Skip to main content

Part of the book series: Infectious Disease ((ID))

  • 1299 Accesses

Research on innate immunity has provided understanding and practical direction for the observation first made more than 70 years ago that most immunogens would require adjuvants to induce robust adaptive immune responses (1–4). With the knowledge that adjuvants target antigen-presenting cells, especially dendritic cells, by triggering activation through Toll-like receptors and other pattern-recognition receptors, molecular libraries are being screened for their ability to upregulate costimulatory molecules and antigen presentation mediated by major histocompatibility complex class II molecules. Based on those principles, a growing list of adjuvant candidates now promises to provide improved vaccine immunogenicity and reduced nonspecific reactivity while taking advantage of the ability of the innate immune system to channel adaptive immunity toward the type of antibody or cellular responses most appropriate for the control of a particular pathogen (5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hackett, C. J., Rotrosen, D., Auchincloss, H., and Fauci, A. S. (2007) Immunology research: challenges and opportunities in a time of budgetary constraint, Nat. Immunol., 8, 114–117.

    Article  PubMed  CAS  Google Scholar 

  2. Hackett, C. J. and Harn, D. A. (eds.) (2006) Vaccine Adjuvants: Immunological and Clinical Principles, Humana Press, Totowa, NJ, pp. v–vi.

    Google Scholar 

  3. Janaway, C. A., Jr. (1989) Approaching the asymptote? Evolution and revolution in immunology, Cold Spring Harb Symp Quant Biol., 54(Part 1), 1–13.

    Google Scholar 

  4. Lindblad, E. B. (2004) Aluminum adjuvants – in retrospect and prospects, Vaccine, 22(27–28), 3658–3668.

    Article  PubMed  CAS  Google Scholar 

  5. Pulendran, B. and Ahmed, R. (2006) Translating innate immunity into immunological memory: implications for vaccine development, Cell, 124(4), 849–863.

    Article  PubMed  CAS  Google Scholar 

  6. Mescher, M. F., Curtsinger, J. M., and Jenkins, M. (2006) Adjuvants and the initiation of T-cell response. In: Vaccine Adjuvants: Immunological and Clinical Principles (Hackett, C. J. and Harn, D. A., Jr., eds.), Humana Press, Totowa, NJ, pp. 49–67.

    Google Scholar 

  7. Dresser, D. W. (1961) Effectiveness of lipid and lipidophilic substances as adjuvants, Nature, 191, 1169–1171.

    Article  PubMed  CAS  Google Scholar 

  8. Dresser, D. W. (1962) Specific inhibition of antibody production. II. Paralysis induced in adult mice by small quantities of protein antigen, Immunology, 5, 378–388.

    PubMed  CAS  Google Scholar 

  9. Kearney, E., Pape, K., Loh, D., and Jenkins, M. (1994) Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo, Immunity, 1, 327–339.

    Article  PubMed  CAS  Google Scholar 

  10. Pape, K. A., Khoruts, A., Mondino, A., and Jenkins, M. K. (1997) Inflammatory cytokines enhance the in vivo clonal expansion and differentiation of antigen-activated CD4+ T cells, J. Immunol., 159, 591–598.

    PubMed  CAS  Google Scholar 

  11. Schmidt, C. S. and Mescher, M. F. (1999) Adjuvant effect of IL-12: conversion of peptide antigen administration from tolerizing to immunizing for CD8+ T cells in vivo, J. Immunol., 163, 2561–2567.

    PubMed  CAS  Google Scholar 

  12. Kiburtz, D., Aichele, P., Speiser, D., Hengartner, H., Zinkernagel, R., and Pircher, H. (1993) T cell immunity after a viral infection versus T cell tolerance induced by soluble viral peptides, Eur. J. Immunol., 23, 1956–1962.

    Article  Google Scholar 

  13. Lafferty, K. J. and Cunningham, A. J. (1975) A new analysis of allogeneic interactions, Aust. J. Exp. Biol. Med. Sci., 53, 27–42.

    Article  PubMed  CAS  Google Scholar 

  14. Allison, J. P. (1994) CD28-B7 interactions in T cell activation, Curr. Opin. Immunol., 6, 414–419.

    Article  PubMed  CAS  Google Scholar 

  15. Janeway, C. A. and Bottomly, K. (1994) Signals and signs for lymphocyte responses, Cell, 76, 275–285.

    Article  PubMed  CAS  Google Scholar 

  16. Jenkins, M. K. and Johnson, J. G. (1993) Molecules invoved in T-cell costimulation, Curr. Opin. Immunol., 5, 361–367.

    Article  PubMed  CAS  Google Scholar 

  17. Lafferty, K. J., Prowse, S. J., Simeonovic, C. J., and Warren, H. S. (1983) Immunobiology of tissue transplantation: a return to the passenger leukocyte concept, Annu. Rev. Immunol., 1, 143–173.

    Article  PubMed  CAS  Google Scholar 

  18. Mueller, D., Jenkins, M., and Schwatrz, R. (1989) Clonal expansion vs. functional clonal inactivation, Annu. Rev. Immunol., 7, 445–480.

    PubMed  CAS  Google Scholar 

  19. Jenkins, M. and Schwartz, R. (1987) Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo, J. Exp. Med., 165, 302–319.

    Article  PubMed  CAS  Google Scholar 

  20. Albert, M. L., Jegathesan, M., and Darnell, R. B. (2001) Dendritic cell maturation is required for the cross-tolerization of CD8+ T cells, Nat. Immunol., 2, 1010–1017.

    Article  PubMed  CAS  Google Scholar 

  21. Curtsinger, J. M., Schmidt, C. S., Mondino, A., et al. (1999) Inflammatory cytokines provide third signal for activation of naïve CD4+ and CD8+ T cells, J. Immunol., 162, 3256–3262.

    Google Scholar 

  22. Hernandez, J., Aung, S., Marquardt, K., and Sherman, L. A. (2002) Uncoupling of proliferative potential and gain of effector function by CD8(+) T cells responding to self-antigens, J. Exp. Med., 196, 323–333.

    Article  PubMed  CAS  Google Scholar 

  23. Schmidt, C. S. and Mescher, M. F. (2002) Peptide Ag priming of naïve, but not memory, CD8 T cells requires a third signal that can be provided by IL-2, J. Immunol., 168, 5521–5529.

    PubMed  CAS  Google Scholar 

  24. Sharpe, A. H. and Freeman, G. J. (2002) The B7-CD28 superfamily, Nat. Rev. Immunol., 2, 116–126.

    Article  PubMed  CAS  Google Scholar 

  25. Watts, T. H. and DeBenedette, M. A. (1999) T cell co-stimulatory molecules other than CD28, Curr. Opin. Immunol., 11, 286–293.

    Article  PubMed  CAS  Google Scholar 

  26. Trinchieri, G. (1995) Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity, Annu. Rev. Immunol., 13, 251–276.

    Article  PubMed  CAS  Google Scholar 

  27. Brouckaert, P., Libert, C., Evereardt, B., Takahashi, N., Cauwels, A., and Fiers, W. (1993) Tumor necrosis factor, its receptors and the connection with interleukin 1 and interleukin 6, Immunobiology, 187, 317.

    PubMed  CAS  Google Scholar 

  28. Medzhitov, R. (2001) Toll-like receptors and innate immunity, Nat. Rev. Immunol., 1, 135–145.

    Article  PubMed  CAS  Google Scholar 

  29. Aderem, A. and Ulevitch, R. J. (2000) Toll-like receptors in the induction of the innate immune response, Nature, 406, 782–787.

    Article  PubMed  CAS  Google Scholar 

  30. Kaisho, T. and Akira, S. (2002) Toll-like receptors as adjuvant receptors, Biochim. Biophys. Acta, 1589, 1–13.

    Article  PubMed  CAS  Google Scholar 

  31. Liu, Y. J. (2001) Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity, Cell, 106, 259–262.

    Article  PubMed  CAS  Google Scholar 

  32. Shortman, K. and Liu, Y. I. (2002) Mouse and human dendritic cell subtypes, Nat. Rev. Immunol., 2, 151–161.

    Article  PubMed  CAS  Google Scholar 

  33. Ito, T., Amakawa, R., Kaisho, T., et al. (2002) Interferon-alpha and interleukin-12 are induced differentially by Toll-like receptor 7 ligands in human blood dendritic cell subsets, J. Exp. Med., 195, 1507–1512.

    Article  PubMed  CAS  Google Scholar 

  34. Henri, S., Vremec, D., Kamath, A., et al. (2001) The dendritic cell populations of mouse lymph nodes, J. Immunol., 167, 741–748.

    PubMed  CAS  Google Scholar 

  35. Nakano, H., Yanagita, M., and Gunn, M. D. (2001) CD11c(+)B220(+)Gr-1(+) cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells, J. Exp. Med., 194, 1171–1178.

    Article  PubMed  CAS  Google Scholar 

  36. Ruedl, C., Koebel, P., Bachmann, M., Hess, M., and Karjalainen, K. (2000) Anatomical origin of dendritic cells determines their life span in peripheral lymph nodes, J. Immunol., 165, 4910–4916.

    PubMed  CAS  Google Scholar 

  37. Banchereau, J. and Steinman, R. M. (1998) Dendritic cells and the control of immunity, Nature, 392, 245–252.

    Article  PubMed  CAS  Google Scholar 

  38. Sallusto, F. and Lanzavecchia, A. (2000) Understanding dendritic cell and T- lymphocyte traffic through the analysis of chemokine receptor expression, Immunol. Rev., 177, 134–140.

    Article  PubMed  CAS  Google Scholar 

  39. Mellman, I. and Steinman, R. M. (2001) Dendritic cells: specialized and regulated antigen processing machines, Cell, 106, 255–258.

    Article  PubMed  CAS  Google Scholar 

  40. Cella, M., Engering, A., Pinet, V., Pieters, J., and Lanzavecchia, A. (1997) Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells, Nature, 388, 782–787.

    Article  PubMed  CAS  Google Scholar 

  41. Epperson, D. E., Arnold, D., Spies, T., Cresswell, P., Pober, J. S., and Johnson, D. R. (1992) Cytokines increase transporter in antigen processing-1 expression more rapidly that HLA class I expression in endothelial cells, J. Immunol., 149, 3297–3301.

    PubMed  CAS  Google Scholar 

  42. Khoruts, A., Mondino, A., Pape, K. A., Reiner, S. L., and Jenkins, M. (1998) A natural immunological adjuvant enhances T cell clonal expansion through a CD28- dependent, IL-2-independent mechanism, J. Exp. Med., 187, 225–236.

    Article  PubMed  CAS  Google Scholar 

  43. Curtsinger, J. M., Valenzuela, J. O., Agarwal, P., Lins, D., and Mescher, M. F. (2005) Cutting edge: type I interferons provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation, J. Immunol., 174, 4465–4469.

    PubMed  CAS  Google Scholar 

  44. Mitchel, T., Kappler, J., and Marrack, P. (1999) Bystander virus infection prolongs activated T cell survival, J. Immunol., 162, 4527–4535.

    Google Scholar 

  45. Vella, A. T., Mitchell, T., Groth, B., et al. (1997) CD28 engagement and proinflammatory cytokines contribute to T cell expansion and long-term survival in vivo, J. Immunol., 158, 4714–4720.

    PubMed  CAS  Google Scholar 

  46. Mitchell, T. C., Hildeman, D., Krdl, R. M., et al. (2001) Immunological adjuvants promote activated T cell survival via induction of Bcl-3, Nat. Immunol., 2, 397–402.

    PubMed  CAS  Google Scholar 

  47. Valenzuela, J. O., Hammerbeck, C., and Mescher, M. F. (2005) Cutting edge: Bcl-3 upregulation by signal 3 cytokine (IL-12) prolongs survival of Ag-activated CD8 T cells, J. Immunol., 174, 600–604.

    PubMed  CAS  Google Scholar 

  48. Mattei, F., Schiavoni, G., Belardelli, F., and Tough, D. F. (2001) IL-15 is expressed by dendritic cells in response to type I IFN, double-stranded RNA, or lipopolysaccharide and promotes dendritic cell activation, J. Immunol., 167, 1179–1187.

    PubMed  CAS  Google Scholar 

  49. Ku, C. C., Murakami, M., Sakamoto, A., Kappler, J., and Marrack, P. (2000) Control of homeostasis of CD8+ memory T cells by opposing cytokines, Science, 288, 675–678.

    Article  PubMed  CAS  Google Scholar 

  50. Sprent, J. and Surh, C. D. (2001) Generation and maintenance of memory T cells, Curr. Opin. Immunol., 13, 248–254.

    Article  PubMed  CAS  Google Scholar 

  51. Zhang, X., Sun, S., Hwang, I., Tough, D. F., and Sprent, J. (1998) Potent and selective stimulation of memory-phenotype CD8+ T cell in vivo by IL-15, Immunity, 8, 591–599.

    Article  PubMed  CAS  Google Scholar 

  52. Schluns, K. S., Williams, K., Ma, A., Zheng, X. X., and Lefrancois, L. (2002) Cutting edge: requirement for IL-15 in the generation of primary and memory antigen-specific CD8 T cells, J. Immunol., 168, 4827–4831.

    PubMed  CAS  Google Scholar 

  53. Antia, R., Pilyugin, S. S., and Ahmed, R. (1998) Models of immune memory: on the role of cross-reactive stimulation, competition, and homeostasis in maintaining immune memory, Proc. Natl. Acad. Sci. U.S.A., 95, 14926–14931.

    Article  PubMed  CAS  Google Scholar 

  54. Homann, D., Teyton, L., and Oldstone, M. B. (2001) Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory, Nat. Med., 7, 913–919.

    Article  PubMed  CAS  Google Scholar 

  55. Pape, K. A., Merica, R., Mondino, A., Khoruts, A., and Jenkins, M. K. (1998) Direct evidence that functionally impaired CD4+ T cells persist in vivo following induction of peripheral tolerance, J. Immunol., 160, 4719–4729.

    PubMed  CAS  Google Scholar 

  56. Reinhardt, R. L., Khoruts, A., Merica, R., Zell, T., and Jenkins, M. K. (2001) Visualizing the generation of memory CD4 T cells in the whole body, Nature, 410, 101–105.

    Article  PubMed  CAS  Google Scholar 

  57. Banchereau, J., Schuler-Thurner, B., Palucka, A. K., and Schuler, G. (2001) Dendritic cells as vectors for therapy, Cell, 106, 271–274.

    Article  PubMed  CAS  Google Scholar 

  58. Grewal, I. and Flavell, R. (1998) CD40 and CD154 in cell-mediated immunity, Annu. Rev. Immunol., 16, 111–135.

    Article  PubMed  CAS  Google Scholar 

  59. Ranheim, E. A. and Kipps, T. J. (1993) Activated T cells induce expression of B7/BB1 on normal or leukemic B cells through a CD40-dependent signal, J. Exp. Med., 177, 925–935.

    Article  PubMed  CAS  Google Scholar 

  60. Cella, M., Scheidegger, D., Palmer-Lehmann, K., Lane, P., Lanzavecchia, A., and Alber, G. (1996) Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T–T help via APC activation, J. Exp. Med., 184, 747–752.

    Article  PubMed  CAS  Google Scholar 

  61. Takeda, K., Hemmi, H., and Akira, S. (2006) Mechanism for recognition of CpG DNA. In: Vaccine Adjuvants: Immunological and Clinical Principles (Hackett, C. and Harn, D. A., Jr., eds.), Humana Press, Totowa, NJ, pp. 69–86.

    Google Scholar 

  62. Krieg, A. M. and Davis, H. L. (2006) CpG ODN as a Th1 immune enhancer for prophylactic and therapeutic vaccines. In: Vaccine Adjuvants: Immunological and Clinical Principles (Hackett, C. and Harn, D. A., Jr., eds.), Humana Press, Totowa, NJ, pp. 87–110.

    Google Scholar 

  63. Krieg, A. M., Yi, A.-K., Matson, S., et al. (1995) CpG motifs in bacterial DNA trigger direct B cell activation, Nature, 374, 546–549.

    Article  PubMed  CAS  Google Scholar 

  64. Medzhitov, R. and Janeway, C. A., Jr. (1997) Innate immunity: the virtues of a nonclonal system of recognition, Cell, 91, 295–298.

    Article  PubMed  CAS  Google Scholar 

  65. Medzhitov, R. and Janeway, C. A., Jr. (1997) Innate immunity: impact on the adaptive immune response, Curr. Opin. Immunol., 9, 4–9.

    Article  PubMed  CAS  Google Scholar 

  66. Wagner, H. (1999) Bacterial CpG DNA activates immune cells to signal infectious danger, Adv. Immunol., 73, 329–367.

    Article  PubMed  CAS  Google Scholar 

  67. Krieg, A. M., Hartmann, G. H., and Yi, A.-K. (2000) Mechanism of action of CpG DNA, Curr. Top. Microbiol. Immunol., 247, 1–21.

    PubMed  CAS  Google Scholar 

  68. Stacey, K. J., Sester, D. P., Sweet, M. J., and Hume, D. A. (2000) Macrophage activation by immunostimulatory DNA, Curr. Top. Microbiol. Immunol., 247, 41–58.

    PubMed  CAS  Google Scholar 

  69. Tokunaga, T., Yamamoto, H., Shimada, S., et al. (1984) Antitumor activity of deoxyribonucleic acid fraction from mycobacterium bovis BCG. I. Isolation, physicochemical characterization, and antitumor activity, J. Natl. Cancer Inst., 72, 955–962.

    PubMed  CAS  Google Scholar 

  70. Yamamoto, S., Kuramoto, E., Shimada, S., and Tokunaga, T. (1988) In vitro augmentation of natural killer cell activity and production of interferon-αβ and –γ with deoxyribonucleic acid fraction from mycobacterium bovis BCG, Jpn. J. Cancer Res., 79, 866–873.

    PubMed  CAS  Google Scholar 

  71. Ulmer, J. B., Donnelly, J. J., Parker, S. E., et al. (1993) Heterologous protection against influenza by injection of DNA encoding a viral protein, Science, 259, 1745–1749.

    Article  PubMed  CAS  Google Scholar 

  72. Sedegah, M., Hedstrom, R., Hobart, P., and Hoffman, S. L. (1994) Protection against malaria by immunization with plasmid DNA encoding circumsporozoite protein, Proc. Natl. Acad. Sci. U.S.A., 91, 9866–9870.

    Article  PubMed  CAS  Google Scholar 

  73. Boyer, J. D., Ugen, K. E., Wang, B., et al. (1997) Protection of chimpanzees from high-dose heterologous HIV-1 challenge by DNA vaccination, Nat. Med., 3, 526–532.

    Article  PubMed  CAS  Google Scholar 

  74. Xu, L., Sanchez, A., Yang, Z., et al. (1998) Immunization for Ebola virus infection, Nat. Med., 4, 37–42.

    Article  PubMed  CAS  Google Scholar 

  75. Lowrie, D. B., Silva, C. L., Colston, M. J., Ragno, S., and Tascon, R. E. (1997) Protection against tuberculosis by a plasmid DNA vaccine, Vaccine, 15, 834–838.

    Article  PubMed  CAS  Google Scholar 

  76. Gurunathan, S., Sacks, D. L., Brown, D. R., et al. (1997) Vaccination with DNA encoding the immunodominant LACK parasite antigen confers protective immunity to mice infected with Leishmania major, J. Exp. Med., 186, 1137–1147.

    Article  PubMed  CAS  Google Scholar 

  77. Wang, R., Doolan, D. L., Le, T. P., et al. (1998) Induction of antigen specific cytotoxic T lymphocytes in humans by a malaria vaccine DNA, Science, 282, 476–480.

    Article  PubMed  CAS  Google Scholar 

  78. Calarota, S., Bratt, G., Nordlund, S., et al. (1998) Cellular cytotoxic response induced by DNA vaccination in HIV-1 infected patients, Lancet, 351, 1320–1325.

    Article  PubMed  CAS  Google Scholar 

  79. Gurunathan, S., Wu, C.-Y., Freidag, B. L., and Sedar, R. A. (2000) Vaccine DNA, a key for inducing long term cellular immunity, Curr. Opin. Immunol., 12, 442–447.

    Article  PubMed  CAS  Google Scholar 

  80. Sato, Y., Roman, M., Tighe, H., et al. (1996) Immunostimulatory DNA sequences necessary for effective intradermal gene immunization, Science, 273, 352–354.

    Article  PubMed  CAS  Google Scholar 

  81. Klinman, D. M., Yamshchikov, G., and Ishigatsubo, Y. (1997) Contribution of CpG motifs to the immunogenicity of vaccines DNA, J. Immunol., 158, 3635–3642.

    PubMed  CAS  Google Scholar 

  82. Klinman, D. M., Barnhart, K. M., and Conover, J. (1999) CpG motifs as immune adjuvants, Vaccine, 17, 19–25.

    Article  PubMed  CAS  Google Scholar 

  83. Klinman, D. M., Verthlyi, D., Takeshita, F., and Ishii, K. J. (1999) Immune recognition of foreign DNA: a cure for bioterrorism? Immunity, 11, 123–129.

    Article  PubMed  CAS  Google Scholar 

  84. Roman, M., Martin-Orozco, E., Goodman, J. S., et al. (1997) Immunostimulatory DNA sequences function as T helper-1-promoting adjuvants, Nat. Med., 3, 849–854.

    Article  PubMed  CAS  Google Scholar 

  85. Lipford, G. B., Bauer, M., Blank, C., Reiter, R., Wagner, H., and Heeg, K. (1997) CpG-containing synthetic ologonucleotides promote B and cytotoxic T cell responses to protein antigen: a new class of vaccine adjuvants, Eur. J. Immunol., 27, 2340–2344.

    Article  PubMed  CAS  Google Scholar 

  86. McCluskie, M. J. and Davis, H. L. (1998) CpG DNA is a potent enhancer of systemic and mucosal immune responses against hepatitis B surface antigen with intranasal administration to mice, J. Immunol., 161, 4463–4466.

    PubMed  CAS  Google Scholar 

  87. Manders, P. and Thomas, R. (2000) Immunology of vaccines DNA, CpG motifs and antigen presentation, Inflamm. Res., 49, 199–205.

    Article  PubMed  CAS  Google Scholar 

  88. Hartmann, G., Weiner, G. J., and Krieg, A. M. (1999) CpDNA G, a potent signal for growth, activation, and maturation of human dendritic cells, Proc. Natl. Acad. Sci. U.S.A., 96, 9305–9310.

    Article  PubMed  CAS  Google Scholar 

  89. Sparwasser, T., Koch, E. S., Vabulas, R. M., et al. (1998) Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells, Eur. J. Immunol., 28, 2045–2054.

    Article  PubMed  CAS  Google Scholar 

  90. Jacob, T., Walker, P. S., Krieg, A. M., Udey, M. C., and Vogel, J. C. (1998) Activation of cutaneous dendritic cells by CpG-containing oligonucleotides: a role for dendritic cells in the augmentation of Th1 responses by immunostimulatory DNA, J. Immunol., 161, 3042–3049.

    Google Scholar 

  91. Kimua, Y., Sonehara, K., Kuramoto, E., et al. (1994) Binding of oligoguanylate to scavenger receptors is required for oligonucleotides to augment NK cell activity and induce IFN, J. Biochem., 116, 991–994.

    Google Scholar 

  92. Hacker, H., Mischak, H., Miethke, T., et al. (1998) CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation, EMBO J., 17, 6230–6240.

    Article  PubMed  CAS  Google Scholar 

  93. Tonkinson, J. L. and Stein, C. A. (1994) Patterns of intracellular compartmentalization, trafficking and acidification of 5′-fluorescein labeled phosphodiester and phosphorothioate oligodeoxynucleotides in HL60 cells, Nucleic Acids Res., 22, 4288–4275.

    Article  Google Scholar 

  94. Yi, A.-K. and Krieg, A. M. (1998) Rapid induction of mitogen-activated protein kinases by immune stimulatory CpG DNA, J. Immunol., 161, 4493–4497.

    PubMed  CAS  Google Scholar 

  95. Sparwasser, T., Miethke, T., Lipford, G., et al. (1997) Macrophages sense pathogens via DNA motifs: induction of tumor necrosis-α-mediated shock, Eur. J. Immunol., 27, 1671–1679.

    Article  PubMed  CAS  Google Scholar 

  96. Yi, A.-K., Tuetken, R., Redford, T., Waldschmidt, M., Kirsch, J., and Krieg, A. M. (1998) CpG motifs in bacterial DNA activates leukocytes through the pH-dependent generation of reactive oxygen species, J. Immunol., 160, 4755–4761.

    PubMed  CAS  Google Scholar 

  97. Stacey, K. J., Sweet, M., and Hume, D. A. (1996) Macrophages ingest and are activated by bacterial DNA, J. Immunol., 157, 2116–2122.

    PubMed  CAS  Google Scholar 

  98. Zimmerman, P. E., Voelker, D. R., McCormack, F. X., Paulsrud, J. R., and Martin, W. J. (1992) 120-kD surface glycoprotein of Pneumocystis carinii is a ligand for surfactant protein A, J. Clin. Invest., 89, 143–149.

    Article  PubMed  CAS  Google Scholar 

  99. Ozinsky, A., Underhill, D. M., Fontenot, J. D., et al. (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors, Proc. Natl. Acad. Sci. U.S.A., 97, 13766–13771.

    Article  PubMed  CAS  Google Scholar 

  100. Wyllie, D. H., Kiss-Toth, E., Visintin, A., et al. (2000) Evidence for an accessory protein function for Toll-like receptor 1, in anti-bacterial responses, J. Immunol., 165, 7125–7132.

    PubMed  CAS  Google Scholar 

  101. Hajjar, A. M., O’Mahony, D. S., Ozinsky, A., et al. (2001) Cutting edge: functional interactions between Toll-like receptor (TLR) 2, and TLR1, or TLR6, in response to phenol-soluble modulin, J. Immunol., 166, 15–19.

    PubMed  CAS  Google Scholar 

  102. Hemmi, H., Takeuchi, O., Kawai, T., et al. (2000) A Toll-like receptor recognized bacterial DNA, Nature, 408, 740–745.

    Article  PubMed  CAS  Google Scholar 

  103. Stehle, T. and Larvie, M. (2003) Structures of complement control proteins. In: Innate Immunity (Ezekowitz, R. A. B. and Hoffmann, J. A., eds.), Humana Press, Totowa, NJ, pp. 231–253.

    Google Scholar 

  104. Chu, W.-M., Gong, X., Li, Z.-W., et al. (2000) DNA-PKcs is required for activation of innate immunity by immunostimulatory DNA, Cell, 103, 909–918.

    Article  PubMed  CAS  Google Scholar 

  105. Gottlieb, T. M. and Jackson, S. P. (1993) The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen, Cell, 72, 131–142.

    Article  PubMed  CAS  Google Scholar 

  106. Hartley, K. O., Gell, D., Smith, G. C., et al. (1995) DNA-dependent protein kinase catalytic subunit: a relative of phosphatidylinositol 3-kinase and ataxia telangiectasia gene product, Cell, 82, 849–856.

    Article  PubMed  CAS  Google Scholar 

  107. Kirchgessner, C. U., Patil, C. K., Evans, J. W., et al. (1995) DNA-dependent protein kinase (p350) as a candidate gene for the murine defect CID, Science, 267, 1178–1183.

    Article  PubMed  CAS  Google Scholar 

  108. Liang, H., Nishioka, Y., Reich, C. F., Pisetsky, D. S., and Lipsky, P. E. (1996) Activation of human B cells by phosphorothioate oligodeoxynucleotides, J. Clin. Invest., 98, 1119–1129.

    Article  PubMed  CAS  Google Scholar 

  109. Yi, A.-K., Chang, M., Peckham, D. W., Krieg, A. M., and Ashman, R. F., (1998) CpG oligodeoxyribonucleotides rescue mature spleen B cells from spontaneous apoptosis and promote cell cycle entry, J. Immunol., 160, 5898–5906.

    PubMed  CAS  Google Scholar 

  110. Yi, A.-K., Hornbeck, P., Lafrenz, D. E., and Krieg, A. M. (1996) CpG DNA rescue of murine B lymphoma cells from anti-IgM-induced growth arrest and programmed cell death is associated with increased expression of c-myc and bcl- xL, J. Immunol., 157, 4918–4925.

    PubMed  CAS  Google Scholar 

  111. Hartmann, G., Weeratna, R. D., Ballas, Z. K., et al. (2000) Delineation of a CpG phosphorodithioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo, J. Immunol., 164, 1617–1624.

    PubMed  CAS  Google Scholar 

  112. Hartmann, G. and Krieg, A. M. (2000) Mechanism and function of a newly identified CpG DNA motif in human primary B cells, J. Immunol., 164, 944–953.

    PubMed  CAS  Google Scholar 

  113. Simmons, C. P., Hussell, T., Sparer, T., Walzl, G., Openshaw, P., and Dougan, G. (2001) Mucosal delivery of a respiratory syncytial virus CTL peptide with entrotoxin-based adjuvants elicits protective immunopathogenic, and immunoregulatory antiviral CD8+ T cell responses, J. Immunol., 166, 1106–1113.

    PubMed  CAS  Google Scholar 

  114. Czerkinsky, C., Anjyere, F., McGhee, J. R., et al. (1999) Mucosal immunity and tolerance: relevance to vaccine development, Immunol Rev., 170, 197–222.

    Article  PubMed  CAS  Google Scholar 

  115. Greco, D., Salmaso, S., Mastrantonio, P., et al. (1996) A controlled trial of two acellular vaccines and one whole-cell vaccine against pertussis, Progetto Pertosse Working Group, N. Engl. J. Med., 334, 341–348.

    Article  PubMed  CAS  Google Scholar 

  116. van Ginkel, F. W., Nguyen, H. H., and McGhee, J. R. (2000) Vaccines for mucosal immunity to combat emerging infectious diseases, Emerg. Infect. Dis., 6, 123–132.

    Article  PubMed  Google Scholar 

  117. Pizza, M., Covacci, A., Bartoloni, A., et al. (1989) Mutants of pertussis toxin suitable for vaccine development, Science, 246, 497–499.

    Article  PubMed  CAS  Google Scholar 

  118. Rappuoli, R. (1997) Rational design of vaccines, Nat. Med., 3, 374–376.

    Article  PubMed  CAS  Google Scholar 

  119. Mills, K. H. G., Ryan, M., Ryan, E., and Mahon, B. P. (1998) A murine model in which protection correlates with pertussis vaccine efficacy in children reveals complementary roles for humoral and cell-mediated immunity in protection against Bordetella pertussis, Infect. Immun., 66, 594–602.

    PubMed  CAS  Google Scholar 

  120. Ryan, M. and Mills, K. H. G. (1997) The role of the S-1, and B-oligomer components of pertussis toxin in its adjuvant properties for Th1 and Th2 cells, Biochem. Soc. Trans., 25, 126S.

    PubMed  CAS  Google Scholar 

  121. Mills, K. H. G., Barnard, A., Watkins, S., and Redhead, K. (1990) Specificity of the T cell response to Bordetella pertussis in aerosol infected mice. In: Proc. 6th Int. Symp. Pertussis (Manclarck, C. R., ed.), Department of Health and Human Services, United States Public Health Service, Bethesda, MD, pp. 166–174.

    Google Scholar 

  122. Nencioni, L., Volpini, G., Peppoloni, S., Bugnoli, M., De Magistris, T., Marcili, I., and Pappuoli, R. (1991) Properties of pertussis toxin mutant PT-9 k/129 G after formaldehyde treatment, Infect. Immun., 59, 625–630.

    PubMed  CAS  Google Scholar 

  123. Ratti, G., Rappuoli, R., and Giannini, G. (1983) The complete nucleotide sequence of the gene coding for diphtheria toxin in the corynephage omega (tox+) genome, Nucleic Acids Res., 11, 6589–6595.

    Article  PubMed  CAS  Google Scholar 

  124. Rappuoli, R. (1997) New and improved vaccines against diphtheria and tetanus. In: New Generation Vaccines, 2nd ed. (Levine, M. M., Woodrow, G. C., Kaper, J. B., and Cobon, G. S., eds.), Marcel Dekker, New York, pp. 417–436.

    Google Scholar 

  125. Gupta, R. K., Collier, R. J., Rappuoli, R., and Siber, G. R. (1997) Differences in the immunogenicity of native and formalinized cross reacting material (CRM197) of diphtheria toxin in mice and guinea pigs and their implications on the development and control of diphtheria vaccine based on CRMs, Vaccine, 15, 1341–1343.

    Article  PubMed  CAS  Google Scholar 

  126. Mills, K. H., Cosgrove, C., McNeela, E. A., et al. (2003) Protective levels of diphtheria-neutralizing antibody induced in healthy volunteers by unilateral priming-boosting intranasal immunization associated with restricted ipsilateral mucosal secretory immunoglobulin A, Infect. Immun., 71, 726–732.

    Article  PubMed  CAS  Google Scholar 

  127. Spangler, B. D. (1992) Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin, Microbiol. Rev., 56, 622–647.

    PubMed  CAS  Google Scholar 

  128. McGuirk, P., McCann, C., and Mills, K. H. (2002) Pathogen-specific T regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 production by dendritic cells: a novel strategy for evasion of protective T helper type 1 responses by Bordetella pertussis, J. Exp. Med., 195, 221–231.

    Article  PubMed  CAS  Google Scholar 

  129. Clarke, C. J., Wilson, A. D., Williams, N. A., and Stokes, C. R. (1991) Mucosal priming of T-lymphocyte responses to fed protein antigens using cholera toxin as adjuvant, Immunology, 72, 323–328.

    PubMed  CAS  Google Scholar 

  130. Richards, C. M., Shimeld, C., Williams, N. A., and Hill, T. J. (1998) Induction of mucosal immunity against herpes simplex virus type 1 in the mouse protects against ocular infection and establishment of latency, J. Infect. Dis., 177, 1451–1457.

    Article  PubMed  CAS  Google Scholar 

  131. Martin, M., Metzger, D. J., Michalek, S. M., Connell, T. D., and Russell, M. W. (2000) Comparative analysis of the mucosal adjuvanticity of the type II heat-labile enterotoxins LT-IIa and LTIIb, Infect. Immun., 68, 281–287.

    Article  PubMed  CAS  Google Scholar 

  132. Hornquist, E. and Lycke, N. (1993) Cholera toxin adjuvant greatly promotes antigen priming of T cells, Eur. J. Immunol., 23, 2136–2143.

    Article  PubMed  CAS  Google Scholar 

  133. Pacheco, S. E., Gibbs, R. A., Ansari-Lari, A., and Rogers, P. (2000) Intranasal immunization with HIV reverse transcriptase: effect of dose in the induction of helper type 1 and 2 immunity, AIDS Res. Hum. Retroviruses, 16, 2009–2017.

    Article  PubMed  CAS  Google Scholar 

  134. Akhiani, A. A., Schon, K., and Lycke, N. (2004) Vaccine-induced immunity against Helicobacter pylori infection is impaired in IL-18-deficient mice, J. Immunol., 173, 3348–3356.

    PubMed  CAS  Google Scholar 

  135. Schaffeler, M. P., Brokenshire, J. S., and Snider, D. P. (1997) Detection of precursor Th cells in mesenteric lymph nodes after oral immunization with protein antigen and cholera toxin, Int. Immunol., 9, 1555–1562.

    Article  PubMed  CAS  Google Scholar 

  136. Yanagita, M., Hiroi, T., Kitagaki, N., et al. (1999) Nasopharyngeal-associated lymphoreticular tissue (NATL) immunity: fimbriae-specific Th1 and Th 2 cell-regulated IgA responses for the inhibition of bacterial attachment to epithelial cells and subsequent inflammatory cytokine production, J. Immunol., 162, 3559–3565.

    PubMed  CAS  Google Scholar 

  137. Lavelle, E. C., Jarnicki, A., McNeela, E., et al. (2004) Effects of cholera toxin on innate and adaptive immunity and its application as an immunomodulatory agent, J. Leukoc. Biol., 75, 756–763.

    Article  PubMed  CAS  Google Scholar 

  138. Douce, G., Fontana, M., Pizza, M., Rappuoli, R., and Dougan, G. (1997) Intranasal immunogenicity and adjuvanticity of site-directed mutant derivatives of cholera toxin, Infect. Immun., 65, 2821–2828.

    PubMed  CAS  Google Scholar 

  139. Weeratna, R., Comanita, L., and Davis, H. L. (2003) CPG ODN allows lower dose of antigen against hepatitis B surface antigen in BALB/c mice, Immunol. Cell Biol., 81, 59–62.

    Google Scholar 

  140. Sun, J.-B., Rask, C., Olsson, T., Holmgren, J., and Czerkinsky, C. (1996) Treatment of experimental autoimmune encephalomyelitis by feeding myelin basic protein conjugated to cholera toxin subunit B., Proc. Natl. Acad. Sci. U.S.A., 93, 7196–7201.

    Article  PubMed  CAS  Google Scholar 

  141. Williams, N. A., Stasiuk, L. M., Nashar, T. O., et al. (1997) Prevention of autommune disease due to lymphocyte modulation by the B-subunit of Escherichia coli heat-labile enterotoxin, Proc. Natl. Acad. Sci. U.S.A., 94, 5290–5295.

    Article  PubMed  CAS  Google Scholar 

  142. Ploix, C., Bergerot, I., Durand, A., Czerkinsky, C., Holmgren, J., and Thivolet, C. (1999) Oral administration of cholera toxin B-insulin conjugates protects NOD mice from autoimmune diabetes by inducing CD4+ regulatory T-cells, Diabetes, 48, 2150–2156.

    Article  PubMed  CAS  Google Scholar 

  143. Widermann, U., Jahn-Schmid, B., Repa, A., Kraft, D., and Ebner, C. (1999) Modulation of an allergic immune response via the mucosal route in a murine model of inhalative type-1 allergy, Int. Arch. Allergy Immunol., 118, 129–132.

    Article  Google Scholar 

  144. Ryan, E. J., McNeela, E., Pizza, M., Rappuoli, R., O’Neill, L., and Mills, K. H. G. (2000) Modulation of innate and acquired immune responses by Escherichia coli heat-labile toxin: distinct pro- and anti-inflammatory effects of the nontoxic AB complex and the enzyme activity, J. Immunol., 165, 5750–5759.

    PubMed  CAS  Google Scholar 

  145. Douce, G., Turcotte, C., Cropley, I., et al. (1995) Mutants of Escherichia coli heat-labile toxin lacking ADP-ribosyltransferase activity act as nontoxic mucosal adjuvants, Proc. Natl. Acad. Sci. U.S.A., 92, 1644–1648.

    Article  PubMed  CAS  Google Scholar 

  146. Haynes, J. R., Arrington, J., Dong, L., Braun, R. P., and Payne, L. J. (2006) Potent protective cellular immune responses generated by a DNA vaccine encoding HSV-2 ICP27 and the E. coli heat labile enterotoxin, Vaccine, 24(23), 5016–5026.

    Article  PubMed  CAS  Google Scholar 

  147. Li, T. K. and Fox, B. S. (1996) Cholera toxin B subunit binding to an antigen- presenting cell directly co-stimulates cytokine production from a T cell clone, Int. Immunol., 8, 1849–1856.

    Article  PubMed  CAS  Google Scholar 

  148. Cong, Y., Weaver, C. T., and Elson, C. O. (1997) The mucosal adjuvanticity of cholera toxin involves enhancement of costimulatory activity by selective up-regulation of B72 expression, J. Immunol., 159, 5201–5208.

    Google Scholar 

  149. Yamamoto, M., Kiyono, H., Yamamoto, S., et al. (1999) Direct effects on antigen- presenting cells and T lymphocytes explain the adjuvanticity of a nontoxic cholera toxin mutant, J. Immunol., 162, 7015–7021.

    PubMed  CAS  Google Scholar 

  150. Braun, M. C., He, J., Wu, C. Y., and Kelsall, B. L. (1999) Cholera toxin suppresses interleukin (IL)-12 production and IL-12 and receptor β1 and β2 chain expression, J. Exp. Med., 189, 541–552.

    Article  PubMed  CAS  Google Scholar 

  151. Panina-Bordignon, P., Mazzeo, D., Lucia, P. D., et al. (1997) Beta2 agonists prevent Th1 development by selective inhibition of interleukin 12, J. Clin. Invest., 100, 1513–1519.

    Article  PubMed  CAS  Google Scholar 

  152. Munoz, E., Zubiaga, A. M., Merrow, M., Sauter, N. P., and Huber, B. T. (1990) Cholera toxin discriminates between T helper 1 and 2 cell in T cell receptor-mediated activation: role of cAMP in T cell proliferation, J. Exp. Med., 172, 95–103.

    Article  PubMed  CAS  Google Scholar 

  153. Lavelle, E. C., Leavy, O., and Mills, K. H. G. (2006) Modified bacterial toxins. In: Vaccine Adjuvants: Immunological and Clinical Principles (Hackett, C. and Harn, D. A., Jr., eds.), Humana Press, Totowa, NJ, pp. 111–153.

    Google Scholar 

  154. Tozzi, A., Pastore Calentano, L., Ciofi degli Atti, M. L., and Salmaso, S. (2005) Diagnosis and management of pertussis, Can. Med. Assoc. J., 172(4), 509–515.

    Article  Google Scholar 

  155. Gustafsson, L., Hallander, H. O., Olin, P., Reizenstein, E., and Storsaeter, J. (1996) A controlled trial of a two-component acellular, a five-component acellular, and a whole-cell pertussis vaccine, N. Engl. J. Med., 334, 349–355.

    Article  PubMed  CAS  Google Scholar 

  156. Trollofors, B., Taranger, J., Lagergard, T., et al. (1995) A placebo-controlled trial of a pertussis-toxoid vaccine, N. Engl. J. Med., 333, 1045–1050.

    Article  Google Scholar 

  157. Porro, M., Saletti, M., Nencioni, L., Tagliaferri, L., and Marsili, I. (1980) Immunogenic correlation between cross-reacting material (CRM197) produced by a mutant of Corynebacterium diphtheriae and diphtheria toxoid, J. Infect. Dis., 142, 716–724.

    PubMed  CAS  Google Scholar 

  158. McNeela, E. A., O’Connor, D., Jabbal-Gill, I., et al. (2000) A mucosal vaccine against diphtheria: formulation of cross reacting material (CRM197) of diphtheria toxin with chitosan enhances local and systemic antibody and Th2 responses following nasal delivery, Vaccine, 19, 1188–1198.

    Article  PubMed  CAS  Google Scholar 

  159. Zhang, R. G., Scott, D. L., Westbrock, M. L. (1995) The three-dimensional structure of cholera toxin, J. Mol. Biol., 251, 563–573.

    Article  PubMed  CAS  Google Scholar 

  160. Rappuoli, R., Pizza, M., Douce, G., and Dougan, G. (1999) Structure and mucosal adjuvanticity of cholera and Escherichia coli heat-labile enterotoxins, Immunol. Today, 20, 493–500.

    Article  PubMed  CAS  Google Scholar 

  161. Pizza, M., Giuliani, M. M., Fontana, M. R., et al. (2001) Mucosal vaccines: non toxic derivatives of LT and CT as mucosal adjuvants, Vaccine, 19(17–19), 2634–2541.

    Google Scholar 

  162. Williams, N. A., Hirst, T. R., and Nashar, T. O. (1999) Immune modulation by the cholera-like enterotoxins: from adjuvant to immunotherapeutic, Immunol. Today, 20, 95–101.

    Article  PubMed  CAS  Google Scholar 

  163. Holmgren, J., Lonroth, I., and Svennerholm, L. (1973) Tissue receptor for cholera exotoxin: postulated structure from studies with GM1, ganglioside and related glycolipids, Infect. Immun., 8, 208–214.

    PubMed  CAS  Google Scholar 

  164. Tsai, S. C., Noda, M., Adamik, R., Moss, J., and Vaughan, M. (1988) Stimulation of choleragen enzymatic activities by GTP and two soluble proteins purified from bovine brain, J. Biol. Chem., 263, 1768–1772.

    PubMed  CAS  Google Scholar 

  165. Lycke, N., Lindholm, L., and Holmgren, J. (1983) IgA isotype restriction in the mucosal but not in the extramucosal immune response after oral immunizations with cholera toxin or cholera subunit B, Int. Arch. Allergy Appl. Immunol., 72, 119–127.

    PubMed  CAS  Google Scholar 

  166. Lycke, N. and Holmgren, J. (1988) Long-term mucosal memory to cholera toxin in mice after oral immunizations: antitoxin production from isolated lamina propria cells after in vivo or in vitro boosting. In: Mucosal Immunity and Infections at Mucosal Surfaces (Strober, W., Lamm, M. E., McGhee, J. R., and James, S. P., eds.), Oxford University Press, New York, pp. 401–404.

    Google Scholar 

  167. Xu-Amano, J., Kiyono, H., Jackson, R. L., et al. (1993) Helper T cell subsets for immunoglobulin A responses: oral immunization with tetanus toxoid and cholera toxin as adjuvant selectively induces Th2 cells in mucosa-associated tissues, J. Exp. Med., 178, 1309–1320.

    Article  PubMed  CAS  Google Scholar 

  168. Marinaro, M., Staats, H. F., Hiroi, T., et al. (1995) Mucosal adjuvant effect of cholera toxin in mice results from induction of T helper 2 (Th2) cells and IL-4, J. Immunol., 155, 4621–4629.

    PubMed  CAS  Google Scholar 

  169. Yamamoto, S., Kiyono, H., Yamamoto, M., et al. (1997) A nontoxic mutant of cholera toxin elicits Th2-type responses for enhanced mucosal immunity, Proc. Natl. Acad. Sci. U.S.A., 94, 5267–5272.

    Article  PubMed  CAS  Google Scholar 

  170. Yamamoto, S., Yoshifumi, K., Yamamoto, M., et al. (1997) Mutants in the ADP- ribosyltransferase cleft of cholera toxin lack diarrheagenicity but retained adjuvanticity, J. Exp. Med., 185, 1203–1210.

    Article  PubMed  CAS  Google Scholar 

  171. Yamamoto, M., Rennert, P., McGhee, R. J., et al. (2000) Alternate mucosal immune system: organized Peyer’s patches are not required for IgA responses in the gastrointestinal tract, J. Immunol., 164, 5184–5191.

    PubMed  CAS  Google Scholar 

  172. Simecka, J. W., Jackson, R. J., Kiyono, H., and McGhee, J. R. (2000) Mucosally induced immunoglobulin E-associated inflammation in the respiratory tract, Infect. Immun., 68, 672–679.

    Article  PubMed  CAS  Google Scholar 

  173. Haynes, J. R., Arrington, J., Dong, L., Braun, R. P., and Payne, L. J. (2006) Potent protective cellular immune responses generated by a DNA vaccine encoding HSV-2 ICP27 and the E. coli heat-labile enterotoxin, Vaccine, 24(23), 5016–5026.

    Article  PubMed  CAS  Google Scholar 

  174. Douce, G., Fontana, M., Pizza, M., Parruoli, R., and Dougan, G. (1997) Intranasal immunogenicity and adjuvanticity of site-directed mutant derivatives of cholera toxin, Infect. Immun., 65, 2821–2828.

    PubMed  CAS  Google Scholar 

  175. Pierre, P., Denis, O., Bazin, H., Mbella, E. M., and Vaerman, J.-P. (1992) Modulation of oral tolerance to ovalbumin by cholera toxin and its subunit B, Eur. J. Immunol., 22, 3127–3128.

    Article  Google Scholar 

  176. Glenn, G., Scharton-Kersten, T., Vassell, R., Mallet, C. P., Hale, T. L., and Alving, C. R. (1998) Cutting edge: transcutaneous immunization with cholera toxin protects mice against lethal mucosal toxin challenge, J. Immunol., 161, 3211–3214.

    PubMed  CAS  Google Scholar 

  177. Reudel, C., Rieser, C., Kofler, N., Wick, G., and Wolf, H. (1996) Humoral and cellular immune responses in the murine respiratory tract following oral immunization with cholera toxin or Escherichia coli heat-labile enterotoxin, Vaccine, 14, 792–798.

    Article  Google Scholar 

  178. Burnett, W. N. (1994) AB5 ADP-ribosylating toxins: comparative anatomy and physiology, Structure, 2, 151–158.

    Article  Google Scholar 

  179. Brunton, J. L. (1990) The shiga toxin family: molecular nature and possible role in disease. In: The Bacteria, vol. 11 (Iglewski, B. and Clark, U., eds.), Academic Press, New York, pp. 377–397.

    Google Scholar 

  180. Moss, J. and Vaughan, M. (1988) ADP-ribosylation of guanyl nucleotide-binding regulatory proteins by bacterial toxins, Advan. Enzymol., 61, 303–379.

    CAS  Google Scholar 

  181. Leong, J., Vinal, A. C., and Dallas, W. S. (1985) Nucleotide sequence comparison between heat-labile toxin B subunit citrons from Escherichia coli of human and porcine origin, Infect. Immun., 48, 73–77.

    PubMed  CAS  Google Scholar 

  182. Zhang, R.-G., Westbrook, M. L., Westbrook, E. M., et al. (1995) The 2.4 Å crystal structure of cholera toxin B subunit pentamer: choleragenoid, J. Mol. Biol., 251(4), 550–562.

    Article  PubMed  CAS  Google Scholar 

  183. Sixma, T. K., Kalk, K. H., van Zanten, B. A. M., et al. (1993) Refined crystal structure of Escherichia coli heat-labile enterotoxin, a close relative of cholera toxin, J. Mol. Biol., 230, 890–918.

    Article  PubMed  CAS  Google Scholar 

  184. Stein, P.E., Boodhoo, A., Armstrong, G. D., et al. (1994) The crystal structure of pertussis toxin, Structure, 2, 45–47.

    Article  PubMed  CAS  Google Scholar 

  185. Douce, G., Giuliani, M. M., Giannelli, V., Pizza, M. G., Rappuoli, R., and Dougan, G. (1998) Mucosal immunogenicity of genetically detoxified derivatives of heat labile toxin from Escherichia coli, Vaccine, 16, 1065–1073.

    Article  PubMed  CAS  Google Scholar 

  186. Tamura, S., Yamanaka, A., Shimohara, M., et al. (1994) Synergistic action of cholera toxin B subunit (and Escherichia coli heat-labile toxin B subunit) and a trace amount of cholera whole toxin as an adjuvant for nasal influenza vaccine, Vaccine, 12, 419–426.

    Article  PubMed  CAS  Google Scholar 

  187. Richards, C. M., Aman, A. T., Hirst, T. R., Hill, T. J., and Williams, N. A. (2001) Protective mucosal immunity to ocular herpes simplex virus type 1 infection in mice by using Escherichia coli heat-labile enterotoxin B subunit as an adjuvant, J. Virol., 75, 1664–1671.

    Article  PubMed  CAS  Google Scholar 

  188. Sun, J.-B., Mielcarek, N., Lakew, M., et al. (1999) Intranasal administration of a Schistosoma mansoni glutathione S-transferase-cholera toxoid conjugate vaccine evokes antiparasitic and antipathological immunity in mice, J. Immunol., 15, 1045–1052.

    Google Scholar 

  189. Luross, J. A., Heaton, T., Hirst, T. R., Day, M. J., and Williams, N. A. (2002) Escherichia coli heat-labile enterotoxin B subunit prevents autoimmune arthritis through induction of regulatory CD4+ T cells, Arthritis Rheum., 62(6), 1671–1682.

    Article  CAS  Google Scholar 

  190. Williams, N. A. (2000) Immune modulation by the cholera-like enterotoxin B- subunits: from adjuvant to immunotherapeutic, ETOX, European Workshop on Bacterial Protein Toxins No 9, Ste Maxime, France (27/06/1999), vol. 290, no. 4–5 (300 p.) (1 p.3/4) [Notes: extended abstracts], pp. 447–453.

    Google Scholar 

  191. Nashar, T. O., Webb, H. M., Eagletone, S., Williams, N. A., and Hirst, T. R. (1996) Potent immunogenicity of the B subunits of Escherichia coli heat-labile enterotoxin: receptor binding is essential and induces differential modulation of lymphocyte subsets, Proc. Natl. Acad. Sci. U.S.A., 93(1), 226–230.

    Article  PubMed  CAS  Google Scholar 

  192. Raveney, B. J. E., Richards, C. M., Aknin, M.-L., Copland, D. A., et al. (2008) The B subunit of Escherichia coli heat-labile enterotoxin inhibits Th1 but not Th17 cell responses in established autoimmune uveoretinitis, Investig. Ophthalmol. Visual Sci. 49, 4008–4017.

    Article  Google Scholar 

  193. Giuliani, M. M., Del Giudice, G., Gianelli, V., Dougan, G., Douce, G., Rappuoli, R., and Pizza, M. (1998) Mucosal adjuvanticity and immunogenicity of LTR72, a novel mutant of Escherichia coli heat-labile enterotoxin with partial knockout of ADP-ribosyltransferase activity, J. Exp. Med., 187, 1123–1132.

    Article  PubMed  CAS  Google Scholar 

  194. Martin, M., Metzger, D. J., Michalek, S. M., Connell, T. D., and Russell, M. W. (2000) Comparative analysis of the mucosal adjuvanticity of the type II heat-labile enterotoxins LT-IIa and LT-IIb, Infect. Immun., 68(1), 281–287.

    CAS  Google Scholar 

  195. Nawar, H., Arce, S., Russell, M. W., and Connell, T. D. (2005) Mucosal adjuvant properties of mutant LT-IIa and LT-IIb enterotoxins that exhibit altered ganglioside-binding activities, Infect. Immun., 73(3), 1330–1342.

    Article  PubMed  CAS  Google Scholar 

  196. Cárdenes-Freytag, L., Cheng, E., Mayeux, P., Domer, J. E., and Clements, J. D. (1999) Effectiveness of heat-killed Candida albicans and novel mucosal adjuvant, LT(R192G) against systemic candidiasis, Infect. Immun., 67, 826–833.

    Google Scholar 

  197. O’Neal, C. M., Clements, J. D., Estes, M. K., and Conner, M. E. (1998) Rotavirus 2/6 virus-like particles administered intranasally with cholera vaccine, Escherichia coli heat-labile toxin (LT) and LT-R192G induce protection from rotavirus challenge, J. Virol., 72, 3390–3393.

    PubMed  Google Scholar 

  198. Chong, C., Friberg, M., and Clements, J. D. (1998) LT(R192G), a non-toxic mutant of the heat-labile enterotoxin of Escherichia coli, elicits enhanced humoral and cellular immune responses associated with protection against lethal oral challenge with Salmonella ssp., Vaccine, 16, 732–740.

    Article  PubMed  CAS  Google Scholar 

  199. Tebbey, P. W., Scheuer, C. A., Peek, J. A., et al. (2000) Effective mucosal immunization against respiratory syncytial virus using purified F protein and a genetically detoxified cholera holotoxin, CT-E29H, Vaccine, 18, 2723–2734.

    Article  PubMed  CAS  Google Scholar 

  200. Bowe, F., Lavelle, E. C., McNeela, E. A., et al. (2004) Mucosal vaccination against serogroup B meningococcus: induction of bactericidal antibodies and cellular immunity following intranasal immunization with NadA of Neisseria meningitides and mutants of Escherichia coli heat-labile enterotoxin, Infect. Immun., 72, 4052–4060.

    Article  PubMed  CAS  Google Scholar 

  201. Barakman, J. D., Ott, G., and O’Hagan, D. T. (1999) Intranasal immunization of mice with influenza virus vaccine in combination with the adjuvant LT-R72 induces potent mucosal and serum immunity which is stronger than that with traditional intramuscular immunization, Infect. Immun., 67, 4276–4279.

    Google Scholar 

  202. Agren, L. C., Ekman, L., Lowenadler, B., and Lycke, N. (1997) Genetically engineered nontoxic vaccine adjuvant that combines B cell targeting with immunomodulation by cholera toxin A1 subunit, J. Immunol., 158, 3936–3946.

    PubMed  CAS  Google Scholar 

  203. Lycke, N. and Schon, K. (2001) The B cell targeted adjuvant, CTA1-DD exhibits potent mucosal immunoenhancing activity despite pre-existing anti-toxin immunity, Vaccine, 19, 2542–2548.

    Article  PubMed  CAS  Google Scholar 

  204. Tamura, M., Nogimori, A., Murai, A., et al. (1982) Subunit structure of islet- activation protein, pertussis toxin, in conformity with the A-model B, Biochemistry, 21, 5516–5522.

    Article  PubMed  CAS  Google Scholar 

  205. Kaslow, H. R. and Burns, D. L. (1992) Pertussis toxin and target eukaryotic cells: binding, entry and activation, FASEB J., 6, 2684–2690.

    PubMed  CAS  Google Scholar 

  206. Saukkonen, K., Burnette, W. N., Mar, V. L., Masure, H. R., and Tuomanen, E. I. (1992) Pertussis toxin has eukaryotic-like carbohydrate recognition domains, Proc. Natl. Acad. Sci. U.S.A., 89, 118–122.

    Article  PubMed  CAS  Google Scholar 

  207. Lobet, Y., Feron, C., Dequesne, G., Simoen, E., Hauser, P., and Locht, C. (1993) Site-specific alterations in the B oligomer that affect receptor-binding activities and mitogenicity of pertussis toxin, J. Exp. Med., 177, 79–87.

    Article  PubMed  CAS  Google Scholar 

  208. Zhang, X. M., Berland, R., and Rosoff, P. M. (1995) Differential regulation of accessory mitogenic signaling receptors by the T cell antigen receptor, Mol. Immunol., 32, 323–332.

    Article  PubMed  CAS  Google Scholar 

  209. Li, H. and Wong, W. S. (2000) Mechanisms of pertussis toxin-induced myelomonocytic cell adhesion: role of CD14 and urokinase receptor, Immunology, 100, 502–509.

    Article  PubMed  CAS  Google Scholar 

  210. Burnette, W. N. (1992) Perspectives in recombinant pertussis toxoid development. In: Vaccine Research and Development (Koff, W. and Six, H. R., eds.), Marcel Dekker, New York, pp. 143–193.

    Google Scholar 

  211. Lyons, A. B. (1997) Pertussis toxin pretreatment alters the in vivo cell division behaviour and survival of B lymphocytes after intravenous transfer, Immunol. Cell. Biol., 75, 7–12.

    Article  PubMed  CAS  Google Scholar 

  212. Meade, B. D., Kind, P. D., and Manclark, C. R. (1985) Altered mononuclear phagocyte function in mice treated with the lymphocytosis promoting factor of Bordetella pertussis, Dev. Biol. Stand., 61, 63–74.

    PubMed  CAS  Google Scholar 

  213. Spangrude, G. J., Sacchi, F., Hill, H. R., Van Epps, D. E., and Daynes, R. A. (1985) Inhibition of lymphocyte and neutrophil chemotaxis by pertussis toxin, J. Immunol., 135, 4135–4143.

    PubMed  CAS  Google Scholar 

  214. Cherry, J. D., Brunel, P. A., Golden, G. S., and Karzon, D. T. (1988) Report of the task force on pertussis immunization – 1988, Pediatrics, 88, 939–984.

    Google Scholar 

  215. Ryan, M., McCarthy, L., Mahon, B., Rappuoli, R., and Mills, K. H. G. (1998) Pertussis toxin potentiates Th1 and Th2 responses to co-injected antigen: adjuvant action is associated with enhanced regulatory cytokine production and expression of the co-stimulatory molecules B7-1, B7-2 and CD28, Int. Immunol., 10, 651–662.

    Article  PubMed  CAS  Google Scholar 

  216. Roberts, M., Bacon, A., Rappuoli, R., et al. (1995) A mutant toxin molecule that lacks ADP-ribosyltransferase activity, PT-9 K/129 G, is an effective mucosal adjuvant for intranasally delivered proteins, Infect. Immun., 63, 2100–2108.

    PubMed  CAS  Google Scholar 

  217. Mu, H.-H. and Sewell, W. A. (1994) Regulation of DTH and IgE responses by IL-4 and IFN-γ in immunized mice given pertussis toxin, Immunology, 83, 639–645.

    PubMed  CAS  Google Scholar 

  218. Munoz, J. J. and Peacock, M. G. (1990) Action of Pertussigen (pertussis toxin) on serum IgE and on Fce receptors on lymphocytes, Cell Immunol., 127, 327–336.

    Article  PubMed  CAS  Google Scholar 

  219. Bell, F., Heath, P., MacLennan, J., et al. (1999) Adverse effects and sero-responses to an acellular pertussis/diphtheria/tetanus vaccine when combined with Haemophilus influenzae type b vaccine in an accelerated schedule, Eur. J. Pediatr., 158, 329–336.

    Article  PubMed  CAS  Google Scholar 

  220. Richie, E., Punjabi, N. H., Harjanto, S. J., et al. (1999) Safety and immunogenicity of combined diphtheria-tetanus-pertussis (whole cell and acellular)-Haemophilus influenzae-b conjugate vaccines administered to Indonesian children, Vaccine, 17, 1384–1393.

    Article  PubMed  CAS  Google Scholar 

  221. Loosmore, S., Zealey, G., Cockle, S., Boux, H., et al. (1993) Characterization of pertussis toxin analogs containing mutations in B-oligomer subunits, Infect. Immun., 61, 3216–3224.

    Google Scholar 

  222. Leavy, O. (2005) Mechanisms of immunomodulatory activity of cholera toxin, PhD Thesis, Trinity College, Dublin, Ireland.

    Google Scholar 

  223. Ausiello, C. M., Fedele, G., Urbani, F., et al. (2002) Native and genetically inactivated pertussis toxins induce human dendritic cell maturation and synergize with lipopolysaccharide in promoting T helper type 1 responses, J. Infect. Dis., 186, 351–360.

    Article  PubMed  CAS  Google Scholar 

  224. de Jong, E. C., Vieira, P. L., Kalinski, P., et al. (2002) Microbial compounds selectively induce Th1 cell-promoting or Th2 cell-promoting dendritic cells in vitro with diverse Th cell-polarizing signals, J. Immunol., 168, 1704–1709.

    PubMed  Google Scholar 

  225. Gross, M. K., Au, D. C., Smith, A. L., and Storm, D. R. (1992) Targeted mutations that ablate either the adenylate cyclase or hemolysine function of the bifunctional CyaA toxin of Bordetella pertussis abolish virulence, Proc. Natl. Acad. Sci., U.S.A., 89, 4898–4902.

    Article  PubMed  CAS  Google Scholar 

  226. Mouallem, M., Farfel, Z., and Hanski, E. (1990) Bordetella pertussis adenylate cyclase toxin: intoxication of host cells by bacterial invasion, Infect. Immun., 58, 3759–3764.

    PubMed  CAS  Google Scholar 

  227. Pearson, R. D., Symes, P., Conboy, M., Weiss, A. A., and Hewlett, E. L. (1987) Inhibition of monocyte oxidative responses by Bordetella pertussis adenylate cyclase toxin, J. Immunol., 139, 2749–2754.

    PubMed  CAS  Google Scholar 

  228. Njamkepo, E., Pinot, F., Francois, D., et al. (2000) Adaptive responses of human monocytes infected with Bordetella pertussis: the role of adenylate cyclase hemolysin, J. Cell. Physiol., 183, 91–99.

    Article  PubMed  CAS  Google Scholar 

  229. Gueirard, P., Druilhe, A., Pretolani, M., and Guiso, N. (1998) Role of adenylate cyclase-hemolysin in alveolar macrophage apoptosis during Bordetella pertussis infection in vivo, Infect. Immunol., 66, 1718–1725.

    CAS  Google Scholar 

  230. Lavelle, E. C., McNeela, E., Armstrong, M. E., et al. (2003) Cholera toxin promotes the induction of regulatory T cells specific for bystander antigens by modulating dendritic cell activation, J. Immunol., 171, 2384–2392.

    PubMed  CAS  Google Scholar 

  231. Ross, P. J., Lavelle, E. C., Mills, K. H., and Boyd, A. P. (2004) Adenylate cyclase toxin from Bordetella pertussis synergized with lipopolysaccharide to promote innate interleukin-10 production and enhance the induction of Th2 and regulatory T cells, Infect. Immun., 72, 1568–1579.

    Article  PubMed  CAS  Google Scholar 

  232. Osicka, R., Osickova, A., Basar, T., et al. (2000) Delivery of CD8+ T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: delineation of cell invasive structures and permissive insertion sites, Infect. Immun., 68, 247–256.

    Article  PubMed  CAS  Google Scholar 

  233. Baldridge, J., Myers, K., Johnson, D., Persing, D., Cluff, C., and Herschberg, R. (2006) Monophosphoryl lipid A and synthetic lipid A mimetics as TLR4-based adjuvants and immunomodulators. In: Vaccine Adjuvants: Immunological and Clinical Principles (Hackett, C. and Harn, D. A., Jr., eds.), Humana Press, Totowa, NJ, pp. 235–255.

    Google Scholar 

  234. Dinarello, C. A. (1991) The proinflammatory cytokines interleukin-1 and tumor necrosis factor and treatment of the septic shock syndrome, J. Infect. Dis., 163, 1177–1184.

    PubMed  CAS  Google Scholar 

  235. Higgins, S. C., Lavelle, E. C., McCann, C., et al. (2003) Toll-like receptor 4- mediated innate IL-10 activates antigen-specific regulatory T cell and confers resistance to Bordetella pertussis by inhibiting inflammatory pathology, J. Immunol., 171, 3119–3127.

    PubMed  CAS  Google Scholar 

  236. Nauts, H. C., Swift, W. E., and Corley, B. L. (1946) Treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in light of modern research, Cancer Res., 6, 205–216.

    Google Scholar 

  237. Ribi, E. (1984) Beneficial modification of endotoxin molecule, J. Biol. Response Mod., 3, 1–9.

    PubMed  CAS  Google Scholar 

  238. Ulrich, J. T. and Myers, K. B. (1995) Monophosphoryl lipid A as an adjuvant past experiences and new directions. In: Vaccine Design: The Subunit and Adjuvant Approach (Powell, M. F. and Newman, J. M., eds.), Plenum Press, New York, pp. 495–524.

    Google Scholar 

  239. Johnson, D. A., Sowell, C. G., and Johnson, C. L., et al. (1999) Synthesis and biological evaluation of a new class of vaccine adjuvants: aminoalkyl glucosaminide 4-phosphates (AGPs), Biorg. Med. Chem. Lett., 9, 2273–2278.

    Article  CAS  Google Scholar 

  240. Seydel, U., Labischinski, H., Kastowsky, M., and Brandenburg, K. (1993) Phase behavior, supramolecular structure, and molecular conformation of lipopolysaccharide, Immunobiology, 187, 191–211.

    PubMed  CAS  Google Scholar 

  241. Fukuoka, S., Brandenburg, K., Muller, M., et al. (2001) Physicochemical analysis of lipid A fractions of lipopolysaccharide from Erwinia carotovora in relation to bioactivity, Biochim. Biophys. Acta, 1510, 185–197.

    Article  PubMed  CAS  Google Scholar 

  242. Fukase, K., Oikawa, M., Suda, Y., et al. (1999) New synthesis and conformational analysis of lipid A: biological activity and supramolecular assembly, J. Endotoxin Res., 5, 46–51.

    Article  CAS  Google Scholar 

  243. Brandenburg, K., Matsuura, M., Heine, H., et al. (2002) Biophysical characterization of triacyl monosaccharide lipid A partial structures in relation to bioactivity, Biophys. J., 83, 322–333.

    Article  PubMed  CAS  Google Scholar 

  244. Dupont, J.-C., Altclas, J., Sigelchifer, M., Von Eschen, E. B., Timmermans, I., and Wegener, A. (2002) Efficacy and safety of AgB/RC529: a novel two dose adjuvant vaccine against hepatitis B,42nd Interscience Conference on Antimicrobial Agents and Chemotherapy, San Diego, CA, September 27–30 [abstract].

    Google Scholar 

  245. Martin, M., Michalek, S., and Katz, J. (2003) Role of innate immune factors in the adjuvant activity of monophosphoryl lipid A, Infect. Immun., 71(5), 2498–2507.

    Article  PubMed  CAS  Google Scholar 

  246. Moore, A., McCarthy, L., and Mills, K. H. G. (1999) The adjuvant combination monophosphoryl lipid A and QS21 switches T cell responses induced with a soluble recombinant HIV protein from Th2 to Th1, Vaccine, 17, 2517–2527.

    Article  PubMed  CAS  Google Scholar 

  247. Salkowski, C. A. (1997) Lipopolysaccharide and monophosphoryl lipid A differentially regulate interleukin-12, gamma interferon and interleukine-10 mRNA production in murine macrophages, Infect. Immun., 65, 3239–3247.

    PubMed  CAS  Google Scholar 

  248. Peteers, C. C. A. M., Legerman, P. R., De Weers, O., et al. (1996) Polysaccharide- conjugate vaccines. In: Vaccine Protocols (Robinson, A., Farrar, G. H., and Wiblin, C. H., eds.), Humana Press, Totowa, NJ, pp.111–134.

    Google Scholar 

  249. Stoute, J. A., Kester, K. E., Krzych, U., et al. (1998) Long-term efficacy and immune responses following immunization with the RTSS malaria vaccine, J. Infect. Dis., 178, 1139–1144.

    Article  PubMed  CAS  Google Scholar 

  250. McCormack, S., Tilzey, A., Carmichael, A., et al. (2000) A phase I trial in HIV negative healthy volunteers evaluating the effect of potent adjuvant on immunogenicity of a recombinant gp120W61D derived from dual tropic R5X4, HIV-1ACH320, Vaccine, 18, 1166–1177.

    Article  PubMed  CAS  Google Scholar 

  251. Thoelen, S., Van Damme, P., Mathei, C., et al. (1998) Safety and immunogenicity of a hepatitis B vaccine formulated with a novel adjuvant system, Vaccine, 16, 708–714.

    Article  PubMed  CAS  Google Scholar 

  252. Thoelen, S., de Clercq, N., and Tornieporth, N. (2001) A prophylactic hepatitis B vaccine with a novel adjuvant system, Vaccine, 19, 2400–2403.

    Article  PubMed  CAS  Google Scholar 

  253. Vernacchio, L., Bernstein, H., Pelton, S., et al. (2002) Effect of monophosphoryl lipid A (MPL(R)) on T-helper cells when administered as an adjuvant with pneumococcal-CRM(197) conjugate vaccine in healthy toddlers, Vaccine, 20, 3658–3667.

    Article  PubMed  CAS  Google Scholar 

  254. Drachenberg, K. J., Wheeler, A. W., Stuebner, P., and Horak, F. (2001) A well- tolerated grass pollen-specific allergy vaccine containing a novel adjuvant, monophosphoryl lipid A, reduces allergic symptoms after only four preseasonal injections, Allergy, 56, 498–505.

    Article  PubMed  CAS  Google Scholar 

  255. Miller, D. L., Ross, E. M., Alderslade, R., Bellman, M. H., and Rawson, N. S. (1981) Pertussis immunisation and serious acute neurological illness in children, Br. Med. J., 282, 1595–1599.

    Article  CAS  Google Scholar 

  256. Donnelly, S., Loscher, C., Lynch, M. A., and Mills, K. H. G. (2001) Whole cell but not acellular pertussis vaccines induce convulsive activity in mice: evidence of a role for toxin-induced IL-1β in a new murine model for analysis of neuronal side effects of vaccination, Infect. Immun., 69, 4217–4223.

    Article  PubMed  CAS  Google Scholar 

  257. van Ginkel, F. W., Jackson, R. J., Yuki, Y., and McGhee, J. R. (2000) Cutting edge: the mucosal adjuvant cholera toxin redirects vaccine proteins into olfactory tissues, J. Immunol., 165, 4778–4782.

    PubMed  Google Scholar 

  258. Marinaro, M., Staats, H. F., Hiroi, T., et al. (1995) Mucosal adjuvant effect of cholera toxin in mice results from induction of T helper 2 (Th2) cells and IL-4, J. Immunol., 155, 4621–4629.

    PubMed  CAS  Google Scholar 

  259. Yamamoto, S., Kiyono, H., Yamamoto, M., et al. (1997) A nontoxic mutant of cholera toxin elicits Th2-type responses for enhanced mucosal immunity, Proc. Natl. Acad. Sci. U.S.A., 94, 5267–5272.

    Article  PubMed  CAS  Google Scholar 

  260. Simecka, J. W., Jackson, R. J., Kiyono, H., and McGhee, J. R. (2000) Mucosally induced immunoglobulin E-associated inflammation in the respiratory tract, Infect. Immun., 68, 672–679.

    Article  PubMed  CAS  Google Scholar 

  261. Takahashi, I., Kiyono, H., Marinaro, M., et al. (1996) Mechanisms for mucosal immunogenicity and adjuvanticity of Escherichia coli labile toxin, J. Infect. Dis., 173, 627–635.

    PubMed  CAS  Google Scholar 

  262. Rennels, M. B., Deloria, M. A., Pichichero, M. E., et al. (2000) Extensive swelling after booster doses of acellular pertussis-tetanus-diphtheria vaccines, Pediatrics, 105: e12.

    Article  PubMed  CAS  Google Scholar 

  263. Gazzinelli, R. T., Ropert, C., Almeida, I. C., Silva, J. S., and Campos, M. A. (2006) Glycosylphosphatidylinositol anchors as natural immunological adjuvants derived from protozoan parasites. In: Vaccine Adjuvants: Immunological and Clinical Principles (Hackett, C. and Harn, D. A., Jr., eds.), Humana Press, Totowa, NJ, pp. 155–175.

    Google Scholar 

  264. Pearce, E., Scott, P. A., and Sher, A. (1999) Immune regulation in parasitic diseases. In: Fundamentals in Immunology, 4th ed. (Paul, W., ed.), Lippincott-Raven, Philadelphia, pp. 1271–1295.

    Google Scholar 

  265. Aliberti, J. C. S., Cardoso, M. A. G., Martins, G. A., Gazzinelli, R. T., et al. (1996) IL-12 mediates resistance to Trypanozoma cruzi infection in mice and is produced by normal murine macrophages in response to live trypomastigote, Infect. Immun., 64, 1961–1967.

    PubMed  CAS  Google Scholar 

  266. Cardillo, F., Voltarelli, J. C., Reed, S. G., and Silva, J. S. (1996) Regulation of Trypanozoma cruzi infection in mice by gamma interferon and interleukin 10: role of NK cells, Infect. Immun., 64, 128–134.

    PubMed  CAS  Google Scholar 

  267. Gazzinelli, R. T., Ropert, C., and Campos, M. A. (2004) Role of Toll/interleukin-1 receptor signaling pathway in host resistance and pathogenesis during infection with protozoan parazites, Immunol. Rev., 201(1), 9–25.

    Article  PubMed  CAS  Google Scholar 

  268. Biron, C. and Gazzinelli, R. T. (1995) IL-12 effects on immune responses to microbial infections: a key mediator in regulating disease outcome, Curr. Opin. Immunol., 7, 485–496.

    Article  PubMed  CAS  Google Scholar 

  269. Gazzinelli, R. T., Wysocka, M., Hayashi, S., et al. (1994) Parasite-induced IL-12 stimulates early IFN-g synthesis and resistance during acute infection with Toxoplasma gondii, J. Immunol., 153, 2533–2543.

    PubMed  CAS  Google Scholar 

  270. Mattner, F., Magram, J., Ferrante, J., et al. (1996) Genetically resistant mice lacking interleukin-12 are susceptible to infection with Leishmania major and mount a polarized Th2 cell response, Eur. J. Immunol., 26, 1553–1559.

    Article  PubMed  CAS  Google Scholar 

  271. Su, Z. and Stevenson, M. M. (2002) IL-12 is required for antibody-mediated protective immunity against blood-stage Plasmodium chabaudi AS malaria infection in mice, J. Immunol., 168, 1348–1355.

    PubMed  CAS  Google Scholar 

  272. Roggero, E., Perez, A., Tamae-Kakasu, M., et al. (2002) Differential susceptibility to acute Trypanozoma cruzi infection in BALB/c and C57BL/6 mice is not associated with a distinct parasite load but cytokine abnormalities, Clin. Exp. Immunol., 128, 421–428.

    Article  PubMed  CAS  Google Scholar 

  273. Gazzinelli, R. T., Hieny, S., Wysocka, M., et al. (1996) In the absence of endogenous IL-10 mice acutely infected with Toxoplasma gondiisuccumb to a lethal CD41 T cell response associated with type 1 cytokine synthesis, J. Immunol., 157, 798–805.

    PubMed  CAS  Google Scholar 

  274. Hunter, C. A., Ellis-Neyes, L. A., Slifer, T., et al. (1997) IL-10 is required to prevent immune hyperactivity during infection with Trypanozoma cruzi, J. Immunol., 158, 3311–3316.

    PubMed  CAS  Google Scholar 

  275. Camargo, M. M., Almeida, I. C., Pereira, M. E. S., et al. (1997) Glycosylphosphatidylinositol anchored mucin-like glycoproteins isolated from Trypanozoma cruzitrypomastigotes initiate the synthesis of proinflammatory cytokines by macrophages, J. Immunol., 158, 5980–5991.

    Google Scholar 

  276. Almeida, I. C., Camargo, M. M., Procopio, D. O., et al. (2000) Highly-purified glycosylphosphatidylinositols from Trypanozoma cruzi are potent proinflammatory agents, EMBO J., 19, 1476–1485.

    Article  PubMed  CAS  Google Scholar 

  277. Almeida, I. C. and Gazzinelli, R. T. (2001) Proinflammatory activity of glycosylphosphatidylinositol anchors derived from Trypanozoma cruzi: structural and functional analyses, J. Leuk. Biol., 70, 467–477.

    CAS  Google Scholar 

  278. Schofield, L. and Hackett, F. (1993) Signal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites, J. Exp. Med., 177, 145–153.

    Article  PubMed  CAS  Google Scholar 

  279. Naik, R. S., Branch, O. L. H., and Wood, A. S. (2000) Glycosylphosphatidylinositol anchors of Plasmodium falciparum: molecular characterization and naturally elicited antibody response that may provide immunity to malaria pathogenesis, J. Exp. Med., 192, 1563–1575.

    Article  PubMed  CAS  Google Scholar 

  280. Magez, S., Stijlemans, B., Radwanska, M., et al. (1998) The glycosyl-inositol-phosphate and dimyristoylglycerol moieties of the glycosylphosphatidylinositol anchor of the Trypanozoma variant-specific surface glycoprotein are distinct macrophage activating factors, J. Immunol., 160, 1949–1956.

    PubMed  CAS  Google Scholar 

  281. Ferguson, M. A. J. (1999) The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors and the contributions of Trypanozoma research, J. Cell Sci., 112, 2799–1809.

    PubMed  CAS  Google Scholar 

  282. Campos, M. A. S., Almeida, I. C., Takeuchi, O., et al. (2001) Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite, J. Immunol., 167, 416–423.

    PubMed  CAS  Google Scholar 

  283. Janeway, C. A., Jr. and Medzhitov, R. (2002) Innate immune recognition, Annu. Rev. Immunol., 20, 197–216.

    Article  PubMed  CAS  Google Scholar 

  284. Akira, S., Takeda, K., and Kaisho, T. (2001) Toll-like receptors: critical proteins linking innate and acquired immunity, Nat. Immunol., 2, 675–680.

    Article  PubMed  CAS  Google Scholar 

  285. Bendelac, A. and Medzhitov, R. (2002) Adjuvants of immunity: harnessing innate immunity to promote adaptive immunity, J. Exp. Med., 195, F19-F23.

    Article  PubMed  CAS  Google Scholar 

  286. Jankovic, D., Sher, A., and Yap, G. (2001) Th1/Th2 effector choice in parasitic infection: decision making by committee, Curr. Opin. Immunol., 13, 403–409.

    Article  PubMed  CAS  Google Scholar 

  287. O’Garra, A. (1998) Cytokines induce the development of functionally heterogeneous T helper cell subsets, Immunity, 8, 275–283.

    Article  PubMed  Google Scholar 

  288. Okano, M., Nishizaki, K., Da’dara, A., Thomas, P., Carter, M., and Harn, D. A., Jr. (2006) The immunomodulatory glycan LNFPIII/Lewis X functions as a potent adjuvant for protein antigens. In: Vaccine Adjuvants: Immunological and Clinical Principles (Hacket, C. J. and Harn, D. A., Jr., eds.), Humana Press, Totowa, NJ, 177–191.

    Google Scholar 

  289. Finkelman, F. D. and Urban, J. F., Jr. (2001) The other side of the coin: the protective role of the TH2 cytokines, J. Allergy Clin. Immunol., 107, 772–780.

    Article  PubMed  CAS  Google Scholar 

  290. Remou, F., Rogerie, F., Gallissot, M. C., et al. (2000) Sex-dependent neutralizing humoral response to Schistosoma mansoni 28GST antigen in infected human populations, J. Infect. Dis., 181, 1855–1859.

    Article  Google Scholar 

  291. Urban, J. F., Jr., Fayer, R., Sullivan, C., et al. (1996) Local TH1 and TH2 responses to parasitic infection in the intestine: regulation by IFN-gamma and IL-4, Vet. Immunol. Immunopathol., 54, 337–344.

    Article  PubMed  CAS  Google Scholar 

  292. Urban, J. F., Jr., Schopf, L., Morris, S. C., et al. (2000) Stat6 signaling promotes protective immunity against Trichinella spiralis through a mast cell- and T-cell-dependent mechanism, J. Immunol., 164, 2046–2052.

    PubMed  CAS  Google Scholar 

  293. Fallon, P. G., Fookes, R. E., and Wharton, G. A. (1996) Temporal differences in praziquantel- and oxamniquine-induced tegumental damage to adult Schistosoma mansoni: implications for drug-antibody synergy, Parasitology, 112(Part 1), 47–58.

    Article  PubMed  CAS  Google Scholar 

  294. Vella, A. T. and Pearce, E. J. (1992) CD4+ and Th2 response induced by Schistosoma mansoni eggs develops rapidly, through an early, transient Th0-like stage, J. Immunol., 148, 2283–2290.

    PubMed  CAS  Google Scholar 

  295. Cook, G. A., Metwali, A., Blum, A., Mathew, R., and Weinstock, J. V. (1993) Lymphokine expression in granulomas of Schistosoma mansoni-infected mice, Cell Immunol., 152, 13–58.

    Article  Google Scholar 

  296. van der Kleij, D., Latz, E., Brouwers, J. F., et al. (2002) A novel host-parasite lipid cross-talk. Schistosomal lyso-phosphatidylserine activates Toll-like receptor 2 and affects immune polarization, J. Biol. Chem., 227, 48122–48129.

    Article  Google Scholar 

  297. Velupillai, P., dos Reis, E. A., dos Reis, M. G., and Harn, D. A. (2000) Lewisx- containing oligosaccharide attenuates schistosome egg antigen-induced immune depression in human schistosomias, Hum. Immunol., 61, 225–232.

    Article  PubMed  CAS  Google Scholar 

  298. Velupillai, P. and Harn, D. A. (1994) Oligosaccharide-specific induction of interleukin 10 production by B220+ cells from schistosome-infected mice: a mechanism for regulation of CD+ T-cell subsets, Proc. Natl. Acad. Sci. U.S.A., 91(1), 18–22.

    Article  PubMed  CAS  Google Scholar 

  299. Thomas, P. G., Carter, M. R., Atochina, O., et al. (2003) Maturation of dendritic cell 2 phenotype by a helminth glycan uses a Toll-like receptor 4-dependent mechanism, J. Immunol., 171, 5837–5841.

    PubMed  CAS  Google Scholar 

  300. Ellouz, F., Adam, A., Ciobaru, R., and Lederer, E. (1974) Minimal structural requirements for adjuvant activity of bacterial peptidoglycan derivatives, Biochem. Biophys. Res. Commun., 59, 1317–1325.

    Article  PubMed  CAS  Google Scholar 

  301. Bahr, G. M. (2006) Immune and antiviral effects of the synthetic immunomodulator murabutide. In: Vaccine Adjuvants: Immunological and Clinical Principles (Hackett, C. and Harn, D. A., Jr., eds.), Humana Press, Totowa, NJ, pp. 193–219.

    Google Scholar 

  302. Bahr, G. M., Darcissac, E., Bevec, D., Dukor, P., and Chedid, L. (1995) Immunopharmacological activities and clinical development of muramyl peptides with particular emphasis on murabutide, Int. J. Immunopharmacol., 17, 117–131.

    Article  PubMed  CAS  Google Scholar 

  303. Waters, R. V., Terrell, T. G., and Jones, G. H. (1986) Uveitis induction in the rabbit by muramyl dipeptides, Infect. Immun., 51, 816–825.

    PubMed  CAS  Google Scholar 

  304. Chedid, L., Audibert, F., Lefrancier, P., Choay, J., and Lederer, E. (1976) Modification of the immune response by a synthetic adjuvant and analogs, Proc. Natl. Acad. Sci. U.S.A., 73, 2472–2475.

    Article  PubMed  CAS  Google Scholar 

  305. Lefrancier, P., Derrien, M. Jamet, X., et al. (1982) Apyrogenic, adjuvant-active N- acetyl-muramyl-dipeptides, J. Med. Chem., 25, 87–90.

    Article  PubMed  CAS  Google Scholar 

  306. Werner, G. H. and Jolles, P. (1996) Immunostimulating agents: what next? A review of their present and potential medical applications, Eur. J. Biochem., 242, 1–19.

    Article  PubMed  CAS  Google Scholar 

  307. Azuma, I. and Otani, T. (1994) Potentiation of host defense mechanism against infection by a cytokine inducer, an acyl-MDP derivative, MDP-Lys(L18) (romurtide) in mice and humans, Med. Res. Rev., 14, 401–414.

    Article  PubMed  CAS  Google Scholar 

  308. Phillips, N. C. and Chedid, L. (1988) Muramyl peptides and liposomes. In: Liposomes as Drug Carriers (Gregoriadis, G. E., ed.), John Wiley & Sons, Ltd, Chichester, pp. 243–259.

    Google Scholar 

  309. Parant, M. (1987) Muramyl peptides as enhancers of host resistance to bacterial infections. In: Immunopharmacology of Infectious Diseases: Vaccine Adjuvants and Modulators of Non-Specific Resistance (Majde, J. A. ed.), Alan R. Liss, Inc., New York, pp. 235–244.

    Google Scholar 

  310. Parant, M. and Chedid, L. (1988) Muramyl dipeptides. In: Handbook of Experimental Pharmacology, vol. 85 (Bray, M. A. and Morley, J., eds.), Springer-Verlag, Berlin, pp. 503–516.

    Google Scholar 

  311. Chedid, L. A., Parant, M. A., Audibert, F. M., et al. (1982) Biological activity of a new synthetic muramyl peptide adjuvant devoid of pyrogenicity, Infect. Immun., 35, 417–424.

    PubMed  CAS  Google Scholar 

  312. Byars, N. E. (1984) Two adjuvant-active muramyl dipeptide analogs induce differential production of lymphocyte-activating factor and a factor causing distress in guinea pigs, Infect. Immun., 44, 344–350.

    PubMed  CAS  Google Scholar 

  313. Kong, Y. C., Audibert, F., Giraldo, A. A., Rose, N. R., and Chedid, L. (1985) Effects of natural or synthetic microbial adjuvants on induction of autoimmune thyroiditis, Infect. Immun., 49, 40–45.

    PubMed  CAS  Google Scholar 

  314. Chang, Y. H., Pearson, C. M., and Chedid, L. (1981) Adjuvant polyarthritis. V. Induction by N-acetylmuramyl-L-alanyl-D-isoglutamine, the smallest peptide subunit of bacterial peptidoglycan, J. Exp. Med., 153, 1021–1026.

    Article  PubMed  CAS  Google Scholar 

  315. Audibert, F. M., Przewlocki, G., Leclerc, C. D., et al. (1984) Enhancement by murabutide of the immune response to natural and synthetic hepatitis B surface antigens, Infect. Immun., 45, 261–266.

    PubMed  CAS  Google Scholar 

  316. Przewlocki, G., Audibert, F., Jolivet, M., et al. (1986) Production of antibodies recognizing a hepatitis B virus (HBV) surface antigen by administration of murabutide associated to a synthetic pre-S HBV peptide conjugated to a toxoid carrier, Biochem. Biophys. Res. Commun., 140, 557–564.

    Article  PubMed  CAS  Google Scholar 

  317. Olberling, F., Morin, A., Duclos, B., Lang, J. M., Berchley, E. H., and Chedid, L. (1983) Enhancement of antibody response to a natural fragment of streptococcal M protein by murabutide administered to healthy volunteers, Int. J. Immunol., 7, 398.

    Article  Google Scholar 

  318. Telzak, E., Wolff, S. M., Dinarello, C. A., et al. (1986) Clinical evaluation of the immunoadjuvant murabutide, a derivative of MDP, administered with tetanus toxoid vaccine, J. Infect. Dis., 153, 628–633.

    PubMed  CAS  Google Scholar 

  319. Darcissac, E. C., Truong, M. J., Dewulf, J., Mouton, Y., et al. (2000) The synthetic immunomodulator murabutide controls human immunodeficiency virus type 1 replication at multiple levels in macrophages and dendritic cells, J. Virol., 74, 7794–7802.

    Article  PubMed  CAS  Google Scholar 

  320. Amiel, C., de la Tribonniere, X., Vidal, V., et al. (2002) Clinical tolerance and immunological effects after single or repeated administrations of the synthetic immunomodulator murabutide in HIV-1-infected patients, J. AIDS, 30, 294–305.

    CAS  Google Scholar 

  321. de la Tribonniere, X., Mouton, Y., Vidal, V., et al. (2003) A phase I study of a six- week cycle of immunotherapy with murabutide in HIV-1 patients naïve to antiretrovirals, Med. Sci. Monit., 9, 143–150.

    Google Scholar 

  322. Kensil, C. R., Liu, G., Anderson, C., and Storey, J. (2006) Effects of QS-21 on innate and adaptive immune responses. In: Vaccine Adjuvants: Immunological and Clinical Principles (Hackett, C. and Harn, D. A., Jr., eds.), Humana Press, Totowa, NJ, pp. 221–234.

    Google Scholar 

  323. Hostettman, K. and Marston, A. (1995) Saponins, Cambridge University Press, Cambridge.

    Google Scholar 

  324. Jacobsen, N. E., Fairbrother, W. J., Kensil, C. R., et al. (1996) Structure of the saponin adjuvant QS-21 and its base-catalyzed isomerization product by 1H and natural abundance 13C NMR spectrometry, Carbohydr. Res., 280, 1–14.

    Article  PubMed  CAS  Google Scholar 

  325. Espinet, R. G. (1951) Nouveau vaccine antiaphteux a complexe glucoviral, Gac. Vet., 13, 268–273.

    Google Scholar 

  326. Dalsgaard. K. (1974) Isolation of a substance from Quillaja saponaria Molina with adjuvant activity in foot-and-mouth disease vaccines, Arch. Gesamte Virusforsch., 44, 243–254.

    Google Scholar 

  327. van Setten, D. C., van de Werken, G., Zomer, G., and Kersten, G. F. A. (1995) Glycosyl compositions and structural characteristics of the potential immunoadjuvant active saponins in the Quillaja saponaria Molina extract Quil A, Rapid Commun. Mass Spectrom., 9, 660–666.

    Article  PubMed  Google Scholar 

  328. Kensil, C. R., Patel, U., Lennick, M., and Marcianni, D. (1991) Separation and characterization of saponins with adjuvant activity from Quillaja saponaria Molina cortex, J. Immunol., 146, 431–437.

    PubMed  CAS  Google Scholar 

  329. Soltysik, S., Wu, J. Y., Recchia, J., et al. (1995) Structure/function studies of QS-21 adjuvant: assessment of triterpene aldehyde and glucuronic acid roles in adjuvant function, Vaccine, 13, 1403–1410.

    Article  PubMed  CAS  Google Scholar 

  330. Rhodes, J. (1989) Evidence for an intercellular covalent reaction essential in antigen-specific T cell activation, J. Immunol., 143, 1482–1489.

    PubMed  CAS  Google Scholar 

  331. Liu, G., Anderdon, C., Scaltreto, H., Barbon, J., and Kensil, C. R. (1994) QS-21 structure/function studies: effect of acylation on adjuvant activity, Vaccine, 20, 2808–2815.

    Article  Google Scholar 

  332. Kensil, C. R., Newman, M. J., Coughlin, R. T., et al. (1993) The use of Stimulon adjuvant to boost vaccine response, Vaccine Res., 2, 273–281.

    CAS  Google Scholar 

  333. Coughlin, R. T., Fattom, A., Chu, C., White, A. C., and Winston, S. (1995) Adjuvant activity of QS-21 for experimental E. coli 018 polysaccharide vaccines, Vaccine, 13, 17–21.

    Article  PubMed  CAS  Google Scholar 

  334. Hancock, G. E., Speelman, D. J., Frenchick, P. J., et al. (1995) Formulation of the purified fusion protein of respiratory syncytial virus with the saponin QS-21 induces protective immune responses in Balb/c mice that are similar to those generated by experimental infection, Vaccine, 13, 391–400.

    Article  PubMed  CAS  Google Scholar 

  335. Sasaki, S., Sumino, K., Hamajima, K., et al. (1998) Induction of systemic and mucosal immune responses to human immuno- deficiency virus type 1 by a DNA vaccine formulated with QS-21 saponin adjuvant via intramuscular and intranasal routes, J. Virol., 72, 4931–4939.

    PubMed  CAS  Google Scholar 

  336. Kim, S. K., Ragupathi, G., Musselli, C., et al. (1999) Comparison of the effect of different immunological adjuvants on the antibody and T-cell response to immunization with MUC1-KLH and GD3-KLH conjugate cancer vaccines, Vaccine, 18, 597–603.

    Article  PubMed  CAS  Google Scholar 

  337. Chen, D., Endres, R., Maa, Y. F., et al. (2003) Epidermal powder immunization of mice and monkeys with an influenza vaccine, Vaccine, 21, 2830–2836.

    Article  PubMed  CAS  Google Scholar 

  338. Evans, T. G., McElrath, M. J., Matthews, T., et al. (2001) QS-21 promotes an adjuvant effect allowing for reduced antigen dose during HIV-1 envelope subunit immunization in humans, Vaccine, 19, 2080–2091.

    Article  PubMed  CAS  Google Scholar 

  339. Nardin, E. H., Oliveira, G. A., Calvo-Calle, J. M., et al. (2000) Synthetic malaria peptide vaccine elicits high levels of antibodies in vaccines of defined HLA genotypes, J. Infect. Dis., 182, 1486–1496.

    Article  PubMed  CAS  Google Scholar 

  340. Livingston, P. O., Adluri, S., Helling, F., et al. (1994) Phase I trial of immunological adjuvant QS-21 with GM2 ganglioside-keyhole limpet haemocyanin conjugate vaccine in patients with malignant melanoma, Vaccine, 12, 1275–1280.

    Article  PubMed  CAS  Google Scholar 

  341. Helling, F., Zhang, S., Shang, A., et al. (1995) GM2-KLH conjugate vaccine: increased immunogenicity in melanoma patients after administration with immunological adjuvant QS-21, Cancer Res., 55, 2783–2788.

    PubMed  CAS  Google Scholar 

  342. Boyaka, P. N., Marinaro, M., Jackson, P. J., et al. (2001) Oral QS-21 requires early IL-4 help for induction of mucosal and systemic immunity, J. Immunol., 166, 2283–2290.

    PubMed  CAS  Google Scholar 

  343. Chen, D., McMichael, J. C., van der Meid, K. R., et al. (1996) Evaluation of purified UspA from Moraxella catarrhalis as a vaccine in a murine model after active immunization, Infect. Immun., 64, 1900–1905.

    PubMed  CAS  Google Scholar 

  344. Yewdell, J. W. and Bennink, J. R. (1990) The binary logic of antigen processing and presentation to T cells, Cell, 62, 203–206.

    Article  PubMed  CAS  Google Scholar 

  345. Newman, M. J., Wu, J. Y., Gardner, B. H., et al. (1992) Saponin adjuvant induction of ovalbumin-specific CD8+ cytotoxic T lymphocyte responses, J. Immunol., 148, 2357–2362.

    PubMed  CAS  Google Scholar 

  346. Wu, J. Y., Gardner, B. H., Murphy, C. I., et al. (1992) Saponin adjuvant enhancement of antigen-specific immune responses to an experimental HIV-1 vaccine, J. Immunol., 148, 1519–1525.

    PubMed  CAS  Google Scholar 

  347. Fenton, R. G., Keller, C. J., Hanna, N., and Taub, D. D. (1995) Induction of T cell immunity against Ras oncoproteins by soluble protein or Ras-expressing Escherichia coli, J. Natl. Cancer Inst., 87, 1853–1861.

    Article  PubMed  CAS  Google Scholar 

  348. Kensil, C., Mo, A., and Truneh, A. (2004) Current vaccine adjuvants: an overview of a diverse class, Front. Biosci., 9, 2972–2988.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassil St. Georgiev PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Georgiev, V.S. (2009). Immune Adjuvants. In: Georgiev, V.S. (eds) National Institute of Allergy and Infectious Diseases, NIH. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-60327-297-1_39

Download citation

Publish with us

Policies and ethics