Skip to main content

Part of the book series: Infectious Disease ((ID))

  • 1183 Accesses

The immune system is essential to survival, and even a modest decrease in immune function can leave a person susceptible to infection. But the immune system itself can also cause disease, by inappropriately attacking the body’s own organs, tissues, or cells (http://www3.niaid.nih.gov/research/topics/autoimmune/introduction.htm).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davidson, A. and Diamond, B. (2001) Autoimmune diseases, N. Engl. J. Med., 345(5), 340–350.

    PubMed  CAS  Google Scholar 

  2. Sinha, A. A., Lopez, M. T., and McDevitt, H. O. (1990) Autoimmune diseases: the failure of self tolerance, Science, 248, 1380–1388.

    PubMed  CAS  Google Scholar 

  3. Jacobson, D. L., Gange, S. J., Rose, N. R., and Graham N. M. (1997) Epidemiology and estimated population burden of selected autoimmune diseases in the United States, Clin. Immunol. Immunopathol., 84, 223–243.

    PubMed  CAS  Google Scholar 

  4. Dighiero, G. and Rose, N. R. (1999) Critical self-epitopes are key to the understanding of self-tolerance and autoimmunity, Immunol. Today, 20, 423–428.

    PubMed  CAS  Google Scholar 

  5. Goldrath, A. W. and Bevan, M. J. (1999) Selecting and maintaining a diverse T-cell repertoire, Nature, 402, 255–262.

    PubMed  CAS  Google Scholar 

  6. Gu, H., Tarlinton, D., Muller, W., Rajewsky, K., and Forster, I. (1991) Most peripheral B cells in mice are ligand selected, J. Exp. Med., 173, 1357–1371.

    PubMed  CAS  Google Scholar 

  7. Silverstein, A. M. and Rose, N. R. (2000) There is only one immune system! The view from immunopathology, Semin. Immunol., 12, 173–178; 257.

    Google Scholar 

  8. Takahashi, T., Tanaka, M., Brannan, C. I., et al. (1994) Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand, Cell, 76, 969–976.

    PubMed  CAS  Google Scholar 

  9. Zhou, T., Edwards, C. K., III, Yang, P., Wang, Z., Bluethmann, H., and Mountz, J. D. (1996) Greatly accelerated lymphadenopathy and autoimmune disease in lpr mice lacking tumor necrosis factor receptor I, J. Immunol., 156, 2661–2665.

    PubMed  CAS  Google Scholar 

  10. Dang, H., Geiser, A. G., Letterio, J. J., et al. (1005) SLE-like autoantibodies and Sjogren’s syndrome-like lymphoproliferation in TGF-beta knockout mice, J. Immunol., 155, 3205–3212.

    Google Scholar 

  11. Kontoyiannis, D. and Kollias, G. (2000) Accelerated autoimmunity and lupus nephritis in NZB mice with an engineered heterozygous deficiency in tumor necrosis factor, Eur. J. Immunol., 30, 2038–2047.

    PubMed  CAS  Google Scholar 

  12. Napirei, M., Karsunky, H., Zevnik, B., Stephan, H., Mannherz, H. G., and Moroy, T. (2000) Features of systemic lupus erythematosus in Dnase1-deficient mice, Nat. Genet., 25, 177–181.

    PubMed  CAS  Google Scholar 

  13. Bickerstaff, M. C., Botto, M., Hutchinson, W. L., et al. (1999) Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity, Nat. Med., 5, 694–697.

    PubMed  CAS  Google Scholar 

  14. Botto, M. (1998) C1q knock-out mice for the study of complement deficiency in autoimmune disease, Exp. Clin. Immunogenet., 15, 231–234.

    PubMed  CAS  Google Scholar 

  15. Nishizumi, H., Taniuchi, I., Yamanashi, Y., et al. (1995) Impaired proliferation of peripheral B cells and indication of autoimmune disease in lyn-deficient mice, Immunity, 3, 549–560.

    PubMed  CAS  Google Scholar 

  16. Westhoff, C. M., Whittier, A., Kathol, S., et al. (1997) DNA-binding antibodies from viable motheaten mutant mice: implications for B cell tolerance, J. Immunol., 159, 3024–3033.

    PubMed  CAS  Google Scholar 

  17. O’Keefe, T. L., Williams, G. T., Davies, S. L., and Neuberger, M.S. (1996) Hyperresponsive B cells in CD22-deficient mice, Science, 274, 798–801.

    PubMed  Google Scholar 

  18. Tanabe-Fukunaga, R., Brannan, C. I., Copeland, N. G., Jenkins, N. A., and Nagata, S. (1992) Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis, Nature, 356, 314–317.

    Google Scholar 

  19. Gross, J. A., Johnson, J., Mudri, S., et al. (2000) TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease, Nature, 404, 995–999.

    PubMed  CAS  Google Scholar 

  20. Mandik-Nayak, L., Nayak, S., Sokol, C., et al. (2000) The origin of anti-nuclear antibodies in bcl-2 transgenic mice, Int. Immunol., 12, 353–364.

    PubMed  CAS  Google Scholar 

  21. Nishimura, H., Nose, M., Hiai, H., Minato, N., and Honjo, T. (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor, Immunity, 11, 141–151.

    PubMed  CAS  Google Scholar 

  22. Iizuka, J., Katagiri, Y., Tada, N., et al. (1998) Introduction of an osteopontin gene confers the increase in B1 cell population and the production of anti-DNA autoantibodies, Lab. Invest., 78, 1523–1533.

    PubMed  CAS  Google Scholar 

  23. Cornall, R. J., Cyster, J. G., Hibbs, M. L., et al. (1998) Polygenic autoimmune traits: Lyn, CD22, and SHP-1 are limiting elements of a biochemical pathway regulating BCR signaling and selection, Immunity, 8, 497–508.

    PubMed  CAS  Google Scholar 

  24. Seery, J. P., Carroll, J. M., Cattell, V., and Watt, F. M. (1997) Antinuclear autoantibodies and lupus nephritis in transgenic mice expressing interferon gamma in the epidermis, J. Exp. Med., 186, 1451–1459.

    PubMed  CAS  Google Scholar 

  25. Lopez-Hoyos, M., Carrio, R., Merino, R,, et al. (1996) Constitutive expression of bcl-2 in B cells causes a lethal form of lupuslike autoimmune disease after induction of neonatal tolerance to H-2b alloantigens, J. Exp. Med., 183, 2523–2531.

    PubMed  CAS  Google Scholar 

  26. Bolland, S. and Ravetch, J. V. (2000) Spontaneous autoimmune disease in Fc(gamma) RIIB-deficient mice results from strain-specific epistasis, Immunity, 13, 277–285.

    PubMed  CAS  Google Scholar 

  27. Balomenos, D., Martin-Caballero, J., Garcia, M. I., et al. (2000) The cell cycle inhibitor p21 controls T-cell proliferation and sex-linked lupus development, Nat. Med., 6, 171–176.

    PubMed  CAS  Google Scholar 

  28. Bouillet, P., Metcalf, D., Huang, D. C., et al. (1999) Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity, Science, 286, 1735–1738.

    PubMed  CAS  Google Scholar 

  29. Chen, Z., Koralov, S. B., and Kelsoe, G. (2000) Complement C4 inhibits systemic autoimmunity through a mechanism independent of complement receptors CR1 and CR2, J. Exp. Med., 192, 1339–1352.

    PubMed  CAS  Google Scholar 

  30. Sato, S., Ono, N., Steeber, D. A., Pisetsky, D. S., and Tedder, T. F. (1996) CD19 regulates B lymphocyte signaling thresholds critical for the development of B-1 lineage cells and autoimmunity, J. Immunol., 157, 4371–4378.

    PubMed  CAS  Google Scholar 

  31. Gorelik, L. and Flavell, R. A. (2000) Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease, Immunity, 12, 171–181.

    PubMed  CAS  Google Scholar 

  32. Di Cristofano, A., Kotsi, P., Peng, Y. F., Cordon-Cardo, C., Elkon, K. B., and Pandolfi, P. P. (1999) Impaired Fas response and autoimmunity in Pten+/–mice, Science, 285, 2122–2125.

    PubMed  Google Scholar 

  33. Majeti, R., Xu, Z., Parslow, T. G., et al. (2000) An inactivating point mutation in the inhibitory wedge of CD45 causes lymphoproliferation and autoimmunity, Cell, 103, 1059–1070.

    PubMed  CAS  Google Scholar 

  34. Yuki, N. (1999) Pathogenesis of Guillain-Barré and Miller-Fisher syndromes subsequent to Campylobacter jejuni enteritis, Jpn. J. Infect. Dis., 52, 99–105.

    PubMed  CAS  Google Scholar 

  35. Bhan, A. K., Mizoguchi, E., Smith, R. N., and Mizoguchi, A. (1999) Colitis in transgenic and knockout animals as models of human inflammatory bowel disease, Immunol. Rev., 169, 195–207.

    PubMed  CAS  Google Scholar 

  36. Blumberg, R. S., Saubermann, L. J., and Strober, W. (1999) Animal models of mucosal inflammation and their relation to human inflammatory bowel disease, Curr. Opin. Immunol., 11, 648–656 [Erratum: Curr. Opin. Immunol., 12, 226 (2000)].

    Google Scholar 

  37. Boismenu, R. and Chen, Y. (2000) Insights from mouse models of colitis, J. Leukoc. Biol., 67, 267–278.

    PubMed  CAS  Google Scholar 

  38. Shevach, E. M. (2000) Regulatory T cells in autoimmunity, Annu. Rev. Immunol., 18, 423–449.

    PubMed  CAS  Google Scholar 

  39. Targoff, I. N. (2000) Update on myositis-specific and myositis-associated autoantibodies, Curr. Opin. Rheumatol., 12, 475–481.

    PubMed  CAS  Google Scholar 

  40. Austrup, F., Vestweber, D., Borges, E., et al. (1997) P- and E-selectin mediate recruitment of T-helper-1 but not T-helper-2 cells into inflamed tissues, Nature, 385, 81–83.

    PubMed  CAS  Google Scholar 

  41. von Andrian, U. H. and Mackay, C. R. (2000) T-cell function and migration: two sides of the same coin, N. Engl. J. Med., 343, 1020–1034.

    Google Scholar 

  42. Buyon, J. P., Tseng, C. E., Di Donato, F., Rashbaum, W., Morris, A., and Chan, E. K. (1997) Cardiac expression of 52beta, an alternative transcript of the congenital heart block-associated 52-kd SS-A/Ro autoantigen, is maximal during fetal development, Arthritis Rheum., 40, 655-660.

    PubMed  CAS  Google Scholar 

  43. Edelson, R. L. (2000) Pemphigus - decoding the cellular language of cutaneous autoimmunity, N. Engl. J. Med., 343, 60–61.

    PubMed  CAS  Google Scholar 

  44. Mackay, I. R. (2001) Tolerance and autoimmunity, West J. Med., 174(2), 118–123.

    Google Scholar 

  45. Romagnani, S. (1997) The Th1/Th2 paradigm, Immunol. Today, 18, 263–266.

    PubMed  CAS  Google Scholar 

  46. Sallusto, F., Lanzavecchia, A., and Mackay, C. R. (1999) Chemokines and chemokine receptors in T-cell priming and Th1/Th2-mediated responses, Immunol. Today,19, 568–574.

    Google Scholar 

  47. Luster, A.D. (1998) Chemokines - chemotactic cytokines that mediate inflammation, N. Engl. J. Med., 338, 436–445.

    PubMed  CAS  Google Scholar 

  48. Horwitz, M. S., Bradley, L. M., Harbertson, J., Krahl, T., Lee, J., and Sarvetnick, N. (1998) Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry, Nat. Med., 4, 781–785.

    PubMed  CAS  Google Scholar 

  49. Neumann, D. A., Rose, N. R., Ansari, A. A., and Herskowitz, A. (1994) Induction of multiple heart autoantibodies in mice with coxsackievirus B3- and cardiac myosin-induced autoimmune myocarditis, J. Immunol., 152, 343–350.

    PubMed  CAS  Google Scholar 

  50. Oldstone, M. B. A. (1998) Molecular mimicry and immune-mediated diseases, FASEB J., 12, 1255–1265.

    PubMed  CAS  Google Scholar 

  51. Darnell, R. B. (1999) The importance of defining the paraneoplastic neurologic disorders [editorial], N. Engl. J. Med., 340, 1831–1833.

    Google Scholar 

  52. Todd, J. A. (1999) From genome to aetiology in a multifactorial disease, type 1 diabetes, Bioessays, 21, 164–174.

    PubMed  CAS  Google Scholar 

  53. Griffiths, M. M., Encinas, J. A., Remmers, E. F., Kuchroo, V. K., and Wilder, R. L. (1999) Mapping autoimmunity genes, Curr. Opin. Immunol., 11, 689–700.

    PubMed  CAS  Google Scholar 

  54. Wilson, S. B., Kent, S. C., Patton, K. T., et al. (1998) Extreme Th1 bias of invariant Valpha24JalphaQ T cells in type 1 diabetes, Nature, 391, 177–181 [Erratum: Nature, 399, 84 (1999)].

    Google Scholar 

  55. Ortonne, J. P. (1999) Recent developments in the understanding of the pathogenesis of psoriasis, Br. J. Dermatol., 140(Suppl. 54), 1–7.

    PubMed  CAS  Google Scholar 

  56. Kukreja, A, and Maclaren, N. K. (1999) Autoimmunity and diabetes, J. Clin. Endocrinol. Metab., 84, 4371–4378.

    PubMed  CAS  Google Scholar 

  57. Gregersen, P. K. (1997) Genetic analysis of rheumatic diseases. In: Textbook of Rheumatology, vol. 1, 5th ed. (Kelley, W. N., Harris, E. D., Jr., Ruddy, S., and Sledge, C. B., eds.), W. B. Saunders, Philadelphia, pp. 209–227.

    Google Scholar 

  58. Drappa, J., Vaishnaw, A. K., Sullivan, K. E., Chu, J.-L., and Elkin, K. B. (1996) Fas gene mutations in the Canale-Smith syndrome, an inherited lymphoproliferative disorder associated with autoimmunity, N. Engl. J. Med., 335, 1643–1649.

    PubMed  CAS  Google Scholar 

  59. Pitkanen, J., Vahamurto, P., Krohn, K., and Peterson, P. (2001) Subcellular localization of the autoimmune regulator protein: characterization of nuclear targeting and transcriptional activation domain, J. Biol. Chem., 276(22), 19597–19602.

    PubMed  CAS  Google Scholar 

  60. Wang, C. Y., Davoodi-Semiromi, A., Huang, W., Connor, E., Shi, J. D., and She, J. X. (1998) Characterization of mutations in patients with autoimmune polyglandular syndrome type 1 (APS1), Hum. Genet., 103, 681–685.

    PubMed  CAS  Google Scholar 

  61. Encinas, J. A. and Kuchroo, V. K. (2000) Mapping and identification of autoimmunity genes, Curr. Opin. Immunol., 12, 691–697.

    PubMed  CAS  Google Scholar 

  62. Becker, K. G. (1999) Comparative genetics of type 1 diabetes and autoimmune disease: common loci, common pathways? Diabetes, 48, 1353–1358.

    PubMed  CAS  Google Scholar 

  63. Klein, J. and Sato, A. (2000) The HLA system, N. Engl. J. Med., 343, 782–786.

    PubMed  CAS  Google Scholar 

  64. Taneja, V. and David, C. S. (1999) HLA class II transgenic mice as models of human diseases, Immunol. Rev., 169, 67–79.

    PubMed  CAS  Google Scholar 

  65. Khare, S. D., Luthra, H. S., and David, C. S. (1998) Animal models of human leukocyte antigen B27-linked arthritides, Rheum. Dis. Clin. North Am., 24, 883–894 [Erratum: Rheum. Dis. Clin. North Am., 25: xi-xii (1999)].

    Google Scholar 

  66. Gregersen, P. K., Silver, J., and Winchester, R. J. (1987) The shared epitope hypothesis: an approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis, Arthritis Rheum., 30, 1205–1213.

    PubMed  CAS  Google Scholar 

  67. McDaniel, D. O., Alarcon, G. S., Pratt, P. W., and Reveille, J. D. (1995) Most African-American patients with rheumatoid arthritis do not have the rheumatoid antigenic determinant (epitope), Ann. Intern. Med., 123, 181–187.

    PubMed  CAS  Google Scholar 

  68. Teller, K., Budhai, L., Zhang, M., Haramati, N., Keiser, H. D., and Davidson, A. (1996) HLA-DRB1 and DQB typing of Hispanic American patients with rheumatoid arthritis: the “shared epitope” hypothesis may not apply, J. Rheumatol., 23, 1363–1368.

    PubMed  CAS  Google Scholar 

  69. Kouki, T., Sawai, Y., Gardine, C. A., Fisfalen, M. E., Alegre, M. L., and DeGroot, L. J. (2000) CTLA-4 gene polymorphism at position 49 in exon 1 reduces the inhibitory function of CTLA-4 and contributes to the pathogenesis of Graves’ disease, J. Immunol., 165, 6606–6611.

    PubMed  CAS  Google Scholar 

  70. Agarwal, K., Jones, D. E., Daly, A. K., et al. (2000) CTLA-4 gene polymorphism confers susceptibility to primary biliary cirrhosis, J. Hepatol., 32, 538–541.

    PubMed  CAS  Google Scholar 

  71. Awata, T., Kurihara, S., Iitaka, M., et al. (1998) Association of CTLA-4 gene A-G polymorphism (IDDM12 locus) with acute-onset and insulin-depleted IDDM as well as autoimmune thyroid disease (Graves’ disease and Hashimoto’s thyroiditis) in the Japanese population, Diabetes, 47, 128–129.

    PubMed  CAS  Google Scholar 

  72. Ginn, L. R., Lin, J. P., Plotz, P. H., et al. (1998) Familial autoimmunity in pedigrees of idiopathic inflammatory myopathy patients suggests common genetic risk factors for many autoimmune diseases, Arthritis Rheum., 41, 400–405.

    PubMed  CAS  Google Scholar 

  73. Henderson, R. D., Bain, C. J., and Pender, M. P. (2000) The occurrence of autoimmune diseases in patients with multiple sclerosis and their families, J. Clin. Neurosci., 7, 434–437.

    PubMed  CAS  Google Scholar 

  74. Coelho, S. N., Saleem, S., Konieczny, B. T., Parekh, K. R., Baddoura, F. K., and Lakkis, F. G. (1997) Immunologic determinants of susceptibility to experimental glomerulonephritis: role of cellular immunity, Kidney Int., 51, 646–652.

    PubMed  CAS  Google Scholar 

  75. Liao, L., Sindhwani, R., Rojkind, M., Factor, S., Leinwand, L., and Diamond, B. (1995) Antibody-mediated autoimmune myocarditis depends on genetically determined target organ sensitivity, J. Exp. Med., 181, 1123–1131.

    PubMed  CAS  Google Scholar 

  76. Moudgil, K. D. and Sercarz, E. E. (1994) The T cell repertoire against cryptic self determinants and its involvement in autoimmunity and cancer, Clin. Immunol. Immunopathol., 73, 283–289.

    PubMed  CAS  Google Scholar 

  77. Lanzavecchia, A. (1995) How can cryptic epitopes trigger autoimmunity? J. Exp. Med., 181, 1945–1948.

    PubMed  CAS  Google Scholar 

  78. Vanderlugt, C. L., Neville, K. L., Nikcevich, K. M., Eagar, T. N., Bluestone, J. A., and Miller, S. D. (2000) Pathologic role and temporal appearance of newly emerging autoepitopes in relapsing experimental autoimmune encephalomyelitis, J. Immunol., 164, 670–678.

    PubMed  CAS  Google Scholar 

  79. Liang, B. and Mamula, M. J. (2000) Molecular mimicry and the role of B lymphocytes in the processing of autoantigens, Cell. Mol. Life Sci., 57, 561–568.

    PubMed  CAS  Google Scholar 

  80. Thomas, H. E. and Kay, T. W. (2000) Beta cell destruction in the development of autoimmune diabetes in the non-obese diabetic (NOD) mouse, Diabetes Metab. Res. Rev., 16, 251–261.

    PubMed  CAS  Google Scholar 

  81. O’Garra, A., Steinman, L., and Gijbels, K. (1997) CD4+ T-cell subsets in autoimmunity, Curr. Opin. Immunol., 9, 872–883.

    PubMed  Google Scholar 

  82. Juedes, A. E., Hjelmstrom, P., Bergman, C. M., Neild, A. L., and Ruddle, N. H. (2000) Kinetics and cellular origin of cytokines in the central nervous system: insight into mechanisms of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis, J. Immunol., 164, 419–426.

    PubMed  CAS  Google Scholar 

  83. Genain, C. P., Abel, K., Belmar, N., et al. (1996) Late complications of immune deviation therapy in a nonhuman primate, Science, 274, 2054–2057.

    PubMed  CAS  Google Scholar 

  84. Saoudi, A., Bernard, I., Hoedemaekers, A., et al. (1999) Experimental autoimmune myasthenia gravis may occur in the context of a polarized Th1- or Th2-type immune response in rats, J. Immunol., 162, 7189–7197.

    PubMed  CAS  Google Scholar 

  85. Balasa, B. and Sarvetnick, N. (2000) Is pathogenic humoral autoimmunity a Th1 response? Lessons from (for) myasthenia gravis, Immunol. Today, 21, 19–23.

    PubMed  CAS  Google Scholar 

  86. Takasu, N., Oshiro, C., Akamine, H., et al. (1997) Thyroid-stimulating antibody and TSH-binding inhibitor immunoglobulin in 277 Graves’ patients and in 686 normal subjects, J. Endocrinol. Invest., 20, 452–461.

    PubMed  CAS  Google Scholar 

  87. Seishima, M., Iwasaki-Bessho, Y., Itoh, Y., Nozawa, Y., Amagai, M., and Kitajima, Y. (1999) Phosphatidylcholine-specific phospholipase C, but not phospholipase D, is involved in pemphigus IgG-induced signal transduction, Arch. Dermatol. Res., 291, 606–613.

    PubMed  CAS  Google Scholar 

  88. Salemink, I., Blezer, R., Willems, G. M., Galli, M., Bevers, E., and Lindhout, T. (2000) Antibodies to beta2-glycoprotein I associated with antiphospholipid syndrome suppress the inhibitory activity of tissue factor pathway inhibitor, Thromb. Haemost., 84, 653–656.

    PubMed  CAS  Google Scholar 

  89. Merrill, J. T., Zhang, H. W., Shen, C., et al. (1999) Enhancement of protein S anticoagulant function by beta2-glycoprotein I, a major target antigen of antiphospholipid antibodies: beta2-glycoprotein I interferes with binding of protein S to its plasma inhibitor, C4b-binding protein, Thromb. Haemost., 81, 748–757.

    PubMed  CAS  Google Scholar 

  90. Madaio, M. P. and Yanase, K. (1998) Cellular penetration and nuclear localization of anti-DNA antibodies: mechanisms, consequences, implications and applications, J. Autoimmun., 11, 535–538.

    PubMed  CAS  Google Scholar 

  91. Reichlin, M. (1998) Cellular dysfunction induced by penetration of autoantibodies into living cells: cellular damage and dysfunction mediated by antibodies to dsDNA and ribosomal P proteins, J. Autoimmun., 11, 557–561.

    PubMed  CAS  Google Scholar 

  92. Johnson, K. P., Brooks, B. R., Cohen, J. A., et al. (1998) Extended use of glatiramer acetate (Copaxone) is well tolerated and maintains its clinical effect on multiple sclerosis relapse rate and degree of disability: Copolymer I Multiple Sclerosis Study Group, Neurology, 50, 701–708.

    PubMed  CAS  Google Scholar 

  93. Feldmann, M., Charles, P., Taylor, P., and Maini, R. N. (1998) Biological insights from clinical trials with anti-TNF therapy, Springer Semin. Immunopathol., 20, 211–228.

    PubMed  CAS  Google Scholar 

  94. Sayegh, M. H. (1999) Finally, CTLA4Ig graduates to the clinic, J. Clin. Invest., 103, 1223–1225.

    PubMed  CAS  Google Scholar 

  95. Tian, J., Olcott, A., Hanssen, L., Zekzer, D., and Kaufman, D. L. (1999) Antigen-based immunotherapy for autoimmune disease: from animal models to humans? Immunol. Today, 20, 190–195.

    PubMed  CAS  Google Scholar 

  96. Tyndall, A., Fassas, A., Passweg, J., et al. (1999) Autologous haematopoietic stem cell transplants for autoimmune disease - feasibility and transplant-related mortality: Autoimmune Disease and Lymphoma Working Parties of the European League Against Rheumatism and the International Stem Cell Project for Autoimmune Disease, Bone Marrow Transplant., 24, 729–734.

    PubMed  CAS  Google Scholar 

  97. Potter, M., Black, C., and Berger A. (1999) Bone marrow transplantation for autoimmune diseases [editorial], Br. Med. J., 318, 750–751.

    Google Scholar 

  98. Giannoukakis, N., Rudert, W. A., Robbins, P. D., and Trucco, M. (1999) Targeting autoimmune diabetes with gene therapy, Diabetes, 48, 2107–2121.

    PubMed  CAS  Google Scholar 

  99. Maini, R. N. and Taylor, P. C. (2000) Anti-cytokine therapy for rheumatoid arthritis, Annu. Rev. Med., 51, 207–229.

    PubMed  CAS  Google Scholar 

  100. Kremer, J. M. (2001) Rational use of new and existing disease-modifying agents in rheumatoid arthritis, Ann. Intern. Med., 134, 695–706.

    PubMed  CAS  Google Scholar 

  101. Bell, S. and Kamm, M. A. (2000) Antibodies to tumour necrosis factor alpha as treatment for Crohn’s disease, Lancet, 355, 858–860.

    PubMed  CAS  Google Scholar 

  102. Mease, P. J., Goffe, B. S., Metz, J., VanderStoep, A., Finck, B., and Burge, D. J. (2000) Etanercept in the treatment of psoriatic arthritis and psoriasis: a randomised trial, Lancet, 356, 385–390.

    PubMed  CAS  Google Scholar 

  103. Brandt, J., Haibel, H., Cornely, D., et al. (2000) Successful treatment of active ankylosing spondylitis with the anti-tumor necrosis factor alpha monoclonal antibody infliximab, Arthritis Rheum., 43, 1346–1352.

    PubMed  CAS  Google Scholar 

  104. Emery, P., Breedveld, F. C., Lemmel, E. M., et al. (2000) A comparison of the efficacy and safety of leflunomide and methotrexate for the treatment of rheumatoid arthritis, Rheumatology (Oxford), 39, 655–665.

    CAS  Google Scholar 

  105. Weinblatt, M. E., Kremer, J. M., Coblyn, J. S., et al. (1999) Pharmacokinetics, safety, and efficacy of combination treatment with methotrexate and leflunomide in patients with active rheumatoid arthritis, Arthritis Rheum., 42, 1322–1328.

    PubMed  CAS  Google Scholar 

  106. Noseworthy, J. H., Lucchinetti, C., Rodriguez, M., and Weinshenker, B. G. (2000) Multiple sclerosis, N. Engl. J. Med., 343, 938–952.

    PubMed  CAS  Google Scholar 

  107. Jacobs, L. D., Beck, R. W., Simon, J. H., et al. (2000) Intramuscular interferon beta-1a therapy initiated during a first demyelinating event in multiple sclerosis, N. Engl. J. Med., 343, 898–904.

    PubMed  CAS  Google Scholar 

  108. Fridkis-Hareli, M., Neveu, J. M., Robinson, R. A., et al. (1999) Binding motifs of copolymer 1 to multiple sclerosis- and rheumatoid arthritis-associated HLA-DR molecules, J. Immunol., 162, 4697–4704.

    PubMed  CAS  Google Scholar 

  109. Duda, P. W., Schmied, M. C., Cook, S. L., Krieger, J. I., and Hafler, D. A. (2000) Glatiramer acetate (Copaxone) induces degenerate, Th2-polarized immune responses in patients with multiple sclerosis, J. Clin. Invest., 105, 967–976.

    PubMed  CAS  Google Scholar 

  110. Kappos, L., Comi, G., Panitch, H., et al. (2000) Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial, Nat. Med., 6, 1176–1182.

    PubMed  CAS  Google Scholar 

  111. Bielekova, B., Goodwin, B., Richert, N., et al. (2000) Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand, Nat. Med., 6, 1167–1175.

    PubMed  CAS  Google Scholar 

  112. Gallon, L., Chandraker, A., Issazadeh, S., et al. (1997) Defferential effects of B7-1 blockade in the rat experimental autoimmune encephalomyelitis model, J. Immunol., 159(9), 4212–4216.

    PubMed  CAS  Google Scholar 

  113. Asadullah, K., Docke, W. D., Sabat, R. V., Volk, H. D., and Sterry, W. (1999) The treatment of psoriasis with IL-10: rationale and review of the first clinical trials, Expert Opin. Investig. Drugs, 9, 95–102.

    Google Scholar 

  114. Abrams, J. R., Lebwohl, M. G., Guzzo, C. A., et al. (1999) CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris, J. Clin. Invest., 103, 1243–1252.

    PubMed  CAS  Google Scholar 

  115. Salomon, B., Lenschow, D. J., Rhee, L., et al. (2000) B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes, Immunity, 12, 431–440.

    PubMed  CAS  Google Scholar 

  116. Gottlieb, A. B., Lebwohl, M., Shirin, S., et al. (2000) Anti-CD4 monoclonal antibody treatment of moderate to severe psoriasis vulgaris: results of a pilot, multicenter, multiple-dose, placebo-controlled study, J. Am. Acad. Dermatol., 43, 595–604.

    PubMed  CAS  Google Scholar 

  117. Krueger, J. G., Walters, I. B., Miyazawa, M., et al. (2000) Successful in vivo blockade of CD25 (high-affinity interleukin 2 receptor) on T cells by administration of humanized anti-Tac antibody to patients with psoriasis, J. Am. Acad. Dermatol., 43, 448–458.

    PubMed  CAS  Google Scholar 

  118. Krueger, J., Gottlieb, A., Miller, B., Dedrick, R., Garovoy, M., and Walicke, P. (2000) Anti-CD11a treatment for psoriasis concurrently increases circulating T-cells and decreases plaque T-cells, consistent with inhibition of cutaneous T-cell trafficking, J. Invest. Dermatol., 115, 333 [abstract].

    Google Scholar 

  119. Gottlieb, A., Krueger, J. G., Bright, R., et al. (2000) Effects of administration of a single dose of a humanized monoclonal antibody to CD11a on the immunobiology and clinical activity of psoriasis, J. Am. Acad. Dermatol., 42, 428–435.

    PubMed  CAS  Google Scholar 

  120. Herold, K. S., Hagopian, W., Auger, J. A., et al. (2002) Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus, N. Engl. J. Med., 346(22), 1692–1698.

    PubMed  CAS  Google Scholar 

  121. Herold, S. K. and Taylor, L. (2003) Treatment of type 1 diabetes with CD3 monoclonal antibody. Induction of immune regulation? Immunol. Res., 28(2), 141–150.

    PubMed  CAS  Google Scholar 

  122. Pozzilli, P., Pitocco, D., Visalli, N., et al. (2000) No effect of oral insulin on residual beta-cell function in recent-onset type I diabetes (the IMDIAB VII), Diabetologia, 43, 1000–1004.

    PubMed  CAS  Google Scholar 

  123. Mohan, C., Shi, Y., Laman, J. D., and Datta, S. K. (1995) Interaction between CD40 and its ligand gp39 in the development of murine lupus nephritis, J. Immunol., 154, 1470–1480.

    PubMed  CAS  Google Scholar 

  124. Daikh, D. I. and Wofsy, D. (2001) Reversal of murine lupus nephritis with CTLA4Ig and cyclophosphamide, J. Immunol., 166, 2913–2916.

    PubMed  CAS  Google Scholar 

  125. Kawai, T., Andrews, D., Colvin, R. B., Sachs, D. H., and Cosimi, A. B. (2000) Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand, Nat. Med., 6, 114–114.

    CAS  Google Scholar 

  126. Kalunian, K., Davis, J., Merrill, J. T., et al. (2000) Treatment of systemic lupus erythematosus by inhibition of T cell costimulation, Arthritis Rheum., 43(Suppl.), S271–S271 [abstract].

    Google Scholar 

  127. Llorente, L., Richaud-Patin, Y., Garcia-Padilla, C., et al. (2000) Clinical and biologic effects of anti-interleukin-10 monoclonal antibody administration in systemic lupus erythematosus, Arthritis Rheum., 43, 1790–1800.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassil St. Georgiev PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Georgiev, V.S. (2009). Autoimmune Diseases. In: Georgiev, V.S. (eds) National Institute of Allergy and Infectious Diseases, NIH. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-60327-297-1_41

Download citation

Publish with us

Policies and ethics