Skip to main content

Part of the book series: Infectious Disease ((ID))

  • 1168 Accesses

Antibodies provide much of the protection afforded by the vaccines in the current arsenal; however, only recently has an in-depth understanding emerged of the molecular basis of B-cell development, selection, and effector function that may allow more strategic manipulation of the B-cell compartment (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hackett, C. J., Rotrosen, D., Auchincloss, H., and Fauci, A. S. (2007) Immunology research: challenges and opportunities in a time of budgetary constraint, Nat. Immunol., 8, 114–117.

    Article  PubMed  CAS  Google Scholar 

  2. Welner, R. S., Pelayo, R., and Kincade, P. W. (2008) Evolving genealogy of B cells, Nat. Rev. Immunol., 8, 95–106.

    Article  PubMed  CAS  Google Scholar 

  3. Miyamoto, T., Iwasaki, H., Reizis, B., Ye, M., Graf, T., Weissman, I., and Akashi, K. (2002) Myeloid or lymphoid promiscuity as a critical step in hematopoietic lineage commitment, Dev. Cell, 3, 137–147.

    Article  PubMed  CAS  Google Scholar 

  4. Mansson, R., Hultquist, A., Luc, S., et al. (2007) Molecular evidence for hierarchical transcriptional lineage priming in fetal and adult stem cells and multipotent progenitors, Immunity, 26, 407–419.

    Article  PubMed  CAS  Google Scholar 

  5. Hu, M., Krause, D., Greaves, D., et al. (1997) Multilineage gene expression precedes commitment in the hematopoietic system, Genes Dev., 11, 774–785.

    Article  PubMed  CAS  Google Scholar 

  6. Park, Y.-H. and Osmond, D. G. (1989) Dynamics of early B lymphocyte precursor cells in mouse bone marrow: proliferation of cells containing terminal deoxynucleotidyl transferase, Eur. J. Immunol., 19, 2139–2144.

    Article  PubMed  CAS  Google Scholar 

  7. Medina, K. L., Garrett, K. P., Thompson, L. F., et al. (2001) Identification of very early lymphoid precursors in bone marrow and their regulation by estrogen, Nat. Immunol., 2, 718–724.

    Article  PubMed  CAS  Google Scholar 

  8. Igarashi, H., Gregory, S. C., Yokota, T., Sakaguchi, N., and Kincade, P. W. (2002) Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow, Immunity, 17, 117–130.

    Article  PubMed  CAS  Google Scholar 

  9. Kiel, M. J., Yilmaz, ö., Iwashita, T., Yilmaz, O., Terhorst, C., and Morrison, S. (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells, Cell, 121, 1109–1121.

    Article  PubMed  CAS  Google Scholar 

  10. Hirose, J., Kouro, T., Igarashi, H., Yokota, T., Sakaguchi, N., and Kincade, P. W. (2002) A developing picture of lymphopoiesis in bone marrow, Immunol. Rev., 189, 28–40.

    Article  PubMed  CAS  Google Scholar 

  11. Tokoyoda, K., Egawa, T., Sugiyama, T., Choi, B. I., and Nagasawa, T. (2004) Cellular niches controlling B lymphocyte behaviour within bone marrow during development, Immunity, 20, 707–718.

    Article  PubMed  CAS  Google Scholar 

  12. Torlakovic, E., Tenstad, E., Funderud, S., and Rian, E. (2005) CD10+ stromal cells form B-lymphocyte maturation niches in the human bone marrow, J. Pathol., 205, 311–317.

    Article  PubMed  Google Scholar 

  13. Yao, L., Yokota, T., Xia, L., Kincade, P. W., and McEver, R. P. (2005) Bone marrow dysfunction in mice lacking the cytokine receptor gp130 in endothelial cells, Blood., 106, 4093–4101.

    Article  PubMed  CAS  Google Scholar 

  14. Walkley, C. R., Shea, J. M., Sims, N. A., Purton, L. E., and Orkin, S. H. (2007) Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment, Cell, 129, 1081–1095.

    Article  PubMed  CAS  Google Scholar 

  15. Taniguchi, H., Toyoshima, T., Fukao, K., and Nakauchi, H. (1996) Presence of hematopoietic stem cells in the adult liver, Nat. Med., 2, 198–203.

    Article  PubMed  CAS  Google Scholar 

  16. Bhattacharya, D., Rossi, D. J., Bryder, D., and Weissman, I. L. (2006) Purified hematopoietic stem cell engraftment of rare niches corrects severe lymphoid deficiencies without host conditioning, J. Exp. Med., 203, 73–85.

    Article  PubMed  CAS  Google Scholar 

  17. Wilson, A. and Trumpp, A. (2006) Bone-marrow haematopoietic-stem-cell niches, Nat. Rev. Immunol., 6, 93–106.

    Article  PubMed  CAS  Google Scholar 

  18. Suda, T., Arai, F., and Hirao, A. (2005) Hematopoietic stem cells and their niche, Trends Immunol., 26, 426–433.

    Article  PubMed  CAS  Google Scholar 

  19. Varnum-Finney, B., Brashem-Stein, C., and Bernstein, I. D. (2003) Combined effects of Notch signalling and cytokines induce a multiple log increase in precursors with lymphoid and myeloid reconstituting ability, Blood, 101, 1784–1789.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang, C. C. and Lodish, H. F. (2005) Murine hematopoietic stem cells change their surface phenotype during ex vivo expansion, Blood, 105, 4314–4320.

    Article  PubMed  CAS  Google Scholar 

  21. Reya, T., Duncan, A. W., Ailles, L., et al. (2003) A role for Wnt signalling in self-renewal of haematopoietic stem cells, Nature, 423, 409–414.

    Article  PubMed  CAS  Google Scholar 

  22. Sauvageau, G., Iscove, N. N., and Humphries, R. K. (2004) In vitro and in vivo expansion of hematopoietic stem cells, Oncogene, 23, 7223–7232.

    Article  PubMed  CAS  Google Scholar 

  23. Waskow, C., Paul, S., Haller, C., Gassmann, M., Rodewald, H. R. (2002) Viable c-KitW/W mutants reveal pivotal role for c-kit in the maintenance of lymphopoiesis, Immunity, 17, 277–288.

    Article  PubMed  CAS  Google Scholar 

  24. Mackarehtschian, K., Hardin, J. D., Moore, K. A., et al. (1995) Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors, Immunity, 3, 147–161.

    Article  PubMed  CAS  Google Scholar 

  25. Passegue, E., Wagers, A. J., Giuriato, S., Anderson, W. C., and Weissman, I. L. (2005) Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates, J. Exp. Med., 202, 1599–1611.

    Article  PubMed  CAS  Google Scholar 

  26. Cheshier, S. H., Morrison, S. J., Liao, X., and Weissman, I. L. (1999) In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells, Proc. Natl Acad. Sci. U.S.A., 96, 3120–3125.

    Article  PubMed  CAS  Google Scholar 

  27. Pelayo, R., Miyazaki, K., Huang, J., et al. (2006) Cell cycle quiescence of early lymphoid progenitors in adult bone marrow, Stem Cells, 24, 2703–2713.

    Article  PubMed  CAS  Google Scholar 

  28. Arai, F., Hirao, A., Ohmura, M., et al. (2004) Tie2/angiopoietin-1 signalling regulates hematopoietic stem cell quiescence in the bone marrow niche, Cell, 118, 149–161.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang, C. C., Kaba, M., Ge, G., et al. (2006) Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells, Nat. Med., 12, 240–245.

    Article  PubMed  CAS  Google Scholar 

  30. Stier, S., Ko, Y., Forkert, R., et al. (2005) Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size, J. Exp. Med., 201, 1781–1791.

    Article  PubMed  CAS  Google Scholar 

  31. Maeda, K., Baba, Y., Nagai, Y., et al. (2005) IL-6 blocks a discrete early step in lymphopoiesis, Blood, 106, 879–885.

    Article  PubMed  CAS  Google Scholar 

  32. Nakamura, K., Kouro, T., Kincade, P. W., et al. (2004) Src homology 2-containing 5-inositol phosphatase (SHIP) suppresses an early stage of lymphoid cell development through elevated interleukin-6 production by myeloid cells in bone marrow, J. Exp. Med. 199, 243–254.

    Article  PubMed  CAS  Google Scholar 

  33. Kouro, T., Medina, K. L., Oritani, K., and Kincade, P. W. (2001) Characteristics of early murine B lymphocyte precursors and their direct sensitivity to negative regulators, Blood, 97, 2708–2715.

    Article  PubMed  CAS  Google Scholar 

  34. North, T. E., Goessling, W., Walkley, C. R., et al. (2007) Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis, Nature, 447, 1007–1011.

    Article  PubMed  CAS  Google Scholar 

  35. Kincade, P. W., Igarashi, H., Medina, K. L., et al. (2002) Lymphoid lineage cells in adult murine bone marrow diverge from those of other blood cells at an early, hormone-sensitive stage, Semin. Immunol., 14, 385–394.

    Article  PubMed  Google Scholar 

  36. Koch, U., Wilson, A., Cobas, M., et al. (2007) Simultaneous loss of β- and γ-catenin does not perturb hematopoiesis or lymphopoiesis, Blood, 111(1), 160–164.

    Article  PubMed  CAS  Google Scholar 

  37. Nemeth, M. J., Topol, L., Anderson, S. M., Yang, Y., and Bodine, D. M. (2007) Wnt5a inhibits canonical Wnt signalling in hematopoietic stem cells and enhances repopulation, Proc. Natl. Acad. Sci. U.S.A., 104, 15436–15441.

    Article  PubMed  CAS  Google Scholar 

  38. Jeannet, G., Scheller, M., Scarpellino, L., et al. (2007) Long-term, multilineage hematopoiesis occurs in the combined absence of β-catenin and γ-catenin, Blood, 111(1), 142–149.

    Article  PubMed  CAS  Google Scholar 

  39. Baba, Y., Garrett, K. P., and Kincade, P. W. (2005) Constitutively active β-catenin confers multilineage differentiation potential on lymphoid and myeloid progenitors, Immunity, 23, 599–609.

    Article  PubMed  CAS  Google Scholar 

  40. Baba, Y., Yokota, T., Spits, H., et al. (2006) Constitutively active β-catenin promotes expansion of multipotent hematopoietic progenitors in culture, J. Immunol., 177, 2294–2303.

    PubMed  CAS  Google Scholar 

  41. Liang, H., Chen, Q., Coles, A., et al. (2003) Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue, Cancer Cell, 4, 349–360.

    Article  PubMed  CAS  Google Scholar 

  42. Kondo, M., Weissman, I. L., and Akashi, K. (1997) Identification of clonogenic common lymphoid progenitors in mouse bone marrow, Cell, 91, 661–672.

    Article  PubMed  CAS  Google Scholar 

  43. Kondo, M., Weissman, I. L., and Akashi, K. (1997) Identification of clonogenic common lymphoid progenitors in mouse bone marrow, Cell, 91, 661–672.

    Article  PubMed  CAS  Google Scholar 

  44. Perry, S. S., Wang, H., Pierce, L. J., et al. (2004) L-selectin defines a bone marrow analogue to the thymic early T-cell-lineage progenitor, Blood, 103, 2990–2996.

    Article  PubMed  CAS  Google Scholar 

  45. Kondo, M., Weissman, I. L., and Akashi, K. (1997) Identification of clonogenic common lymphoid progenitors in mouse bone marrow, Cell, 91, 661–672.

    Article  PubMed  CAS  Google Scholar 

  46. Bhandoola, A., Von Boehmer, H., Petrie, H. T., and Zúñiga-Pflücker, J. C. (2007) Commitment and developmental potential of extrathymic and intrathymic T cell precursors: plenty to choose from, Immunity, 26, 678–689.

    Article  PubMed  CAS  Google Scholar 

  47. Allman, D., Sambandam, A., Kim, S., et al. (2003) Thymopoiesis independent of common lymphoid progenitors, Nat. Immunol., 4, 168–174.

    Article  PubMed  CAS  Google Scholar 

  48. Huang, J., Garrett, K. P., Pelayo, R., et al. (2005) Propensity of adult lymphoid progenitors to progress to DN2/3 stage thymocytes with Notch receptor ligation, J. Immunol., 175, 4858–4865.

    PubMed  CAS  Google Scholar 

  49. Nagai, Y., Garrett, K., Ohta, S., et al. (2006) Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment, Immunity, 24, 801–812.

    Article  PubMed  CAS  Google Scholar 

  50. Treml, L. S., Crowley, J. E., and Cancro, M. P. (2006) BLyS receptor signatures resolve homeostatically independent compartments among naïve and antigen- experienced B cells, Semin. Immunol., 18(5), 297–304.

    Article  PubMed  CAS  Google Scholar 

  51. Ruprecht, C. R. and Lanzavecchia, A. (2006) Toll-like receptor stimulation as a third signal required for activation of human naive B cells, Eur. J. Immunol., 36(4), 810–816.

    Article  PubMed  CAS  Google Scholar 

  52. Bossen, C. and Schneider, P. (2006) BAFF, APRIL and their receptors: structure, function and signaling, Semin. Immunol., 18(5), 263–275.

    Article  PubMed  CAS  Google Scholar 

  53. Woodland, R. T., Schmidt, M. R., and Thompson, C. B. (2006) BLyS and B cell homeostasis, Semin. Immunol., 18(6), 318–326.

    Article  PubMed  CAS  Google Scholar 

  54. Do, R. K. and Chen-Kiang, S. (2002) Mechanism of BLyS action and B cell immunity, Cytokine Growth Factor Revs., 13(1), 19–25.

    Article  CAS  Google Scholar 

  55. Baker, K. P. (2004) BLyS – an essentilal survival factor for B cells: basic biology, links to pathology and therapeutic target, Autoimmune Revs., 3(5), 368–375.

    Article  CAS  Google Scholar 

  56. Marsters, S. A., Yan, M., Pitti, R. M., Haas, P. E., Dixit, V. M., and Ashkenazi, A. (2000) Interaction of the TNF homoIogues BLyS and APRIL with the TNF receptor homologues BCMA and TACI, Curr. Biol., 10(13), 785–788.

    Article  PubMed  CAS  Google Scholar 

  57. Crowley, J. E., Treml, L. S., Stadanlick, J. E., Carpenter, E., and Cancro, M. P. (2005) Homeostatic niche specification among naïve and activated B cells: a growing role for the BLyS family of receptors and ligands, Semin. Immunol., 17(3), 193–199.

    Article  PubMed  CAS  Google Scholar 

  58. Yan, M., Ridgway, J., Chan, B., et al. (2001) Identification of a novel receptor for B lymphocyte stimulator that is mutated in a mouse strain with severe B cell deficiency, Curr. Biol., 11(19), 1547–1552.

    Article  PubMed  CAS  Google Scholar 

  59. Locksley, R. M., Killeen, N., and Lenardo, M. J. (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology, Cell, 104, 487–501.

    Article  PubMed  CAS  Google Scholar 

  60. Ware, C. F. (2000) APRIL and BAFF connect autoimmunity and cancer, J. Exp. Med., 192, F3–F38.

    Article  Google Scholar 

  61. Ambrose, C. M. (2002) Baff-R, J. Biol. Regul. Homeost. Agents, 16, 211–213.

    PubMed  CAS  Google Scholar 

  62. Kalled, S. L. (2002) BAFF: a novel therapeutic target for autoimmunity, Curr. Opin. Investig. Drugs, 3, 1005–1010.

    PubMed  CAS  Google Scholar 

  63. Mackay , F. and Browning, J. L. (2002) BAFF: a fundamental survival factor for B cells, Nat. Rev. Immunol., 2, 465–475.

    Article  PubMed  CAS  Google Scholar 

  64. Nardelli, B., Moore, P. A., Li, Y., and Hilbert, D. M. (2002) B lymphocyte stimulator (BLyS): a therapeutic trichotomy for the treatment of B lymphocyte diseases, Leuk. Lymphoma., 43, 1367–1373.

    Article  PubMed  CAS  Google Scholar 

  65. Stohl, B. (2002) B lymphocyte stimulator protein levels in systemic lupus erythematosus and other diseases, Curr. Rheumatol. Rep., 4, 345–350.

    Article  PubMed  Google Scholar 

  66. Cancro, M. P. and Smith, S. H. (2003) Peripheral B cell selection and homeostasis, Immunol Res., 27, 141–148.

    Article  PubMed  CAS  Google Scholar 

  67. Carter, R. H. (2003) A role for BLyS in tissue inflammation? Arthritis Rheum., 48, 882–885.

    Article  PubMed  Google Scholar 

  68. Smith, S. H. and Cancro, M. P. (2003) BLyS: the pivotal determinant of peripheral B cell selection and lifespan, Curr. Pharm. Des., 9, 1833–1847.

    Article  CAS  Google Scholar 

  69. Smith, S. H. and Cancro, M. P. (2003) Integrating B cell homeostasis and selection with BLyS, Arch. Immunol. Ther. Exp. (Warsz), 51, 209–218.

    CAS  Google Scholar 

  70. Mackay, F. and Ambrose, C. (2003) The TNF family members BAFF and APRIL: the growing complexity, Cytokine Growth Factor Rev., 14, 311–324.

    Article  PubMed  CAS  Google Scholar 

  71. Medema, J. P., Planelles-Carazo, L., Hardenberg, G., and Hahne, M. (2003) The uncertain glory of APRIL, Cell Death Differ., 10, 1121–1125.

    Article  PubMed  CAS  Google Scholar 

  72. Schneider, P. and Tschopp, J. (2003) BAFF and the regulation of B cell survival, Immunol. Lett., 88, 57–62.

    Article  PubMed  CAS  Google Scholar 

  73. Cancro, M. P. (2004) The BLyS family of ligands and receptors: an archetype for niche-specific homeostatic regulation, Immunol. Rev., 202, 237–249.

    Article  PubMed  CAS  Google Scholar 

  74. Cancro, M. P. (2004) Peripheral B-cell maturation: the intersection of selection and homeostasis, Immunol. Rev., 197, 89–101.

    Article  PubMed  CAS  Google Scholar 

  75. Mackay, F. and Tangye, S. G. (2004) The role of the BAFF/APRIL system in B cell homeostasis and lymphoid cancers, Curr. Opin. Pharmacol., 4, 347–354.

    Article  PubMed  CAS  Google Scholar 

  76. Stohl, W. (2004) Targeting B lymphocyte stimulator in systemic lupus erythematosus and other autoimmune rheumatic disorders, Expert Opin. Ther. Targets, 8, 177–189.

    Article  PubMed  CAS  Google Scholar 

  77. Jelinek, D. F. and Darce, J. R. (2005) Human B lymphocyte malignancies: exploitation of BLyS and APRIL and their receptors, Curr. Dir. Autoimmun., 8, 266–288.

    Article  PubMed  CAS  Google Scholar 

  78. Kalled, S. L. (2005) The role of BAFF in immune function and implications for autoimmunity, Immunol Rev., 204, 43–54.

    Article  PubMed  CAS  Google Scholar 

  79. Mackay, F., Sierro, F., Grey, S. T. and Gordon, T. P. (2005) The BAFF/APRIL system: an important player in systemic rheumatic diseases, Curr. Dir. Autoimmun., 8, 243–265.

    Article  PubMed  CAS  Google Scholar 

  80. Noelle, R. J. and Erickson, L. D. (2005) Determinations of B cell fate in immunity and autoimmunity, Curr. Dir. Autoimmun., 8, 1–24.

    Article  PubMed  CAS  Google Scholar 

  81. Salzer, U. and Grimbacher, B. (2005) TACItly changing tunes: farewell to a yin and yang of BAFF receptor and TACI in humoral immunity? New genetic defects in common variable immunodeficiency, Curr. Opin. Allergy Clin. Immunol., 5, 496–503.

    Article  PubMed  CAS  Google Scholar 

  82. Schneider, P. (2005) The role of APRIL and BAFF in lymphocyte activation, Curr. Opin. Immunol., 17, 282–289.

    Article  PubMed  CAS  Google Scholar 

  83. Stohl, W. (2005) BlySfulness does not equal blissfulness in systemic lupus erythematosus: a therapeutic role for BLyS antagonists, Curr. Dir. Autoimmun., 8, 289–304.

    Article  PubMed  CAS  Google Scholar 

  84. Szodoray, P. and Jonsson, R. (2005) The BAFF/APRIL system in systemic autoimmune diseases with a special emphasis on Sjogren’s syndrome, Scand. J. Immunol., 62, 421–428.

    Article  PubMed  CAS  Google Scholar 

  85. Moore, P. A., Belvedere, O., Orr, A., et al. (1999) BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator, Science, 285, 260–263.

    Article  PubMed  CAS  Google Scholar 

  86. Mukhopadhyay, A., Ni, J., Zhai, Y., Yu, G. L., and Aggarwal, B. B. (1999) Identification and characterization of a novel cytokine, THANK, a TNF homologue that activates apoptosis, nuclear factor-kappaB, and c-Jun NH2-terminal kinase, J. Biol. Chem., 274, 15978–15981.

    Article  PubMed  CAS  Google Scholar 

  87. Shu, H. B., Hu, W. H., and Johnson, H. (1999) TALL-1 is a novel member of the TNF family that is down-regulated by mitogens, J. Leukoc. Biol., 65, 680–683.

    PubMed  CAS  Google Scholar 

  88. Schneider, P., MacKay, F., Steiner, V., et al. (1999) BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth, J. Exp. Med., 189, 1747–1756.

    Article  PubMed  CAS  Google Scholar 

  89. Kelly, K., Manos, E., Jensen, G., Nadauld, L., and Jones, D. A. (2000) APRIL/TRDL-1, a tumor necrosis factor-like ligand, stimulates cell death, Cancer Res., 60, 1021–1027.

    PubMed  CAS  Google Scholar 

  90. Lopez-Fraga, M., Fernandez, R., Albar, J. P., and Hahne, M. (2001) Biologically active APRIL is secreted following intracellular processing in the Golgi apparatus by furin convertase, EMBO Rep., 2, 945–951.

    Article  PubMed  CAS  Google Scholar 

  91. Bossen, C., Ingold, K., Tardivel, A., et al. (2006) Interactions of tumor necrosis factor (TNF) and TNF receptor family members in the mouse and human, J. Biol. Chem., 281, 13964–13971.

    Article  PubMed  CAS  Google Scholar 

  92. Gavin, A. L., Duong, B., Skog, P., et al. (2005) DeltaBAFF, a splice isoform of BAFF, opposes full-length BAFF activity in vivo in transgenic mouse models, J. Immunol., 175, 319–328.

    PubMed  CAS  Google Scholar 

  93. Gavin, A. L., Ait-Azzouzene, D., Ware, C. F., and Nemazee, D. (2003) DeltaBAFF, an alternate splice isoform that regulates receptor binding and biopresentation of the B cell survival cytokine, BAFF, J. Biol. Chem., 278, 38220–38228.

    Article  PubMed  CAS  Google Scholar 

  94. Roschke, V., Sosnovtseva, S., Ward, C. D., et al. (2002) BLyS and APRIL form biologically active heterotrimers that are expressed in patients with systemic immune-based rheumatic diseases, J. Immunol., 169, 4314–4321.

    PubMed  CAS  Google Scholar 

  95. Yan, M., Marsters, S. A., Grewal, N., Wang, H., Ashkenazi, A., and Dixit, V. M. (2000) Identification of a receptor for BLyS demonstrates a crucial role in humoral immunity, Nat. Immunol., 1, 37–41.

    Article  PubMed  CAS  Google Scholar 

  96. Moreaux, J., Cremer, F. W., Reme, T., et al. (2005) The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature, Blood, 106(3), 1021–1030.

    Article  PubMed  CAS  Google Scholar 

  97. Yan, M., Brady, J. R., Chan, B., et al. (2001) Identification of a novel receptor for B lymphocyte stimulator that is mutated in a mouse strain with severe B cell deficiency, Curr. Biol., 11, 1547–1552.

    Article  PubMed  CAS  Google Scholar 

  98. Schiemann, B., Gommerman, J. L., Vora, K., et al. (2001) An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway, Science, 293, 2111–2114.

    Article  PubMed  CAS  Google Scholar 

  99. Hahne, M., Kataoka, T., Schroter, M., et al. (1998) APRIL, a new ligand of the tumor necrosis factor family, stimulates tumor cell growth, J. Exp. Med., 188, 1185–1190.

    Article  PubMed  CAS  Google Scholar 

  100. Hymowitz, S. G., Patel, D. R., Wallweber, H. J., et al. (2005) Structures of APRIL-receptor complexes: like BCMA, TACI employs only a single cysteine-rich domain for high affinity ligand binding, J. Biol. Chem., 280, 7218–7227.

    Article  PubMed  CAS  Google Scholar 

  101. von Bulow, G. U. and Bram, R. J. (1997) NF-AT activation induced by a CAML-interacting member of the tumor necrosis factor receptor superfamily, Science, 278, 138–141.

    Article  Google Scholar 

  102. Day, E. S., Cachero, T. G., Qian, F., et al. (2005) Selectivity of BAFF/BLyS and APRIL for binding to the TNF family receptors BAFFR/BR3 and BCMA, Biochemistry, 44, 1919–1931.

    Article  PubMed  CAS  Google Scholar 

  103. Patel, D. R., Wallweber, H. J., Yin, J., et al. (2004) Engineering an APRIL-specific B cell maturation antigen, J. Biol. Chem., 279, 16727–16735.

    Article  PubMed  CAS  Google Scholar 

  104. Pelletier, M., Thompson, J. S., Qian, F., et al. (2003) Comparison of soluble decoy IgG fusion proteins of BAFF-R and BCMA as antagonists for BAFF, J. Biol. Chem., 278, 33127–33133.

    Article  PubMed  CAS  Google Scholar 

  105. Wu, Y., Bressette, D., Carrell, J. A., et al. (2000) Tumor necrosis factor (TNF) receptor superfamily member TACI is a high affinity receptor for TNF family members APRIL and BLyS, J. Biol. Chem., 275, 35478–35485.

    Article  PubMed  CAS  Google Scholar 

  106. Ingold, K., Zumsteg, A., Tardivel, A., et al. (2005) Identification of proteoglycans as the APRIL-specific binding partners, J. Exp. Med., 201, 1375–1383.

    Article  PubMed  CAS  Google Scholar 

  107. Xia, X. Z., Treanor, J., Senaldi, G., et al. (2000) TACI is a TRAF-interacting receptor for TALL-1, a tumor necrosis factor family member involved in B cell regulation, J. Exp. Med., 192, 137–143.

    Article  PubMed  CAS  Google Scholar 

  108. Hatzoglou, A., Roussel, J., Bourgeade, M. F., et al. (2000) TNF receptor family member BCMA (B cell maturation) associates with TNF receptor-associated factor (TRAF) 1, TRAF2, and TRAF3 and activates NF-kappa B, elk-1, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase, J. Immunol., 165, 1322–1330.

    PubMed  CAS  Google Scholar 

  109. Claudio, E., Brown, K., Park, S., Wang, H., and Siebenlist, U. (2002) BAFF-induced NEMO-independent processing of NF-kappa B2 in maturing B cells, Nat. Immunol., 3, 958–965.

    Article  PubMed  CAS  Google Scholar 

  110. Kayagaki, N., Yan, M., Seshasayee, D., et al. (2002) BAFF/BLyS receptor 3 binds the B cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-kappaB2, Immunity, 17, 515–524.

    Article  PubMed  CAS  Google Scholar 

  111. Gordon, N. C., Pan, B., Hymowitz, S. G., et al. (2003) BAFF/BLyS receptor 3 comprises a minimal TNF receptor-like module that encodes a highly focused ligand-binding site, Biochemistry, 42, 5977–5983.

    Article  PubMed  CAS  Google Scholar 

  112. Hatada, E. N., Do, R. K., Orlofsky, A., et al. (2003) NF-kappa B1 p50 is required for BLyS attenuation of apoptosis but dispensable for processing of NF-kappa B2 p100 to p52 in quiescent mature B cells, J. Immunol., 171, 761–768.

    PubMed  CAS  Google Scholar 

  113. Roth, W., Wagenknecht, B., Klumpp, A., et al. (2001) APRIL, a new member of the tumor necrosis factor family, modulates death ligand-induced apoptosis, Cell. Death Differ., 8, 403–410.

    Article  PubMed  CAS  Google Scholar 

  114. Nardelli, B., Belvedere, O., Roschke, V., et al. (2001) Synthesis and release of B- lymphocyte stimulator from myeloid cells, Blood, 97, 198–204.

    Article  PubMed  CAS  Google Scholar 

  115. Scapini, P., Nardelli, B., Nadali, G., et al. (2003) G-CSF-stimulated neutrophils are a prominent source of functional BLyS, J. Exp. Med., 197, 297–302.

    Article  PubMed  CAS  Google Scholar 

  116. Gorelik, L., Gilbride, K., Dobles, M., Kalled, S. L., Zandman, D., and Scott, M. L. (2003) Normal B cell homeostasis requires B cell activation factor production by radiation-resistant cells, J. Exp. Med., 198, 937–945.

    Article  PubMed  CAS  Google Scholar 

  117. Craxton, A., Magaletti, D., Ryan, E. J., and Clark, E. A. (2003) Macrophage- and dendritic cell-dependent regulation of human B-cell proliferation requires the TNF family ligand BAFF, Blood, 101, 4464–4471.

    Article  PubMed  CAS  Google Scholar 

  118. Amanna, I. J., Dingwall, J. P., and Hayes, C. E. (2003) Enforced bcl-xL gene expression restored splenic B lymphocyte development in BAFF-R mutant mice, J. Immunol., 170(9), 4593–4600.

    PubMed  CAS  Google Scholar 

  119. Schneider, P., Mackay, F., Steiner, V., et al. (1999) BAFF a novel ligand of the tumor necrosis factor family, stimulates B cell growth, J. Exp. Med., 189(11), 1747–1756.

    Article  PubMed  CAS  Google Scholar 

  120. Do, R. K., Hatada, E., Lee, H., Tourigny, M. R., Hilbert, D., and Chen-Kiang, S. (2000) Attenuation of apoptosis underlies B lymphocyte stimulator enhancement of humoral immune response, J. Exp. Med., 192(7), 953–964.

    Article  PubMed  CAS  Google Scholar 

  121. Chiu, A., Xu, W., He, B., et al. (2007) Hodgkin lymphoma cells express TACI and BCMA receptors and generate survival and proliferation signals in response to BAFF and APRIL, Blood, 109(2), 729–739.

    Article  PubMed  CAS  Google Scholar 

  122. Fu, L., Lin-Lee, Y.-C., Pham, L. V., Tamayo, A., Yoshimura, L., and Ford, R. J. (2006) Constitutive NF-κB and NFAT activation leads to stimulation of the BLyS survival pathway in aggressive B-cell lymphomas, Blood, 107, 4540–4548.

    Article  PubMed  CAS  Google Scholar 

  123. Novak, A. J., Grote, D. M., Stenson, M., et al. (2004) Expression of BLyS and its receptors in B-cell non Hodgkin lymphoma: correlation with disease activity and patient outcome, Blood, 104(8), 2247–2253.

    Article  PubMed  CAS  Google Scholar 

  124. Moreaux, J., Legouffe, E., Jourdan, E., et al. (2004) BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone, Blood, 103(8), 3148–3157.

    Article  PubMed  CAS  Google Scholar 

  125. Ng, L. G., Sutherland, A. P., Newton, R., et al. (2004) B cell-activating factor belonging to the TNF family (BAFF)-R is the principal BAFF receptor facilitating BAFF costimulation of circulating T and B cells, J. Immunol., 173(2), 807–817.

    PubMed  CAS  Google Scholar 

  126. Groom, J., Kalled, S. L., Cutler, A. H., et al. (2002) Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjogren’s syndrome, J. Clin. Invest., 109(1), 59–68.

    PubMed  CAS  Google Scholar 

  127. Zhang, J., Roschke, V., Baker, K. P., et al. (2001) Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus, J. Immunol., 166(1), 6–10.

    PubMed  CAS  Google Scholar 

  128. Zhang, M., Ko, K. H., Lam, Q. L., et al. (2005) Expression and function of TNF family member B cell-activating factor in the development of autoimmune arthritis, Int. Immunol., 17(8), 1081–1092.

    Article  PubMed  CAS  Google Scholar 

  129. Lesley, R., Xu, Y., Kalled, S. L., et al. (2004) Reduced competitiveness of autoantigen-engaged B cells due to increased dependence on BAFF, Immunity, 20(4), 441–453.

    Article  PubMed  CAS  Google Scholar 

  130. Thien, M., Phan, T. G., Gardam, S., et al. (2004) Excess BAFF rescues self- reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches, Immunity, 20(6), 785–798.

    Article  PubMed  CAS  Google Scholar 

  131. Liu, W., Szalai, A., Zhao, L., et al. (2004), Control of spontaneous B lymphocyte autoimmunity with adenovirus-encoded soluble TACI, Arthritis Rheum., 50(6), 1884–1896.

    Article  PubMed  CAS  Google Scholar 

  132. Riccobene, T. A., Miceli, R. C., Lincoln, C., et al. (2003) Rapid and specific targeting of 125I-labeled B lymphocyte stimulator to lymphoid tissues and B cell tumors in mice, J. Nucl. Med., 44(3), 422–433.

    PubMed  CAS  Google Scholar 

  133. Baker, K. P., Edwards, B. M., Main,S. H., et al. (2003) Generation and characterization of LymphoStat-B, a human monoclonal antibody that antagonizes the bioactivities of B lymphocyte stimulator, Arthritis Rheum., 48(11), 3253–3265.

    Article  PubMed  CAS  Google Scholar 

  134. Hernando, E., Charytonowitz, E., Dudas, M. E., et al. (2007) The AKT-mTOR pathway plays a critical role in the development of leiomyosarcomas, Nat. Med., 13, 748–753.

    Article  PubMed  CAS  Google Scholar 

  135. Berns, A., van der Lugt, N., Alkema, M., et al. (1994) Mouse model systems to study multistep tumorigenesis, Cold Spring Harb. Symp. Quant. Biol., 59, 435–447.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassil St. Georgiev PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Georgiev, V.S. (2009). The Role of B Cells. In: Georgiev, V.S. (eds) National Institute of Allergy and Infectious Diseases, NIH. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-60327-297-1_43

Download citation

Publish with us

Policies and ethics