic thrombocytopenic purpura associated with human immunodeficiency virus type 1 (HIV-1) infection, Ann. Intern. Med., 109(3), 194–197.

    PubMed  CAS  Google Scholar 

  26. Beris, P., Dunand, V., Isoz, C., and Reynard, C. (1990) Association of thrombotic thrombocytopenic purpura and human immunodeficiency virus infection, Nouv. Rev. Fr. Hematol., 32(4), 277–280.

    Google Scholar 

  27. Johnson, J. R. (2000) Shigella and Escherichia coli at the crossroads: Machiavellian masqueraders or taxonomic treachery? J. Med. Microbiol., 49, 583–585.

    PubMed  CAS  Google Scholar 

  28. Linnenborg, M., Weintraub, A., and Widmalm, G. (1999) Structural studies of the O-antigen polysaccharide from the enteroinvasive Escherichia coli O164 cross-reacting with Shigella dysenteriae Type 3, Eur. J. Biochem., 266, 460–466.

    Google Scholar 

  29. Cheasty, T. and Rowe, B. (1983) Antigenic relationships between the enteroinvasive Escherichia coli O-antigens O28c, O112ac, O124, O136, O143, O144, O152, and O164 and Shigella O-antigens, J. Clin. Microbiol., 17, 681–684.

    PubMed  CAS  Google Scholar 

  30. Nataro, J. P., Steiner, T., and Guerrant, R. L. (1998) Enteroaggregative Escherichia coli, Emerg. Infect. Dis., 4(2), 251–261.

    CAS  Google Scholar 

  31. Sansonetti, P. I., d’Hauteville, H., Formal, S. B., and Toucas, M. (1982) Plasmid-mediated invasiveness of “Shigella-like Escherichia coli, Ann. Microbiol. (Paris), 133(3), 611–617.

    Google Scholar 

  32. Brenner, D. J., Fanning, G. R., Skerman, F. J., and Falkow, S. (1975) Polynucleotide sequence divergence among strains of Escherichia coli and closely related organisms, J. Bacteriol., 109, 953–965.

    Google Scholar 

  33. Whittam, T. S., Ochman, H., and Selander, R. K. (1983) Multilocus genetic structure in natural populations of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A., 80, 1651–1755.

    Google Scholar 

  34. Hartl, D. L. and Dykhuizen, D. E. (1984) The population genetics of Escherichia coli, Annu. Rev. Genet., 18, 31–68.

    CAS  Google Scholar 

  35. Pupo, G. M., Kariolis, D. K. R., Lan, R., and Reeves, P. R. (1997) Evolutionary relationships among pathogenic and nonpathogenic Escherichia coli strains inferred from multilocus enzyme electrophoresis and mdh sequence studies, Infect. Immun., 65, 2685–2692.

    PubMed  CAS  Google Scholar 

  36. Ochman, H., Whittam, T. S., Caugant, D. A., and Selander, R. K. (1983) Enzyme polymorphism and genetic population structure in Escherichia coli and Shigella, J. Gen. Microbiol., 129, 2715–2726.

    CAS  Google Scholar 

  37. Widdowson, M.-A., Monroe, S. S., and Glass, R. I. (2005) Are novoviruses emerging? Emerg. Infect. Dis., 11(5), 735–737.

    PubMed  Google Scholar 

  38. Mead, P. S., Slutsker, L., Dietz, V., McCaig, L. F., Breese, J. S., Shapiro, C., Griffin, P. M., and Tauxe, R. V. (1999) Food-related illness and death in the United States, Emerg. Infect. Dis., 11(5), 607–625.

    Article  Google Scholar 

  39. Clarke, M. B., Hughes, D. T., Zhu, C., Boedeker, E. C., and Sperandio, V. (2006) The QseC sensor kinase: a bacterial adrenergic receptor, Proc. Natl. Acad. Sci. U.S.A., 103(27), 10420–10425.

    Article  PubMed  CAS  Google Scholar 

  40. Bakardjiev, A. I., Theriot, J. A., and Portnoy, D. A. (2006) Listeria monocytogenes traffics from maternal organs to the placenta and back, PLoS Pathogens, 2(6), e80.

    Google Scholar 

  41. Crane, J. K., Choudhari, S. S., Naeher, T. M., and Duffey, M. E. (2006) Mutual enhancement of virulence by enterotoxigenic and enteropathogenic Escherichia coli, Infect. Immun., 74(3), 1505–1515.

    CAS  Google Scholar 

  42. Palmer, C., Bik, E. M., Eisen, M. B., Eckburg, P. B., Sana, T. R., Wolber, P. K., Relman, D. A., and Brown, P. O. (2006) Rapid quantitative profiling of complex microbial populations, Nucleic Acids Res., 34(1), e5.

    Google Scholar 

  43. Dong, M., Yeh, F., Tepp, W. T., Dean, C., Johnson, E. A., Janz, R., and Chapman, E. R. (2006) SV2 is the protein receptor for botulinum neurotoxin A, Science, 312(5773), 595–596.

    Article  CAS  Google Scholar 

  44. Enteric Vaccines for Pediatric Use. (2004) NIAID Workshop Report, Airlie Center, Warrenton, VA, April 24–26, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassil St. Georgiev PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Georgiev, V.S. (2009). Enteric Diseases. In: Georgiev, V.S. (eds) National Institute of Allergy and Infectious Diseases, NIH. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-60327-297-1_9

Download citation

Publish with us

Policies and ethics