Skip to main content

Part of the book series: Infectious Disease ((ID))

The mammalian host defense is categorized into innate and adaptive immunity (1,2,3). Host defense relies on a concerted action of both antigen (Ag)-nonspecific innate immunity and Ag-specific adaptive immunity (4–6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ezekowitz, R. A. B. and Hoffmann, J. A. (eds.) (2003) Innate Immunity, Humana Press, Totowa, NJ

    Google Scholar 

  2. Gordon, S. (2003) Mammalian host defenses. In: Innate Immunity (Ezekowitz, R. A. B. and Hoffmann, J. A. eds.), Humana Press, Totowa, NJ, pp. 175–176

    Google Scholar 

  3. Kaisho, T. and Akira, S. (2003) Toll-like receptors. In: Innate Immunity (Ezekowitz, R. A. B. and Hoffmann, J. A. eds.), Humana Press, Totowa, NJ, pp. 177–189

    Google Scholar 

  4. Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y.-J., Pulendran, B., and Palucka, K. (2000) Immunobiology of dendritic cells, Annu. Rev. Immunol., 18, 767–811

    Article  PubMed  CAS  Google Scholar 

  5. Fearon, D.T. and Locksley, R. M. (1996) The instructive role of innate immunity in the acquired immune response, Science, 272, 50–53

    Article  PubMed  CAS  Google Scholar 

  6. Hoffmann, J.A., Kafatos, F. C., Janeway, C. A., and Ezekowitz, R. A. (1999) Phylogenetic perspectives in innate immunity, Science, 284, 1313–1318

    Article  PubMed  CAS  Google Scholar 

  7. Kunkel, S. L. (2003) Mamalian host defenses: links between innate and adaptive immunity. In: Innate Immunity (Ezekowitz, R. A. B. and Hoffmann, J. A. eds.), Humana Press, Totowa, NJ, pp. 267–268

    Google Scholar 

  8. Ramkumar, T. P., Hammache, D., and Stahl, P. D. (2003) The macrophage mannose receptor and innate immunity. In: Innate Immunity (Ezekowitz, R. A. B. and Hoffmann, J. A. eds.), Humana Press, Totowa, NJ, pp. 191–204

    Google Scholar 

  9. Janeway, C. A., Jr. (1992) The immune system evolved to discriminate infectious nonself from noninfectious self, Immunol. Today, 13, 11–16

    Article  PubMed  CAS  Google Scholar 

  10. Aderem, A. and Ulevitch, R. J. (2000) Toll-like receptors in the induction of the innate immune response, Nature, 406, 782–787

    Article  PubMed  CAS  Google Scholar 

  11. Akira, S., Takeda, K., and Kaisho, T. (2001) Toll-like receptors: critical proteins linking innate and acquired immunity, Nat. Immunol., 2, 675–680

    Article  PubMed  CAS  Google Scholar 

  12. Hogaboam, C. M. and Kunkel, S. L. (2003) The role of chemokines in linking innate and adaptive immunity. In: Innate Immunity (Ezekowitz, R. A. B. and Hoffmann, J. A. eds.), Humana Press, Totowa, NJ, pp. 269–286

    Google Scholar 

  13. Palucka, K. and Banchereau, J. (1999) Linking innate and adaptive immunity, Nat. Med., 5, 868–870

    Article  PubMed  CAS  Google Scholar 

  14. Bromley, S. K., Burack, W. R., Johnson, K. G., et al. (2001) The immunological synapse, Annu. Rev. Immunol., 19, 375–369

    Article  PubMed  CAS  Google Scholar 

  15. Parish, C. R. and O’Neill, E. R. (1997) Dependence of the adaptive immune response on innate immunity: some questions answered but new paradoxes emerge, Immunol. Cell Biol., 75, 523–527

    Article  PubMed  CAS  Google Scholar 

  16. Lo, D., Feng, L., Li, L., et al. (1999) Integrating innate and adaptive immunity in the whole animal, Immunol. Rev., 169, 225–239

    Article  PubMed  CAS  Google Scholar 

  17. Takeda, K., Kaisho, T., and Akira, S. (2003) Toll-like receptors, Annu. Rev. Immunol., 21, 335–376

    Article  PubMed  CAS  Google Scholar 

  18. Tanji, T., Hu, X., Weber, A. N. R., and Ip, Y. Y. (2007) Toll and IMD pathways synergistically activate an innate immune response in Drosophila melanogaster, Mol. Cell Biol., 27(12), 4578–4588

    Article  CAS  Google Scholar 

  19. Rock, F. L., Hardiman, G., Timans, J. C., Kastelein, R. A., and Bazan, J. F. (1998) A family of human receptors structurally related to Drosophila Toll, Proc. Natl. Acad. Sci. U.S.A., 95, 588–593

    Article  CAS  Google Scholar 

  20. Takeuchi, O., Kawai, T., Sanjo, H., et al. (1999) TLR6: a novel member of an expanding Toll-like receptor family, Gene, 231, 59–65

    Article  PubMed  CAS  Google Scholar 

  21. Du, X., Poltorak, A., Wei, Y., and Beutler, B. (2000) Three novel mammalian Toll-like receptors: gene structure, expression, and evolution, Eur. Cytokine Netw., 11, 362–371

    PubMed  CAS  Google Scholar 

  22. Hemmi, H., Takeuchi, O., Kawai, T., et al. (2000) Toll-like receptor recognizes bacterial DNA, Nature, 408, 740–745

    Article  PubMed  CAS  Google Scholar 

  23. Chuang, T. and Ulevitch, R. J. (2001) Identification of hTLR10: a novel human Toll-like receptor preferentially expressed in immune cells, Biochim. Biophys. Acta, 1518(1–2), 157–161

    Google Scholar 

  24. Takeda, K. and Akira, S. (2004) TLR signaling pathways, Semin. Immunol., 16(1), 3–9

    Article  PubMed  CAS  Google Scholar 

  25. Underhill, D. M., Ozinsky, A., Smith, K. D., and Aderem, A. (1999) Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages, Proc. Natl. Acad. Sci. U.S.A., 96, 14459–14463

    Article  PubMed  CAS  Google Scholar 

  26. Steiner, T. S., Nataro, J. P., Poteet-Smith, C. E., Smith, J. A., and Guerrant, R. L. (2000) Enteroaggregative Escheria coli express a novel flagellin that caused IL-8 release from intestinal epithelial cells, J. Clin. Invest., 105, 1769–1777

    Article  PubMed  CAS  Google Scholar 

  27. Eaves-Pyles, T., Murthy, K., Liaudet, L., et al. (2001) Flagellin, a novel mediator of Salmonella-induced epithelial activation and systemic inflammation: IҝBα degradation, induction of nitric oxide synthase, induction of proinflammatory mediators, and cardiovascular dysfunction, J. Immunol., 166, 1248–1260

    CAS  Google Scholar 

  28. Hayashi, F., Smith, K. D., Ozinsky, A., et al. (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor-5, Nature, 410, 1099–1103

    Article  PubMed  CAS  Google Scholar 

  29. Gewirtz, A. T., Simon, J., Schmitt, C. K., et al. (2001) Salmonella typhimurium translocates flagellin across intestinal epithelia, inducing a proinflammatory response, J. Clin. Invest., 107, 99–109

    Google Scholar 

  30. Tokunaga, T., Yamamoto, H., Shimada, S., et al. (1984) Antitumor activity of deoxyribonucleic acid fraction from Mycobacterium bovis BCG. I. Isolation, physicochemical characterization, and antitumor activity, J. Natl. Cancer Inst., 72, 955–962

    CAS  Google Scholar 

  31. Krieg, A. M., Yi, A. K., Matson, S., et al. (1995) CpG motifs in bacterial DNA trigger direct B cell activation, Nature, 374, 546–549

    Article  PubMed  CAS  Google Scholar 

  32. Stahl, P. D. and Ezekowitz, R. A. (1998) The mannose receptor is a pattern recognition receptor involved in host defense, Curr. Opin. Immunol., 10, 50–55

    Article  PubMed  CAS  Google Scholar 

  33. Linehan, S. A., Martinez-Pomares, L., and Gordon, S. (2000) Macrophage lectins in host defence, Microbes Infect., 2, 279–288

    Article  PubMed  CAS  Google Scholar 

  34. Taylor, M. E. (2001) Structure and function of the macrophage mannose receptor, Results Probl. Cell Differ., 33, 105–121

    PubMed  CAS  Google Scholar 

  35. Medzhitov, R. and Janeway, C. A., Jr. (1997) Innate immunity: impact on the adaptive immune response, Curr. Opin. Immunol., 9, 4–9

    Article  PubMed  CAS  Google Scholar 

  36. Hille-Rehfeld, A. (1995) Mannose 6-phosphate receptors in sorting and transport of lysosomal enzymes, Biochim. Biophys. Acta, 1241, 177–194

    PubMed  Google Scholar 

  37. Stahl, P. D., Wileman, T. E., Diment, S., and Shepherd, V. L. (1984) Mannose- specific oligosaccharide recognition by monomeric phagocytes, Biol. Cell, 51, 215–218

    PubMed  CAS  Google Scholar 

  38. Martinez-Pomares, L., Mahoney, J. A., Kaposzta, R., et al. (1998) A functional soluble form of the murine mannose receptor is produced by macrophages in vitro and is present in mouse serum, J. Biol. Chem., 273, 23376–23380

    Article  PubMed  CAS  Google Scholar 

  39. Martinez-Pomares, L. and Gordon, S. (1999) Potential role of the mannose receptor in antigen transport, Immunol. Lett., 65, 9–13

    Article  PubMed  CAS  Google Scholar 

  40. Schweizer, A., Stahl, P. D., and Rohrer, J. (2000) A di-aromatic motif in the cytosolic tail of the mannose receptor mediates endosomal sorting, J. Biol. Chem., 275, 29694–29700

    Article  PubMed  CAS  Google Scholar 

  41. Kruskal, B. A., Sastry, K., Warner, A. B., Mathieu, C. E., and Ezekowitz, R. A. (1992) Phagocytic chimeric receptors require both transmembrane and cytoplasmic domains from the mannose receptor, J. Exp. Med., 176, 1673–1680

    Article  PubMed  CAS  Google Scholar 

  42. Pontow, S. E., Blum, J. S., and Stahl, P. D. (1996) Delayed activation of the mannose receptor following synthesis. Requirement for exit from the endoplasmic reticulum, J. Biol. Chem., 271, 30736–30740

    Article  PubMed  CAS  Google Scholar 

  43. Tietze, C., Schlesinger, P., and Stahl, P. (1982) Mannose-specific endocytosis receptor of alveolar macrophages: demonstration of two functionally distinct intracellular pools of receptor and their roles in receptor recycling, J. Cell. Biol., 92, 417–424

    Article  PubMed  CAS  Google Scholar 

  44. Wileman, T., Boshans, R. L., Schlesinger, P., and Stahl, P. (1984) Monesin inhibits recycling of macrophage mannose-glycoprotein receptors and ligand delivery to lysosomes, Biochem. J., 220, 665–675

    PubMed  CAS  Google Scholar 

  45. Montaner, L. J., da Silva, R. P., Sun, J., et al. (1999) Type 1 and type 2 cytokine regulation of macrophage endocytosis: differential activation by IL-4/IL-13 as opposed to IFN-gamma or IL-10, J. Immunol., 162, 4606–4613

    PubMed  CAS  Google Scholar 

  46. Crouch, E. C. (1998) Collectins and pulmonary host defense, Am. J. Respir. Cell. Mol. Biol., 19, 177–201

    PubMed  CAS  Google Scholar 

  47. Wright, J. R. (1997) Immunomodulatory functions of surfactant, Physiol. Rev., 77, 931–962

    PubMed  CAS  Google Scholar 

  48. Haagsman, H. P. (1998) Interactions of surfactant protein A with pathogens, Biochim. Biophys. Acta, 1408, 264–277

    PubMed  CAS  Google Scholar 

  49. Holmskov, U. L. (2000) Collectins and collectin receptors in innate immunity, APMIS Suppl., 100, 1–59

    PubMed  CAS  Google Scholar 

  50. Lawson, P. R. and Reid, K. B. (2000) The roles of surfactant proteins A and D in innate immunity, Immunol. Rev., 173, 66–78

    Article  PubMed  CAS  Google Scholar 

  51. Hakansson, K. and Reid, K. B. (2000) Collectin structure: a review, Protein Sci., 9, 1607–1617

    Article  PubMed  CAS  Google Scholar 

  52. Ohtani, K., Suzuki, Y., Eda, S., et al. (1999) Molecular cloning of a novel human collectin from liver (CL-L1), J. Biol. Chem., 274, 13681–13689

    Article  PubMed  CAS  Google Scholar 

  53. Khoor, A., Gray, M. E., Hull, W. M., Whisett, J. A., and Stahlman, M. T. (1993) Developmental expression of SP-A and SP-A mRNA in the proximal and distal respiratory epithelium in the human fetus and newborn, J. Histochem. Cytochem., 41, 1311–1119

    PubMed  CAS  Google Scholar 

  54. Khubchandani, K. R. and Snyder, J. M. (2001) Surfactant protein A (SP-A): the alveolus and beyond, FASEB J., 15, 59–69

    Article  PubMed  CAS  Google Scholar 

  55. Madsen, J., Kliem, A., Tornoe, I., et al. (2000) Localization of lung surfactant protein D (SP-D) on mucosal surfaces in human tissues, J. Immunol., 164, 5866–5870

    PubMed  CAS  Google Scholar 

  56. Hakansson, K., Lim, N. K., Hoppe, H. J., and Reid, K. B. (1999) Crystal structure of the trimeric alpha-helical coiled-coil and the three lectin domains of human lung surfactant protein D, Structure Fold. Des., 7, 255–264

    Article  PubMed  CAS  Google Scholar 

  57. Crouch, E. C. and Whitsett, J. A. (2003) Diverse roles of lung collectins in pulmonary innate immunity. In: Innate Immunity (Ezekowitz, R. A. B. and Hoffmann, J. A. (eds.), Humana Press, Totowa, NJ, pp. 205–229

    Google Scholar 

  58. Voss, T., Melchers, K., Scheirle, G., and Schafer, K. P. (1991) Structural comparison of recombinant pulmonary composition of natural protein SP-A derived from two human coding sequences: implication for the chain composition of natural human SP-A, Am. J. Respir. Cell. Mol. Biol., 4, 88–94

    PubMed  CAS  Google Scholar 

  59. Karinch, A. M., Deiter, G., Ballard, P. L., and Floros, J. (1998) Regulation of expression of human SP-A1 and SP-A2 genes in fetal lung explant culture, Biochim. Biophys. Acta, 1398, 192–202

    PubMed  CAS  Google Scholar 

  60. McCormick, S. M. and Mendelson, C. R. (1994) Human SP-A1 and SP-A2 genes are differentially regulated during development and by cAMP and glucocorticoids, Am. J. Physiol., 266, L367–L374

    Google Scholar 

  61. Van Eijk, M., Haagsman, H. P., Skinner, T., et al. (2000) Porcine lung surfactant protein D: complementary DNA cloning, chromosomal localization, and tissue distribution, J. Immunol., 164, 1442–1450

    PubMed  Google Scholar 

  62. Crouch, E. and Wright, J. R. (2001) Surfactant proteins A and D and pulmonary host defense, Annu. Rev. Physiol., 63, 521–554

    Article  PubMed  CAS  Google Scholar 

  63. Madan, T., Kishore, U., Shah, A., et al. (1997) Lung surfactant proteins A and D can inhibit specific IgE binding to the allergens of Aspergillus fumigatus and block allergen-induced histamine release from human basophils, Clin. Exp. Immunol, 110, 241–249

    PubMed  CAS  Google Scholar 

  64. Allen, M. J., Harbeck, R., Smith, B., Voelker, D. R., and Mason, R. J. (1999) Binding of rat and human surfactant proteins A and D to Aspergillus fumigatus conidia, Infect. Immun., 67, 4563–4569

    CAS  Google Scholar 

  65. Madan, T., Kishore, U., Singh, M., et al. (2001) Protective role of lung surfactant protein D in a murine model of invasive pulmonary aspergillosis, Infect. Immun., 69, 2728–2731

    Article  PubMed  CAS  Google Scholar 

  66. Williams, M. D., Wright, J. R., March, K. L., and Martin, W. J. (1996) Human surfactant protein A enhances attachment of Pneumocystis carinii to rat alveolar macrophages, Am. J. Respir. Cell. Mol. Biol., 14, 232–238

    CAS  Google Scholar 

  67. Zimmerman, P. E., Voelker, D. R., McCormack, F. X., Paulsrud, J. R., and Martin, W. J. (1992) 120-kD surface glucoprotein of Pneumocystis carinii is a ligand for surfactant protein A, J. Clin. Invest., 89, 143–149

    CAS  Google Scholar 

  68. O’Riordan, D. M., Standing, J. E., Kwon, K. Y., et al. (1995) Surfactant protein D interacts with Pneumocystis carinii and mediates organism adherence to alveolar macrophages, J. Clin. Invest., 95, 2699–2710

    Google Scholar 

  69. McCormack, F. X., Festa, A. L., Andrews, R. P., Linke, M., and Walzer, P. D. (1997) The carbohydrate recognition domain of surfactant protein A mediates binding to the major surface glycoprotein of Pneumocystis carinii, Biochemistry, 36, 8092–8099

    CAS  Google Scholar 

  70. Vuk-Pavlovic, Z., Diaz-Montes, T., Standing, J. E., and Limper, A. H. (1998) Surfactant protein D binds to cell wall β-glucans, Am. J. Respir. Cell. Mol. Biol., 157, A236

    Google Scholar 

  71. Limper, A. H., Crouch, E. C., O’Riordan, D. M., et al. (1995) Surfactant protein D modulates interaction of Pneumocystis carinii with alveolar macrophages, J. Lab. Clin. Med., 126, 416–422

    CAS  Google Scholar 

  72. Kuan, S. F., Rust, K., and Crouch, E. (1992) Interactions of surfactant protein D with bacterial lipopolysaccharides. Surfactant protein D is an Escherichia coli-binding protein in bronchoalveolar lavage, J. Clin. Invest., 90, 97–106

    CAS  Google Scholar 

  73. Kalina, M., Blau, H., Riklis, S., and Kravtsov, V. (1995) Interaction of surfactant protein A with bacterial lipopolysaccharide may affect some biological functions, Am. J. Physiol., 268, L144–L151

    Google Scholar 

  74. Van Iwaarden, J. F., Pikaar, J. C., Storm, J., et al. (1994) Binding of surfactant protein A to the lipid A moiety of bacterial lipopolysaccharides, Biochem. J., 303, 407–411

    PubMed  Google Scholar 

  75. Borron, P., McIntosh, J. C., Korfhagen, T. R., et al. (2000) Surfactant-associated protein A inhibits LPS-induced cytokine and nitric oxide production in vivo, Am. J. Physiol. (Lung Cell Mol. Physiol.), 278, L840–L847

    Google Scholar 

  76. Greene, K. E., Whitsett, J. A., Korfhagen, T. R., and Fisher, J. H. (2000) SP-D expression regulates endotoxin mediated lung inflammation in vivo, Am. J. Respir. Crit. Care, 161, A515

    Google Scholar 

  77. Bridges, J. P., Davis, H. W., Damodarasamy, M., et al. (2000) Pulmonary surfactant proteins A and D are potent endogenous inhibitors of lipid peroxidation and oxidative cellular injury, J. Biol. Chem., 275, 38848–38855

    Article  PubMed  CAS  Google Scholar 

  78. Stehle, T. and Larvie, M. (2003) Structures of complement control proteins. In: Innate Immunity (Ezekowitz, R. A. B. and Hoffmann, J. A., eds.), Humana Press, Totowa, NJ, pp. 231–253

    Google Scholar 

  79. Janaway, C. A., Jr., Travers, P., Walport, M., and Shlomchik, M. J. (eds.) (2001) Immunobiology: The Immune System in Health and Disease, 5th ed., Garland Publishing, New York

    Google Scholar 

  80. Baron, S. (ed.) (1996) Medical Microbiology, 4th ed., The University of Texas Branch at Galveston, Galveston, TX

    Google Scholar 

  81. Hourcade, D., Holers, V. M., and Atkinson, J. P. (1989) The regulators of complement activation (RCA) gene cluster, Adv. Immunol., 45, 381–416

    Article  PubMed  CAS  Google Scholar 

  82. Liszewski, M. K., Post, T. W., and Atkinson, J. P. (1991) Membrane cofactor protein (MCP or CD46): newest member of the regulators of complement activation gene cluster, Annu. Rev. Biochem., 9, 431–455

    CAS  Google Scholar 

  83. Hourcade, D., Liszewski, M. K., Krych-Goldberg, M., and Atkinson, J. P. (2000) Functional domains, structural variation and pathogen interactions of MCP, DAF and CRI, Immunopharmacology, 49, 103–116

    Article  PubMed  CAS  Google Scholar 

  84. Pangburn, M. K. (2000) Host recognition and target differentiation by factor H, a regulator of the alternative pathway of complement, Immunopharmacology, 49, 149–157

    Article  PubMed  CAS  Google Scholar 

  85. Kirkitadze, M. D. and Barlow, P. N. (2001) Structure and flexibility of the multiple domain proteins that regulate complement activation, Immunol. Rev., 180, 146–157

    Article  PubMed  CAS  Google Scholar 

  86. Kirschfink, M. (2001) Targeting complement in therapy, Immunol. Rev., 180, 177–189

    Article  PubMed  CAS  Google Scholar 

  87. Dörig, R. E., Marcil, A., Chopra, A., and Richardson, C. D. (1993) The human CD46 molecule is a receptor for measles virus (Edmonston strain), Cell, 75, 295–305

    Article  PubMed  Google Scholar 

  88. Naniche, D., Varior-Krishnan, G., Cervoni, F., et al. (1993) Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus, J. Virol., 67, 6025–6032

    PubMed  CAS  Google Scholar 

  89. Okada, N., Liszewski, M. K., Atkinson, J. P., and Caparon, M. (1995) Membrane cofactor protein (CD46) is a keratinocyte receptor for the M protein of the group A Streptococcus, Proc. Natl. Acad. Sci. U.S.A., 92, 2489–2493

    Article  CAS  Google Scholar 

  90. Kallstrom, H., Liszewski, M. K., Atkinson, J. P., and Jonsson, A. B. (1997) Membrane cofactor protein (MCP or CD46) is a cellular pilus receptor for pathogenic Neisseria, Mol. Microbiol., 25, 639–647

    Article  CAS  Google Scholar 

  91. Santoro, F., Kennedy, P. E., Locatelli, G., et al. (1999) CD46 is a cellular receptor for human herpesvirus 6, Cell, 99, 817–827

    Article  PubMed  CAS  Google Scholar 

  92. Karnauchow, T. M., Dawe, S., Lublin, D. M., and Dimock, K. (1998) Short consensus repeat domain 1 of decay-accelerating factor is required for enterovirus 70 binding, J. Virol., 72, 9380–9383.\enlargethispage{12pt}

    PubMed  CAS  Google Scholar 

  93. Bergelson, J. M., Chan, M., Solomon, K. R., et al. (1994) Decay-accelerating factor (CD55), a glycosylphosphatidyl-inositol-anchored complement regulatory protein, is a receptor for several echoviruses, Proc. Natl. Acad. Sci. U.S.A., 91, 6245–6249

    Article  PubMed  CAS  Google Scholar 

  94. Ward, T., Pipkin, P. A., Clarkson, N. A., et al. (1994) Decay-accelerating factor CD55 is identified as a receptor for echovirus-7 using CELICS, a rapid immuno-focal cloning method, EMBO J., 13, 5070–5074

    PubMed  CAS  Google Scholar 

  95. Clarkson, N. A., Kaufman, R., Lublin, D. M., et al. (1995) Characterization of the echovirus 7 receptor: domains of CD55 critical for virus binding, J. Virol., 69, 5497–5501

    PubMed  CAS  Google Scholar 

  96. Bergelson, J. M., Modlin, J. F., Wieland-Alter, W., et al. (1997) Clinical coxsackievirus B isolates differ from laboratory strains in their interaction with two cell-surface receptors, J. Infect. Dis., 175, 697–700

    PubMed  CAS  Google Scholar 

  97. Bergelson, J. M., Cunningham, J. A., Droguett, G., et al. (1997) Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5, Science, 275, 1320–1323

    Article  PubMed  CAS  Google Scholar 

  98. Fingeroth, J. D., Weis, J. J., Tedder, T. F., et al. (1984) Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2, Proc. Natl. Acad. Sci. U.S.A., 81, 4510–4514

    Article  PubMed  CAS  Google Scholar 

  99. Weis, J. J., Tedder, T. F., and Fearon, D. T. (1984) Identification of a 145,000 Mr membrane protein as the C3d receptor (CR2) of human B lymphocytes, Proc. Natl. Acad. Sci. U.S.A., 81, 884–885

    Google Scholar 

  100. Nemerow, G. R., Wolfert, R., McNaughton, M. E., and Cooper, N. R. (1985) Identification and characterization of the Epstein-Barr virus receptor on human B lymphocytes and its relationship to the C3d complement receptor (CR2), J. Virol., 55, 347–351

    PubMed  CAS  Google Scholar 

  101. Sharma, A. K. and Pangburn, M. K. (1997) Localization by site-directed mutagenesis of the site in human complement factor H that binds to Streptomyces pyogenes M protein, Infect. Immun., 65, 484–487

    PubMed  CAS  Google Scholar 

  102. Thern, A., Stenberg, L., Dahlback, B., and Lindahl, G. (1995) Ig-binding surface proteins of Streptococcus pyogenes also bind human C4b-binding protein (C4BP), a regulatory component of the complement system, J. Immunol., 154, 375–386

    CAS  Google Scholar 

  103. Hellwage, J., Meri, T., Heikkila, T., et al. (2001) The complement regulator factor H binds to the surface protein OspE of Borrelia burgdorferi, J. Biol. Chem., 276, 8427–8435

    CAS  Google Scholar 

  104. Norman, D. G., Barlow, P. N., Baron, M., et al. (1991) Three-dimensional structure of a complement control protein module in solution, J. Mol. Biol., 219, 717–725

    Article  PubMed  CAS  Google Scholar 

  105. Barlow, P. N., Baron, M., Norman, D. G., et al. (1991) Secondary structure of a complement control protein module by two-dimensional 1H NMR, Biochemistry, 30, 997–1004

    Article  PubMed  CAS  Google Scholar 

  106. Barlow, P. N., Norman, D. G., Steinkasserer, A., et al. (1992) Solution structure of the fifth repeat of factor H: a second example of the complement control protein module, Biochemistry, 31, 3626–3634

    Article  PubMed  CAS  Google Scholar 

  107. Barlow, P. N., Steinkasserer, A., Norman, D. G., et al. (1993) Solution structure of a pair of complement modules by nuclear magnetic resonance, J. Mol. Biol., 232, 268–284

    Article  PubMed  CAS  Google Scholar 

  108. Wiles, A. P., Shaw, G., Bright, J., et al. (1997) NMR studies of a viral protein that mimicks the regulators of complement activation, J. Mol. Biol., 272, 253–265

    Article  PubMed  CAS  Google Scholar 

  109. Henderson, C. E., Bromek, K., Mullin, N., et al. (2001) Solution structure and dynamics of the central CCP module pair of a poxvirus complement control protein, J. Mol. Biol., 307, 323–339

    Article  PubMed  CAS  Google Scholar 

  110. Casasnovas, J. M., Larvie, M., and Stehle, T. (1999) Crystal structure of two CD46 domains reveals an extended measles virus-binding surface, EMBO J., 18, 2911–2922

    Article  PubMed  CAS  Google Scholar 

  111. Szakonyi, G., Guthridge, J. M., Li, D., et al. (2001) Structure of complement receptor 2 in complex with its C3d ligand, Science, 292, 1725–1728

    Article  PubMed  CAS  Google Scholar 

  112. Murthy, K. H. M., Smith, S. A., Ganesh, V. K., et al. (2001) Crystal structure of a complement control protein that regulates both pathways of complement activation and binds heparin sulfate proteoglycans, Cell, 104, 301–311

    Article  PubMed  CAS  Google Scholar 

  113. Schwarzenbacher, R., Zeth, K., Diederichs, K., et al. (1999) Structure of human beta2-glycoprotein I: implications for phospholipid binding and the antiphospholipid syndrome, EMBO J., 18, 6228–6239

    Article  PubMed  CAS  Google Scholar 

  114. Bouma, B., de Groot, P. G., van den Elsen, J. M., et al. (1999) Adhesion mechanism of human beta(2)-glycoprotein I to phospholipids based on its crystal structure, EMBO J., 18, 5166–5174

    Article  PubMed  CAS  Google Scholar 

  115. Gaboriaud, C. G., Rossi, V., Bally, I., Arlaud, G. J., and Fontecilla-Camps, J. C. (2000) Crystal structure of the catalytic domain of human complement C1s: a serine protease with a handle, EMBO J., 19, 1755–1765

    Article  PubMed  CAS  Google Scholar 

  116. Gadjeva, M., Verschoor, A., and Carroll, M. C. (2003) The role of complement in innate and adaptive immunity. In: Innate Immunity (Ezekowitz, R. A. B. and Hoffmann, J. A., eds.), Humana Press, Totowa, NJ, pp. 305–319

    Google Scholar 

  117. Law, S. K. and Dodds, A. W. (1997) The internal thioester and the covalent binding properties of the complement proteins C3 and C4, Protein Sci., 6, 263–274

    PubMed  CAS  Google Scholar 

  118. Law, S. K., Lichtenberg, N. A., and Levine, R. P. (1980) Covalent binding and hemolytic activity of complement proteins, Proc. Natl. Acad. Sci. U.S.A., 77, 7194–7198

    Article  PubMed  CAS  Google Scholar 

  119. Cooper, N. R. (1985) The classical complement pathway: activation and regulation of the first complement component, Adv. Immunol., 37, 151–216

    Article  PubMed  CAS  Google Scholar 

  120. Boes, M. (2000) Role of natural and immune IgM antibodies in immune responses, Mol. Immunol., 37, 1141–1149

    Article  PubMed  CAS  Google Scholar 

  121. Heyman, B. (2000) Regulation of antibody responses via antibodies, complement, and Fc receptors, Annu. Rev. Immunol., 18, 709–737

    Article  PubMed  CAS  Google Scholar 

  122. Fearon, D. T. (1980) Identification of the membrane glycoprotein that is the C3b receptor of the human erythrocyte, polymorphonuclear leukocyte, B lymphocyte, and monocyte, J. Exp. Med., 152, 20–30

    Article  PubMed  CAS  Google Scholar 

  123. Carroll, M. C., Alicot, E. M., Katzman, P. J., et al. (1988) Organization of the genes encoding complement receptors type 1 and 2, decay-accelerating factor, and C4- binding protein in the RCA locus on human chromosome 1, J. Exp. Med., 167, 1271–1280

    Article  PubMed  CAS  Google Scholar 

  124. Tas, S. W., Klickstein, L. B., Barbashov, S. F., and Nicholson-Weller, A. (1999) C1q and C4b bind simultaneously to CR1 and additively support erythrocyte adhesion, J. Immunol., 163, 5056–5063

    PubMed  CAS  Google Scholar 

  125. Klickstein, L. B., Barbashov, S. F., Liu, T., Jack, R. M., and Nicholson-Weller, A. (1997) Complement receptor type 1 (CR1, CD35) is a receptor for C1q, Immunity, 7, 345–355

    Article  PubMed  CAS  Google Scholar 

  126. Ghiran, I., Barbashov, S. F., Klickstein, L. B., et al. (2000) Complement receptor 1/CD35 is a receptor for mannan-binding lectin, J. Exp. Med., 192, 1797–1808

    Article  PubMed  CAS  Google Scholar 

  127. Law, S. K. (1988) C3 receptors on macrophages, J. Cell Sci. Suppl., 9, 67–97

    PubMed  CAS  Google Scholar 

  128. Gutsmann, T., Müller, M., Carroll, S. F., MacKenzie, R. C., Wiese, A., and Seydel, U. (2001) Dual role of lipopolysaccharide (LPS)-binding protein in neutralization of LPS and enhancement of LPS-induced activation of mononuclear cells, Infect. Immun., 69(11), 6942–6950

    Article  PubMed  CAS  Google Scholar 

  129. Agellon, L. B., Quinet, E. M., Gillette, T. G., Drayna, D. T., Brown, M. L., and Tall, A. R. (1990) Organization of the human cholesteryl ester transfer protein gene, Biochemistry, 29, 1372–1376

    Article  PubMed  CAS  Google Scholar 

  130. Kirschning, C. J., Au-Young , J., Lamping, N., Reuter, D., Pfeil, D., Seilhamer, J. J., and Schumann, R. R. (1997) Similar organization of the lipopolysaccharide-binding protein (LBP) and phospholipid transfer protein (PLTP) genes suggests a common gene family of lipid-binding proteins, Genomics, 46, 416–425

    Article  PubMed  CAS  Google Scholar 

  131. Tobias, P. S., Mathison, J. C., and Ulevitch, R. J. (1988) A family of lipopolysaccharide binding proteins involved in responses to gram-negative sepsis, J. Biol. Chem., 263, 13479–13481

    PubMed  CAS  Google Scholar 

  132. Schumann, R. R., Leong, S. R., Flaggs, G. W., Gray, P. W., Wright, S. D., Mathison, J. C., Tobias, P. S., and Ulevitch R J. (1990) Structure and function of lipopolysaccharide binding protein, Science, 249, 1429–1431

    Article  PubMed  CAS  Google Scholar 

  133. Ramadori, G., Meyer zum Buschenfelde, K. H., Tobias, P. S., Mathison, J. C., and Ulevitch R. J. (1990) Biosynthesis of lipopolysaccharide-binding protein in rabbit hepatocytes, Pathobiology, 58, 89–94

    Article  PubMed  CAS  Google Scholar 

  134. Vreugdenhil, A. C., Dentener, M. A., Snoek, A. M., Greve, J. W., and Buurman, W. A. (1999) Lipopolysaccharide binding protein and serum amyloid A secretion by human intestinal epithelial cells during the acute phase response, J. Immunol., 163, 2792–2798

    PubMed  CAS  Google Scholar 

  135. Tobias, P. S., Mathison, J., Mintz, D., Lee, J. D., Kravchenko, V., Kato, K., Pugin, J., and Ulevitch, R. J. (1992) Participation of lipopolysaccharide-binding protein in lipopolysaccharide-dependent macrophage activation, Am. J. Respir. Cell Mol. Biol., 7, 239–245

    PubMed  CAS  Google Scholar 

  136. Kirschning, C., Unbehaun, A., Lamping, N., Pfeil, D., Herrmann, F., and Schumann, R. R. (1997) Control of transcriptional activation of the lipopolysaccharide binding protein (LBP) gene by proinflammatory cytokines, Cytokines Cell. Mol. Ther., 3, 59–62 [Erratum: Cytokines Cell. Mol. Ther., 3:137 (1998)]

    Google Scholar 

  137. Lamping, N., Dettmer, R., Schroeder, N. W. J., Pfeil, D., Hallatschek, W., Burger, R., and Schumann, R. R. (1998) LPS-binding protein protects mice from septic shock caused by LPS or gram-negative bacteria, J. Clin. Invest., 101, 2065–2071

    Article  PubMed  CAS  Google Scholar 

  138. Tobias, P. S., Soldau, K., and Ulevitch, R. J. (1986) Isolation of a lipopolysaccharide-binding acute phase reactant from rabbit serum, J. Exp. Med., 164, 777–793

    Article  PubMed  CAS  Google Scholar 

  139. Tobias, P. S., Soldau, K., and Ulevitch, R. J. (1989) Identification of a lipid A binding site in the acute phase reactant lipopolysaccharide binding protein, J. Biol. Chem., 264, 10867–10871

    PubMed  CAS  Google Scholar 

  140. Morrison, D. C. and Ryan, J. L. (1987) Endotoxins and disease mechanisms, Annu. Rev. Med., 38, 417–432

    PubMed  CAS  Google Scholar 

  141. Rietschel, E. T., Brade, H., Brade, L., Brandenburg, K., Schade, U., Seydel, U., Zahringer, U., Galanos, C., Luderitz, O., and Westphal, O. (1987) Lipid A, the endotoxic center of bacterial lipopolysaccharides: relation of chemical structure to biological activity, Prog. Clin. Biol. Res., 231, 25–53

    PubMed  CAS  Google Scholar 

  142. Kielian, T. L. and Blecha, F. (1995) CD14 and other recognition molecules for lipopolysaccharide: a review, Immunopharmacology, 29(3), 187–205

    Article  PubMed  CAS  Google Scholar 

  143. Bone, R. C. (1991) The pathogenesis of sepsis, Ann. Intern. Med., 115, 457–469

    PubMed  CAS  Google Scholar 

  144. Glauser, M. P., Zanetti, G., Baumgartner, J. D., and Cohen, J. (1991) Septic shock: pathogenesis, Lancet, 338, 732–736

    Article  PubMed  CAS  Google Scholar 

  145. Ulevitch, R. J. and Tobias, P. S. (1999) Recognition of gram-negative bacteria and endotoxin by the innate immune system, Curr. Opin. Immunol., 11, 19–22

    Article  PubMed  CAS  Google Scholar 

  146. Blunck, R., Scheel, O., Müller, M., Brandenburg, K., Seitzer, U., and Seydel, U. (2001) New insights into endotoxin-induced activation of macrophages: involvement of a K+ channel in transmembrane signaling, J. Immunol., 166, 1009–1015

    PubMed  CAS  Google Scholar 

  147. Maruyama, N., Yasunori, K., Yamauchi, K., Aizawa, T., Ohrui, T., Nara, M., Oshiro, T., Ohno, L., Tanura, G., Shimura, S., Saschi, H., Tahishima, T., and Shirato, K. (1994) Quinine inhibits production of tumor necrosis factor-α from human alveolar macrophages, Am. J. Respir. Cell. Mol. Biol., 10, 514–520

    PubMed  CAS  Google Scholar 

  148. Todd, R. F., Bhan, A. K., Kabawat, S. E., and Schlossman, S. F. (1984) Human myelomonocytic differentiation antigens defined by monoclonal antibodies. In: Leucocyte Typing, Human Leucocyte Differentiation Antigens Detected by Monoclonal Antibodies (Bernard, A., Boumsell, L., Dausset, J., Milstein, C., and Schlossman, S. F., eds.), Springer-Verlag, Oxford, pp. 424–433

    Google Scholar 

  149. Griffin, J. D. and Schlossman, S. F. (1984) Expression of myeloid differentiation antigens in acute myeloblastic leukemia. In: Leucocyte Typing, Human Leucocyte Differentiation Antigens Detected by Monoclonal Antibodies (Bernard, A., Boumsell, L., Dausset, J., Milstein, C., and Schlossman, S. F., eds.), Springer-Verlag, Oxford, pp. 404–410

    Google Scholar 

  150. Hogg, N. and Horton, M. A. (1986) Myeloid antigens: new and previously defined clusters. In: Leucocyte Typing III, White Cell Differentiation Antigens (McMichael, A. J., ed.), Oxford University Press, New York, pp. 576–602

    Google Scholar 

  151. Labeta, M. O., Landmann, R., Obrecht, J. P., and Obrist, R. (1991) Human B cells express membrane-bound and soluble forms of the CD 14 myeloid antigen, Mol. Immunol., 28, 115–122

    Article  PubMed  CAS  Google Scholar 

  152. Morabito, F., Prasthofer, E. F., Dunlap, N. E., Grossi, C. E., and Tilden, A. B. (1987) Expression of myelomonocytic antigens on chronic lymphocytic leukemia B cells correlates with their ability to produce interleukin 1, Blood, 70, 1750–1757

    PubMed  CAS  Google Scholar 

  153. Zeigler-Heitbrock, H. W. L., Pechumer, H., Petersmann, I., Durieux, J. J., Vita, N., Labeta, M. O., and Strobel, M. (1994) CD14 is expressed and functional in human B cells, Eur. J. Immunol., 24, 1937–1940

    Article  Google Scholar 

  154. Wright, S. D., Ramos, R. A., Tobias, P. S., Ulevitch, R. J., and Mathison, J. C. (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein, Science, 249, 1431–1433

    Article  PubMed  CAS  Google Scholar 

  155. Tobias, P. S. (2003) Lipopolysaccharide-binding protein and CD14. In: Innate Immunity (Ezekowitz, R. A. B. and Hoffmann, J. A., eds.), Humana Press, Totowa, NJ, pp. 255–265

    Google Scholar 

  156. Pugin, J., Schurer-Maly, C.-C., Leturcq, D., et al. (1993) Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14, Proc. Natl. Acad. Sci. U.S.A., 90, 2744–2748

    Article  PubMed  CAS  Google Scholar 

  157. Simmons, D. L., Tan, S., Tenen, D. G., Nicholson Weller, A., and Seed, B. (1989) Monocyte antigen CD14 is a phospholipid anchored membrane protein, Blood, 73, 284–289

    PubMed  CAS  Google Scholar 

  158. Haziot, A., Ferrero, E., Xing, Y. L., Stewart, C. L., and Goyert, M. (1994) CD14- deficient mice are exquisitely insensitive to the effects of LPS. In: Bacterial Endotoxins (Levin, J., Alving, C. R., Munford, R. S., and Redl, H., eds.), Wiley-Liss, New York, pp. 349–351

    Google Scholar 

  159. Moore, K. J., Andersson, L. P., Ingalls, R. R., et al. (2000) Divergent response to LPS and bacteria in CD14-deficient murine macrophages, J. Immunol., 165, 4272–4280

    PubMed  CAS  Google Scholar 

  160. Haziot, A., Lin, X. Y., Zhang, F., and Goyert, S. M. (1998) The induction of acute phase proteins by lipopolysaccharide uses a novel pathway that is CD14- independent, J. Immunol., 160, 2570–2572

    PubMed  CAS  Google Scholar 

  161. Le Van, T. D., Bloom, J. W., Bailey, T. J., et al. (2001) A common single nucleotide polymorphism in the CD14 promoter decreases the affinity of Sp protein binding and enhances transcriptional activity, J. Immunol., 167, 5838–5844

    CAS  Google Scholar 

  162. Zhang, D. E., Hetherington, C. J., Tan, S., et al. (1994) Sp1 is a critical factor for the monocytic specific expression of human CD14, J. Biol. Chem., 269, 11425–11434

    PubMed  CAS  Google Scholar 

  163. Vercelli, D., Baldini, M., Stern, D., et al. (2001) CD14: a bridge between innate immunity and adaptive IgE responses, J. Endotoxin Res., 7, 45–48

    PubMed  CAS  Google Scholar 

  164. Williams, H., Robertson, C., Stewart, A., et al. (1999) Worldwide variations in the prevalence of symptoms of atopic eczema in the International Study of Asthma and Allergies in Childhood, J. Allergy Clin. Immunol., 103, 125–138

    Article  PubMed  CAS  Google Scholar 

  165. Strachan, D., Sibbald, B., Weiland, S., et al. (1997) Worldwide variations in prevalence of symptoms of allergic rhinoconjunctivitis in children: the Internaltional Study of Asthma and Allergies in Childhood (ISAAC), Pediatr. Allergy Immunol., 8, 161–176

    Article  PubMed  CAS  Google Scholar 

  166. Arias, M. A., Rey Nores, J. E., Vita, N., et al. (2000) Cutting edge: human B cell function is regulated by interaction with soluble CD14: opposite effects on IgG1 and IgE production, J. Immunol., 164, 3480–3486

    PubMed  CAS  Google Scholar 

  167. Shimada, K., Watanabe, Y., Mokuno, H., et al. (2000) Common polymorphism in the promoter of the CD14 monocyte receptor gene is associated with acute myocardial infarction in Japanese men, Am. J. Cardiol., 86, 682–684

    Article  PubMed  CAS  Google Scholar 

  168. Unkelbach, K., Gardemann, A., Kostrzewa, M., et al. (1999) A new promoter polymorphism in the gene of lipopolysaccharide receptor CD14 is associated with expired myocardial infarction in patients with low atherosclerotic risk profile, Arterioscler. Thromb. Vasc. Biol., 19, 932–938

    PubMed  CAS  Google Scholar 

  169. Hubacek, J. A., Rothe, G., Pit’ha, J., et al. (1999) C(–260)→T polymorphism in the promoter of the CD14 monocyte receptor gene as a risk factor for myocardial infarction, Circulation, 99, 3218–3220

    PubMed  CAS  Google Scholar 

  170. Ito, D., Murata, M., Tanahashi, N., et al. (2000) Polymorphism in the promoter of lipopolysaccharide receptor CD14 and ischemic cerebrovascular disease, Stroke, 31, 2661–2664

    PubMed  CAS  Google Scholar 

  171. Moser, B. and Loetscher, P. (2001) Lymphocyte traffic control by chemokines, Nat. Immunol., 2, 123–128

    Article  PubMed  CAS  Google Scholar 

  172. Thelen, M. (2001) Dancing to the tune of chemokines, Nat. Immunol., 2, 129–134

    Article  PubMed  CAS  Google Scholar 

  173. Yoshie, O. (2000) Immune chemokines and their receptors: the key elements in the genesis, homeostasis and function of the immune system, Springer Semin. Immunopathol., 22, 371–391

    Article  PubMed  CAS  Google Scholar 

  174. Gerard, C. and Rollins, B. J. (2001) Chemokines and disease, Nat. Immunol., 2, 108–115

    Article  PubMed  CAS  Google Scholar 

  175. Matsukawa, A., Hogaboam, C. M., Lukacs, N. W., and Kunkel, S. L. (2000) Chemokines and innate immunity, Rev. Immunogenet., 2, 339–358

    PubMed  CAS  Google Scholar 

  176. Kunkel, S. L. (1999) Through the looking glass: the diverse in vivo activities of chemokines, J. Clin. Invest., 104, 1333–1334

    Article  PubMed  CAS  Google Scholar 

  177. Rossi, D. and Zlotnik, A. (2000) The biology of chemokines and their receptors, Annu. Rev. Immunol., 18, 217–242

    Article  PubMed  CAS  Google Scholar 

  178. Scapini, P., Lapinet-Vera, J. A., Gasperini, S., et al. (2000) The neutrophil as a cellular source of chemokines, Immunol. Rev., 177, 195–203

    Article  PubMed  CAS  Google Scholar 

  179. Clark, G. J., Angel, N., Kato, M., et al. (2000) The role of dendritic cells in the innate immune system, Microbes Infect., 2, 257–272

    Article  PubMed  CAS  Google Scholar 

  180. Stockwin, L. H., McGonagle, D., Martin, I. G., and Blair, G. E. (2000) Dendritic cells: immunological sentinels with a central role in health and disease, Immunol. Cell Biol., 78, 91–102

    Article  PubMed  CAS  Google Scholar 

  181. Caux, C., Ait-Yahia, S., Chemin, K., et al. (2000) Dendritic cell biology and regulation of dendritic cell trafficking by chemokines, Springer Semin. Immunopathol., 22, 345–369

    Article  PubMed  CAS  Google Scholar 

  182. Gunn, M. D., Kyuwa, S., Tam, C., et al. (1999) Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization, J. Exp. Med., 189, 451–460

    Article  PubMed  CAS  Google Scholar 

  183. Chan, V. W., Kothakota, S., Rohan, M. C., et al. (1999) Secondary lymphoid-tissue chemokine (SLC) is chemotactic for mature dendritic cells, Blood, 93, 3610–3616

    PubMed  CAS  Google Scholar 

  184. Willimann, K., Legler, D. F., Loetscher, M., et al. (1998) The chemokine SLC is expressed in T cell areas of lymph nodes and mucosal lymphoid tissues and attracts activated T cells via CCR7, Eur. J. Immunol., 28, 2025–2034

    Article  PubMed  CAS  Google Scholar 

  185. Demangel, C. and Britton, W. J. (2000) Interaction of dendritic cells with mycobacteria: where the action starts, Immunol. Cell Biol., 78, 318–324

    Article  PubMed  CAS  Google Scholar 

  186. McWilliam, A. S., Napoli, S., Marsh, A. M., et al. (1996) Dendritic cells are recruited into airway epithelium during the inflammatory response to a broad spectrum of stimuli, J. Exp. Med., 184, 2429–2432

    Article  PubMed  CAS  Google Scholar 

  187. Rescigno, M., Granucci, F., and Ricciardi-Castagnoli, P. (2000) Molecular events of bacterial-induced maturation of dendritic cells, J. Clin. Immunol., 20, 161–166

    Article  PubMed  CAS  Google Scholar 

  188. Burdin, N. and Kronenberg, M. (1999) CD1mediated immune responses to glycolipids, Curr. Opin. Immunol., 11, 326–331

    Article  PubMed  CAS  Google Scholar 

  189. Porcelli, S.A. and Modlin, R. L. (1999) The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids, Annu. Rev. Immunol., 17, 297–329

    Article  PubMed  CAS  Google Scholar 

  190. Kitamura, H., Iwakabe, K., Yahata, T., Nishimura, S., Ohta, A., Ohmi, Y., Sato, M., Takeda, K., Okumura, K., Van Kaer, L., Kawano, T., Taniguchi, M., and Nishimura, T. (1999) The natural killer T (NKT) cell ligand α-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells, J. Exp. Med., 189, 1121–1128

    Article  PubMed  CAS  Google Scholar 

  191. Yokoyama, W. M. (2003) The role of natural killer cells in innate immunity to infection. In: Innate Immunity (Ezekowitz, R. A. B. and Hoffmann, J. A., eds.), Humana Press, Totowa, NJ, pp. 321–339

    Google Scholar 

  192. Yokoyama, W. M., Kim, S., and French, A. R. (2004) The dynamic life of natural killer cells, Annu. Rev. Immunol., 22, 405–429

    Article  PubMed  CAS  Google Scholar 

  193. Trinchieri, G. (1989) Biology of natural killer cells, Adv. Immunol., 47, 187–376

    Article  PubMed  CAS  Google Scholar 

  194. Yokoyama, W. M. (1999) Natural killer cells. In: Fundamental Immunology (Paul, W. E., ed.), Lippincott-Raven, New York, pp. 575–603

    Google Scholar 

  195. Anderson, P., Caligiuri, M., Ritz, J., and Schlossman, S. F. (1989) CD3-negative natural killer cells express zeta TCR as part of a novel molecular complex, Nature, 341, 159–162

    Article  PubMed  CAS  Google Scholar 

  196. Lanier, L. L., Yu, G., and Phillips, J. H. (1989) C-association of CD3 zeta with receptor (CD16) for IgG on human natural killer cells, Nature, 342, 803–805

    Article  PubMed  CAS  Google Scholar 

  197. Lanier, L. L., Phillips, J. H., Hackett, J., Jr., Tutt, M., and Kumar, V. (1986) Natural killer cells: definition of a cell type rather than a function, J. Immunol., 137, 2735–2739

    PubMed  CAS  Google Scholar 

  198. Biron, C. A., Nguyen, K. B., Pien, G. C., Cousens, L. P., and Salazar-Mather, T. P. (1999) Natural killer cells in antiviral defense: function and regulation by innate cytokines, Annu. Rev. Immunol., 17, 189–220

    Article  PubMed  CAS  Google Scholar 

  199. Biron, C. A., Byron, K. S., and Sullivan, J. L. (1989) Severe herpesvirus infections in an adolescent without natural killer cells, N. Engl. J. Med., 320, 1731–1735

    PubMed  CAS  Google Scholar 

  200. Jawahar, S., Moody, C., Chan, M., et al. (1996) Natural killer (NK) cell deficiency associated with an epitope-deficient Fc receptor type IIIA (CD16-II), Clin. Exp. Immunol., 103, 408–413

    PubMed  CAS  Google Scholar 

  201. Robertson, M. J., Williams, B. T., Christopherson, K., Brahmi, Z., and Hromas, R. (2000) Regulation of human natural killer cell migration and proliferation by the exodus subfamily of CC chemokines, Cell. Immunol., 199, 8–14

    Article  PubMed  CAS  Google Scholar 

  202. Rook, A. H., Masur, H., Lane, H. C., et al. (1983) Interleukin-2 enhances the depressed natural killer and cytomegalovirus-specific cytotoxic activities of lymphocytes from patients with the acquired immune deficiency syndrome, J. Clin. Invest., 72, 398–403

    Article  PubMed  CAS  Google Scholar 

  203. Bonavida, B., Katz, J., and Gottlieb, M. (1986) Mechanism of defective NK cell activity in patients with acquired immunodeficiency syndrome (AIDS) and AIDS- related complex. I. Defective trigger on NK cells for NKCF production by target cells, and partial restoration by IL-2, J. Immunol., 137, 1157–1163

    PubMed  CAS  Google Scholar 

  204. Lusso, P., Malnati, M. S., Garzino-Demo, A., et al. (1993) Infection of natural killer cells by human herpesvirus 6, Nature, 362, 458–462

    Article  PubMed  CAS  Google Scholar 

  205. Tripp, C. S., Wolf, S. F., and Unanue, E. R. (1993) Interleukin 12 and tumor necrosis factor alpha are costimulators of interferon gamma production by natural killer cells in severe combined immunodeficiency mice with listeriosis, and interleukin 10 is a physiologic antagonist, Proc. Natl. Acad. Sci. U.S.A., 90, 3725–3729

    Article  PubMed  CAS  Google Scholar 

  206. Tripp, C. S., Gately, M. K., Hakimi, J., Ling, P., and Unanue, E. R. (1994) Neutralization of IL-12 decreases resistance to Listeria in SCID and S.B-17 mice, reversal by IFN-gamma, J. Immunol., 152, 1883–1887

    PubMed  CAS  Google Scholar 

  207. Guidotti, L. G. and Chisari, F. V. (2001) Noncytolytic control of viral infections by the innate and adaptive immune response, Annu. Rev. Immunol., 19, 65–91

    Article  PubMed  CAS  Google Scholar 

  208. Waldmann, T. A. and Tagaya, Y. (1999) The multifaceted regulation of interleukin- 15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens, Annu. Rev. Immunol., 17, 19–49

    Article  PubMed  CAS  Google Scholar 

  209. Kennedy, M. K., Glaccum, M., Brown, S. N., et al. (2000) Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice, J. Exp. Med., 191, 771–780

    Article  PubMed  CAS  Google Scholar 

  210. Lodolce, J. P., Boone, D. L., Chai, S., et al. (1998) IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation, Immunity, 9, 669–676

    Article  PubMed  CAS  Google Scholar 

  211. Gosselin, J., Tomoiu, A., Gallo, R. C., and Flamand, L. (1999) Interleukin-15 as an activator of natural killer cell-mediated antiviral response, Blood, 94, 4210–4219

    PubMed  CAS  Google Scholar 

  212. Fawaz, L. M., Sharif-Askari, E., and Menezes, J. (1999) Up-regulation of NK cytotoxic activity via IL-15 induction by different viruses: a comparative study, J. Immunol., 163, 4473–4480

    PubMed  CAS  Google Scholar 

  213. Ahmad, A., Sharif-Askari, E., Fawaz, L., and Menezes, J. (2000) Innate immunity response of the human host to exposure with herpes simplex virus type 1: in vitro control of the virus infection by enhanced natural killer activity via interleukin-15 induction, J. Virol., 74, 7196–7203

    Article  PubMed  CAS  Google Scholar 

  214. Tsunobuchi, H., Nishimura, H., Goshima, F., et al. (2000) A protective role of interleukine-15 in a mouse model for systemic infection with herpes simplex virus, Virology, 275, 57–66

    Article  PubMed  CAS  Google Scholar 

  215. Henkart, P. A. (1994) Lymphocyte-mediated cytotoxicity: two pathways and multiple effector molecules, Immunity, 1, 343–346

    Article  PubMed  CAS  Google Scholar 

  216. Motyka, B., Korbutt, G., Pinkoski, M. J., et al. (2000) Mannose 6- phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis, Cell, 103, 491–500

    Article  PubMed  CAS  Google Scholar 

  217. Zamai, L., Ahmad, M., Bennett, I. M., et al. (1998) Natural killer (NK) cell- mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells, J. Exp. Med., 188, 2375–2380

    Article  PubMed  CAS  Google Scholar 

  218. Bradley, M., Zeytun, A., Rafi-Janajreh, A., Nagarkatti, P. S., and Nagarkatti, M. (1998) Role of spontaneous and interleukin-2-induced natural killer cell activity in the cytotoxicity and rejection of Fas+ and Fas- tumor cells, Blood, 92, 4248–4255

    PubMed  CAS  Google Scholar 

  219. Kärre, K., Ljunggren, H. G., Piontek, G., and Kiessling, R. (1986) Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy, Nature, 319, 675–678

    Article  PubMed  Google Scholar 

  220. Ljunggren, H. G. and Kärre, K. (1990) In search of the “missing self”: MHC molecules and NK cell recognition, Immunol. Today, 11, 237–244

    Article  PubMed  CAS  Google Scholar 

  221. Kärre, K. (1985) Role of target histocompatibility antigens in regulation of natural killer activity: a reevaluation and a hypothesis. In: Mechanisms of Cytotoxicity by NK Cells (Herberman, R. B. and Callewaert, D. M., eds.), Academic Press, Orlando, FL, pp. 81–92

    Google Scholar 

  222. Karlhofer, F. M., Ribaudo, R. K., and Yokoyama, W. M. (1992) MHC class I alloantigen specificity of Ly-49+ IL-2-activated natural killer cells, Nature, 358, 66–70

    Article  PubMed  CAS  Google Scholar 

  223. Yokoyama, W. M. (1997) What goes up must come down: the emerging spectrum of inhibitory receptors, J. Exp. Med., 186, 1803–1808

    Article  PubMed  CAS  Google Scholar 

  224. Long, E. O. (1999) Regulation of immune responses through inhibitory receptors, Annu. Rev. Immunol., 17, 875–904

    Article  PubMed  CAS  Google Scholar 

  225. Correa, I. and Raulet, D. H. (1995) Binding of diverse peptides to MHC class I molecules inhibits target cell lysis by activated natural killer cells, Immunity, 2, 61–71

    Article  PubMed  CAS  Google Scholar 

  226. Orihuela, M., Margulies, D. H., and Yokoyama, W. M. (1996) The natural killer cell receptor Ly-49A recognizes a peptide-induced conformational determinant on its major histocompatibility complex class I ligand, Proc. Natl. Acad. Sci. U.S.A., 93, 11792–11797

    Article  PubMed  CAS  Google Scholar 

  227. Michaelsson, J., Achour, A., Salcedo, M., et al. (2000) Visualization of inhibitory Ly49 receptor specificity with soluble major histocompatibility complex class I tetramers, Eur. J. Immunol., 30, 300–307

    Article  PubMed  CAS  Google Scholar 

  228. Mandelboim, O., Wilson, S. B., Vales-Gomez, M., Reyburn, H. T., and Strominger, J. L. (1997) Self and viral peptides can initiate lysis by autologous natural killer cells, Proc. Natl. Acad. Sci. U.S.A., 94, 4604–4609

    Article  PubMed  CAS  Google Scholar 

  229. Yokoyama, W. M. (1995) Natural killer cell receptors, Curr. Opin. Immunol., 7, 110–120

    Article  PubMed  CAS  Google Scholar 

  230. Biassoni, R., Cantoni, C., Falco, M., et al. (1996) The human leucocyte antigen (HLA)-C-specific “activatory” or “inhibitory” natural killer cell receptors display highly homologous extracellular domains but differ in their transmembrane and intracytoplasmic portions, J. Exp. Med., 183, 645–650

    Article  PubMed  CAS  Google Scholar 

  231. Idriss, A. H., Smith, H. R. C., Mason, L. H., et al. (1999) The natural killer cell complex genetic locus, Chok, encodes Ly49D, a target recognition receptor that activates natural killing, Proc. Natl. Acad. Sci. U.S.A., 96, 6330–6335

    Article  Google Scholar 

  232. Nakamura, M. C., Linnemeyer, P. A., Niemi, E. C., et al. (1999) Mouse Ly-49D recognizes H-2Dd and activates natural killer cell cytotoxicity, J. Exp. Med., 189, 493–500

    Article  PubMed  CAS  Google Scholar 

  233. George, T. C., Mason, L. H., Ortaldo, J. R., Kumar, V., and Bennett, M. (1999) Positive recognition of MHC class I molecules by the Ly49D receptor of murine NK cells, J. Immunol., 162, 2035–2043

    PubMed  CAS  Google Scholar 

  234. Karlhofer, F. M., Ribaudo, R. K., and Yokoyama, W. M. (1992) The interaction of Ly-49 with H-2Dd globally inactivates natural killer cell cytolytic activity, Trans. Assoc. Am. Physicians, 105, 72–85

    PubMed  CAS  Google Scholar 

  235. Correa, I., Corral, L., and Raulet, D. H. (1994) Multiple natural killer cell-activating signals are inhibited by major histocompatibility complex class I expression in target cells, Eur. J. Immunol., 24, 1323–1331

    Article  PubMed  CAS  Google Scholar 

  236. Storkus, W. J., Alexander, J., Payne, J. A., Dawson, J. R., and Cresswell, P. (1989) Reversal of natural killing susceptibility in target cells expressing transfected class I HLA genes, Proc. Natl. Acad. Sci. U.S.A., 86, 2361–2364

    Article  PubMed  CAS  Google Scholar 

  237. Cohen, G. B., Gandhi, R. T., Davis, D. M., et al. (1999) The selective downregulation of class I major histopatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells, Immunity, 10, 661–671

    Article  PubMed  CAS  Google Scholar 

  238. Reyburn, H. T., Mandelboim, O., Vales-Gomez, M., et al. (1997) The class I MHC homologue of human cytomegalovirus inhibits attack by natural killer cells, Nature, 386, 514–517

    Article  PubMed  CAS  Google Scholar 

  239. Farrell, H. E., Vally, H., Lynch, D. M., et al. (1997) Inhibition of natural killer cells by a cytomegalovirus MHC class I homologue in vivo, Nature, 386, 510–514

    Article  PubMed  CAS  Google Scholar 

  240. Cosman, D., Fanger, N., Borges, L., et al. (1997) A novel immunoglobulin superfamily receptor for cellular and viral MHC class I molecules, Immunity, 7, 273–282

    Article  PubMed  CAS  Google Scholar 

  241. Tomasec, P., Braud, V. M., Rickards, C., et al. (2000) Surface expression of HLA- E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40, Science, 287, 1031

    Article  PubMed  CAS  Google Scholar 

  242. Ulbrecht, M., Martinozzi, S., Grzeschik, M., et al. (2000) Cutting edge: the human cytomegalovirus UL40 gene product contains a ligand for HLA-E and prevents NK cell-mediated lysis, J. Immunol., 164, 5019–5022

    PubMed  CAS  Google Scholar 

  243. Ishido, S., Choi, J. K., Lee, B. S., et al. (2000) Inhibition of natural killer cell- mediated cytotoxicity by Kaposi’s sarcoma-associated herpesvirus K5 protein, Immunity, 13, 365–374

    Article  PubMed  CAS  Google Scholar 

  244. Schmidt, R. E., Bartley, G., Levine, H., Schlossman, S. F., and Ritz, J. (1985) Functional characterization of LFA-1 antigens in the interaction of human NK clones and target cells, J. Immunol., 135, 1020–1025

    PubMed  CAS  Google Scholar 

  245. Scalzo, A. A., Fitzgerald, N. A., Simmons, A., La Vista, A. B., and Shellam, G. R. (1990) Cmv-1, a genetic locus that controls murine cytomegalovirus replication in the spleen, J. Exp. Med., 171, 1469–1483

    Article  PubMed  CAS  Google Scholar 

  246. Delano, M. L. and Brownstein, D. G. (1995) Innate resistance to lethal mousepox is genetically linked to the NK gene complex on chromosome 6 and correlates with early restriction of virus replication by cells with an NK phenotype, J. Virol., 69, 5875–5877

    PubMed  CAS  Google Scholar 

  247. Pereira, R. A., Scalzo, A., and Simmons, A. (2001) Cutting edge: a NK complex- linked locus governs acute versus latent herpes simplex virus infection of neurons, J. Immunol., 166, 5869–5873

    PubMed  CAS  Google Scholar 

  248. Bromley, S. K., Burack, W. R., Johnson, K. G., et al. (2001) The immunological synapse, Annu. Rev. Immunol., 19, 375–396

    Article  PubMed  CAS  Google Scholar 

  249. Matsukawa, A., Lukacs, N. W., Standiford, T. J., Chensue, S. W., and Kunkel, S. L. (2000) Adenoviral-mediated overexpression of monocyte chemoattractant protein-1 differentially alters the development of Th1 and Th2 type responses in vivo, J. Immunol., 164, 1699–1704

    PubMed  CAS  Google Scholar 

  250. Odum, N., Bregenholt, S., Eriksen, K. W., et al. (1999) The CC-chemokine receptor 5 (CCR5) is a marker of, but not essential for the development of human Th1 cells, Tissue Antigens, 54, 572–577

    Article  PubMed  CAS  Google Scholar 

  251. D’Ambrosio, D., Iellem, A., Bonecchi, R., et al. (1998) Selective up-regulation of chemokine receptors CCR4 and CCR8 upon activation of polarized human type 2 Th cells, J. Immunol., 161, 5111–5115

    PubMed  Google Scholar 

  252. Zingoni, A., Soto, H., Hedrick, J. A., et al. (1998) The chemokine receptor CCR8 is preferentially expressed in Th2 but not Th1 cells, J. Immunol., 161, 547–551

    PubMed  CAS  Google Scholar 

  253. Campbell, J. D. and HayGlass, K. T. (2000) T cell chemokine receptor expression in human Th1- and Th2-associated diseases, Arch. Immunol. Ther. Exp. (Warsz.), 48, 451–456

    CAS  Google Scholar 

  254. Naumann, M. (2000) Nuclear factor-kappa B activation and innate immune response in microbial pathogen infection, Biochem. Pharmacol., 60, 1109–1114

    Article  PubMed  CAS  Google Scholar 

  255. Lillard, J. W., Boyaka, P. N., Taub, D. D., and McGhee, J. R. (2001) RANTES potentiates antigen-specific mucosal immune responses, J. Immunol., 166, 162–169

    PubMed  CAS  Google Scholar 

  256. Hogaboam, C. M., Smith, R. E., and Kunkel, S. L. (1998) Dynamic interactions between lung fibroblasts and leukocytes: implications for fibrotic lung disease, Proc. Assoc. Am. Physicians, 110, 313–320

    PubMed  CAS  Google Scholar 

  257. Smith, R. S., Smith, T. J., Blieden, T. M., and Phipps, R. P. (1997) Fibroblasts as sentinel cells. Synthesis of chemokines and regulation of inflammation, Am. J. Pathol., 151, 317–322

    PubMed  CAS  Google Scholar 

  258. Xia, Y., Pauza, M. E., Feng, L., and Lo, D. (1997) ReIB regulation of chemokine expression modulates local inflammation, Am. J. Pathol., 151, 375–387

    PubMed  CAS  Google Scholar 

  259. Murphy, P. M. (2001) Viral exploitation and subversion of the immune system through chemokine mimicry, Nat. Immunol., 2, 116–122

    Article  PubMed  CAS  Google Scholar 

  260. Scarlatti, G., Tresoldi, E., Bjorndal, A., et al. (1997) In vivo evolution of HIV-1 co- receptor usage and sensitivity to chemokine-mediated suppression, Nat. Med., 3, 1259–1265

    Article  PubMed  CAS  Google Scholar 

  261. Simmons, G., Reeves, J. D., Hibbits, S., et al. (2000) Co-receptor use by HIV and inhibition of HIV infection by chemokine receptor ligands, Immunol. Rev., 177, 112–126

    Article  PubMed  CAS  Google Scholar 

  262. Howie, S., Ramage, R., and Hewson, T. (2000) Innate immune system damage in human immunodeficiency virus type 1 infection. Implications for acquired immunity and vaccine design, Am. J. Respir. Crit. Care Med., 162, S141–S145

    PubMed  CAS  Google Scholar 

  263. Holland, S. M. (1996) Host defense against nontuberculous mycobacterial infections, Semin. Respir. Infect., 11, 217–230

    PubMed  CAS  Google Scholar 

  264. Endres, M. J., Garlisi, C. G., Xiao, H., Shan, L., and Hedrick, J. A. (1999) The Kaposi’s sarcoma-related herpesvirus (KSHV)-encoded chemokine vMIP-I is a specific agonist for the CC chemokine receptor (CCR)8, J. Exp. Med., 189, 1993–1998

    Article  PubMed  CAS  Google Scholar 

  265. Sozzani, S., Luini, W., Bianchi, G., et al. (1998) The viral chemokine macrophage inflammatory protein-II is a selective Th2 chemoattractant, Blood, 92, 4036–4039

    PubMed  CAS  Google Scholar 

  266. Kledal, T. N., Rosenkilde, M. M., Coulin, F., et al. (1997) A broad-spectrum chemokine antagonist encoded by Kaposi’s sarcoma-associated herpesvirus, Science, 277, 1656–1659

    Article  PubMed  CAS  Google Scholar 

  267. Chen, S., Bacon, K. B., Li, L., et al. (1998) In vivo inhibition of CC and CX3C chemokine-induced leukocyte infiltration and attenuation of glomerulonephritis in Wistar-Kyoto (WKY) rats by vMIP-II, J. Exp. Med., 188, 193–198

    Article  PubMed  CAS  Google Scholar 

  268. Penfold, M. E., Dairaghi, D. J., Duke, G. M. (1999) Cytomegalovirus encodes a potent alpha chemokine, Proc. Natl. Acad. Sci. U.S.A., 96, 9839–9844

    Article  PubMed  CAS  Google Scholar 

  269. Zhang, P., Summer, W. R., Bagby, G. J., and Nelson, S. (2000) Innate immunity and pulmonary host defense, Immunol. Rev., 173, 39–51

    Article  PubMed  CAS  Google Scholar 

  270. Itakura, M., Tokuda, A., Kimura, H., et al. (2001) Blockade of secondary lymphoid tissue chemokine exacerbates Propionibacterium acnes-induced acute lung inflammation, J. Immunol., 166, 2071–2079

    PubMed  CAS  Google Scholar 

  271. Standiford, T. J. (1997) Cytokines and pulmonary host defenses, Curr. Opin. Pulm. Med., 3, 81–88

    Article  PubMed  CAS  Google Scholar 

  272. Standiford, T. J. and Huffnagle, G. B. (1997) Cytokines in host defense against pneumonia, J. Invest. Med., 45, 335–345

    CAS  Google Scholar 

  273. Brun-Bruisson, C. (2000) The epidemiology of the systemic inflammatory response, Intensive Care Med., 26, S64–S74

    Article  Google Scholar 

  274. Fry, D. E. (2000) Sepsis syndrome, Am. Surg., 66, 126–132

    PubMed  CAS  Google Scholar 

  275. Glauser, M. P. (2000) Pathophysiologic basis of sepsis: considerations for future strategies of intervention, Crit. Care Med., 28, S4–S8

    Article  PubMed  CAS  Google Scholar 

  276. Deitch, E. A. and Goodman, E. R. (1999) Prevention of multiple organ failure, Surg. Clin. North Am., 79, 1471–1488

    Article  PubMed  CAS  Google Scholar 

  277. Matsukawa, A., Hogaboam, C. M., Lukacs, N. W., et al. (1999) Endogenous monocyte chemoattractant protein-1 (MCP-1) protects mice in a model of acute septic peritonitis: cross-link between MCP-1 and leukotrine B4, J. Immunol., 163, 6148–6154

    PubMed  CAS  Google Scholar 

  278. Matsukawa, A., Hogaboam, C. M., Lukacs, N. W., et al. (2000) Endogenous MCP-1 influences systemic cytokine balance in a murine model of acute septic peritonitis, Exp. Mol. Pathol., 68, 77–84

    Article  PubMed  CAS  Google Scholar 

  279. Zisman, D. A., Kunkel, S. L., Strieter, R. M., et al. (1997) MCP-1 protects mice in lethal endotoxemia, J. Clin. Invest., 99, 2832–2836

    Article  PubMed  CAS  Google Scholar 

  280. Matsukawa, A., Hogaboam, C. M., Lukacs, N. W., et al. (2000) Pivotal role of the CC chemokine, macrophage-derived chemokine, in the innate immune response, J. Immunol., 164, 5362–5368

    PubMed  CAS  Google Scholar 

  281. Steinhauser, M. L., Hogaboam, C. M., Matsukawa, A., et al. (2000) Chemokine C10 promotes disease resolution and survival in an experimental model of bacterial sepsis, Infect. Immun., 68, 6108–6114

    Article  PubMed  CAS  Google Scholar 

  282. Ganz, T. and Lehrer, R. I. (2003) Antimicrobial peptides. In: Innate Immunity (Ezekowitz, R. A. B. and Hoffmann, J. A., eds.), Humana Press, Totowa, NJ, pp. 287–303

    Google Scholar 

  283. Sablon, E., Contreras, B., and Vandamme, E. (2000) Antimicrobial peptides of lactic acid bacteria: mode of action, genetics and biosynthesis, Adv. Biochem. Eng. Biotechnol., 68, 21–60

    PubMed  CAS  Google Scholar 

  284. Haseltine, C., Hill, T., Montalvo-Rodriguez, R., et al. (2001) Secreted euryarchaeal microhalocins kill hyperthermophillic crenarchaea, J. Bacteriol., 183, 287–291

    Article  PubMed  CAS  Google Scholar 

  285. Hancock, R. E. and Bell, A. (1988) Antibiotic uptake into gram-negative bacteria, Eur. J. Clin. Microbiol. Infect. Dis., 7, 713–720

    Article  PubMed  CAS  Google Scholar 

  286. Shai, Y. (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic membranes, Biochim. Biophys. Acta, 1462, 55–70

    Article  PubMed  CAS  Google Scholar 

  287. Ludtke, S. J., He, K., Heller, W. T., et al. (1996) Membrane pores induced by magainin, Biochemistry, 35, 13723–13728

    Article  PubMed  CAS  Google Scholar 

  288. Higashimoto, Y., Kodama, H., Jelokhani-Niaraki, M., Kato, F., and Kondo, M. (1999) Structure-function relationship of model Aib-containing peptides as ion transfer intermembrane templates, J. Biochem. (Tokyo), 125, 705–712

    CAS  Google Scholar 

  289. Hara, T., Kodama, H., Kondo, M., et al. (2001) Effects of peptide dimerization on pore formation: antiparallel disulfide-dimerized magainin 2 analogue, Biopolymers, 58, 437–446

    Article  PubMed  CAS  Google Scholar 

  290. Kobayashi, S., Takeshima, K., Park, C. B., Kim, S. C., and Matsuzaki, K. (2000) Interactions of the novel antimicrobial peptide buforin 2 with lipid bilayers: praline as a translocation promoting factor, Biochemistry, 39, 8648–8654

    Article  PubMed  CAS  Google Scholar 

  291. Ganz, T. and Lehrer, R. I. (1995) Defensins, Pharmacol. Ther., 66, 191–205

    Article  PubMed  CAS  Google Scholar 

  292. Lehrer, R. I., Lichtenstein, A. K., and Ganz, T. (1993) Defensins: antimicrobial and cytotoxic peptides of mammalian cells, Annu. Rev. Immunol., 11, 105–128

    Article  PubMed  CAS  Google Scholar 

  293. Tang, Y. Q., Yuan, J., Osapay, G., et al. (1999) A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins, Science, 286, 498–502

    Article  PubMed  CAS  Google Scholar 

  294. Hoover, D. M., Rajashankar, K. R., Blumenthal, R., et al. (2000) The structure of human beta-defensin-2 shows evidence of higher-order oligomerization, J. Biol. Chem., 275, 32911–32918

    Article  PubMed  CAS  Google Scholar 

  295. Pardi, A., Zhang, X. L., Selsted, M. E., Skalicky, J. J., and Yip, P. F. (1992) NMR studies of defensin antimicrobial peptides. 2. Three-dimmensional structures of rabbit NP-2 and human HNP-1, Biochemistry, 31, 11357–11364

    Article  PubMed  CAS  Google Scholar 

  296. Skalicky, J. J., Selsted, M. E., and Pardi, A. (1994) Structure and dynamics of neutrophil defensins NP-2, NP-5, and HNP-1: NMR studies of amide hydrogen exchange kinetics, Proteins, 20, {52–67}

    Article  PubMed  CAS  Google Scholar 

  297. Zimmermann, G. R., Legault, P., Selsted, M. E., and Pardi, A. (1995) Solution structure of bovine neutrophil beta-defensin-12: the peptide fold of the beta-defensins is identical to that of the classical defensins, Biochemistry, 34, 13663–13671

    Article  PubMed  CAS  Google Scholar 

  298. Sawai, M. V., Jia, H. P., Liu, L., et al. (2001) The NMR structure of human beta- defensin-2 reveals a novel alpha-helical segment, Biochemistry, 40, 3810–3816

    Article  PubMed  CAS  Google Scholar 

  299. Ganz, T., Selsted, M. E., Szklarek, D., et al. (1985) Defensins. Natural peptide antibiotics of human neutrophils, J. Clin. Invest., 76, 1427–1435

    Article  PubMed  CAS  Google Scholar 

  300. Selsted, M. E., Harwig, S. S., Ganz, T., Schilling, J. W., and Lehrer, R. I. (1985) Primary structures of three human neutrophil defensins, J. Clin. Invest., 76, 1436–1439

    Article  PubMed  CAS  Google Scholar 

  301. Gabay, J. E., Scott, R. W., Campanelli, D., et al. (1989) Antibiotic proteins of human polymorphonuclear leukocytes, Proc. Natl. Acad. Sci. U.S.A., 86, 5610–5614.

    Article  PubMed  CAS  Google Scholar 

  302. Joiner, K. A., Ganz, T., Albert, J., and Rotrosen, D. (1989) The opsonizing ligand on Salmonella typhimurium influences incorporation of specific, but not azurophil, granule constituents into neutrophil phagosomes, J. Cell. Biol., 109, 2771–2782.

    Article  PubMed  CAS  Google Scholar 

  303. Porter, E. M., Liu, L., Oren, A., Anton, P. A., and Ganz, T. (1997) Localization of human intestinal defensin 5 in Paneth cell granules, Infect. Immun., 65, 2389–2395.

    PubMed  CAS  Google Scholar 

  304. Bensch, K. W., Raida, M., Magert, H. J., Schulz-Knappe, P., and Forssmann, W. G. (1995) hBD-1: a novel beta-defensin from human plasma, FEBS Lett., 368, 331–335.

    Article  PubMed  CAS  Google Scholar 

  305. Zhao, C. Q., Wang, I., and Lehrer, R. I. (1996) Widespread expression of beta- defensin HBD-1 in human secretory glands and epithelial cells, FEBS Lett., 396, 319–322.

    Article  PubMed  CAS  Google Scholar 

  306. Harder, J., Bartels, J., Christophers, E., and Schröder, J. M. (1997) A peptide antibiotic from human skin, Nature, 387, 861–862.

    Article  PubMed  CAS  Google Scholar 

  307. Harder, J., Bartels, J., Christophers, E., and Schröder, J. M. (2001) Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic, J. Biol. Chem., 276, 5707–5713.

    Article  PubMed  CAS  Google Scholar 

  308. Diamond, G., Russell, J. P., and Bevins, C. L. (1996) Inducible expression of an antibiotic peptide gene in lipopolysaccharide-challenged tracheal epithelia cells, Proc. Natl. Acad. Sci., U.S.A., 93, 5156–5160.

    Article  PubMed  CAS  Google Scholar 

  309. Schonwetter, B. S., Stolzenberg, E. D., and Zasloff, M. A. (1995) Epithelial antibiotics induced at sites of inflammation, Science, 267, 1645–1648.

    Article  PubMed  CAS  Google Scholar 

  310. Diamond, G., Zasloff, M., Eck, H., et al. (1991) Tracheal antimicrobial peptide: a cystein-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA, Proc. Natl. Acad. Sci. U.S.A., 88, 3852–3956.

    Article  Google Scholar 

  311. Lehrer, R. I., Barton, A., Daher, K. A., Harwig, S. S., Ganz, T., and Selsted, M. E. (1989) Interaction of human defensins with Escherichia coli. Mechanism of bacterial activity, J. Clin. Invest., 84, 553–561.

    Article  PubMed  CAS  Google Scholar 

  312. Lehrer, R. I., Szklarek, D., Ganz, T., and Selsted, M. E. (1985) Correlation of binding of rabbit granulocyte peptides to Candida albicans with candidacidal activity, Infect. Immun., 49, 207–211.

    PubMed  CAS  Google Scholar 

  313. Lehrer, R. I., Barton, A., and Ganz, T. (1988) Concurrent assessment of inner and outer membrane permeability and bacteriolysis in E. coli by multiple-wavelength spectrophotometry, J. Immunol. Methods, 108, 153–158.

    Article  PubMed  CAS  Google Scholar 

  314. Lichtenstein, A. K., Ganz, T., Nguyen, T. M., Selsted, M. E., and Lehrer, R. I. (1988) Mechanism of target cytolysis by peptide defensins. Target cell metabolic activities, possibly involving endocytosis, are crucial for expression of cytotoxicity, J. Immunol., 140, 2686–2694.

    PubMed  CAS  Google Scholar 

  315. Lichtenstein, A., Ganz, T., Selsted, M. E., and Lehrer, R. I. (1986) In vitro tumor cell cytolysis mediated by peptide defensins of human and rabbit granulocytes, Blood, 68, 1407–1410.

    PubMed  CAS  Google Scholar 

  316. Wimley, W. C., Selsted, M. E., and White, S. H. (1994) Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores, Protein Sci., 3, 1362–1373.

    Article  PubMed  CAS  Google Scholar 

  317. White, S. H., Wimley, W. C., and Selsted, M. E. (1995) Structure, function, and membrane integration of defensins, Curr. Opin. Struct. Biol.. 5, 521–527.

    Article  PubMed  CAS  Google Scholar 

  318. Fujii, G., Selsted, M. E., and Eisenberg, D. (1993) Defensins promote fusion and lysis of negatively charged membranes, Protein Sci., 2, 1301–1312.

    Article  PubMed  CAS  Google Scholar 

  319. Kagan, B. L., Selsted, M. E., Ganz, T., and Lehrer, R. I. (1990) Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes, Proc. Natl. Acad. Sci. U.S.A., 87, 210–214.

    Article  PubMed  CAS  Google Scholar 

  320. Ganz, T., Metcalf, J. A., Gallin, J. I., Boxer, L. A., and Lehrer, R. I. (1988) Microbicidal/cytotoxic proteins of neutrophils are deficient in two disorders: Chediak-Higashi syndrome and “specific” granule deficiency, J. Clin. Invest., 82, 552–556.

    Article  PubMed  CAS  Google Scholar 

  321. Gallin, J. I., Fletcher, M. P., Seligmann, B. E., et al. (1982) Human neutrophil- specific granule deficiency: a model to assess the role of neutrophil-specific granules in the evolution of the inflammatory response, Blood, 59, 1317–1329.

    PubMed  CAS  Google Scholar 

  322. Gombart, A. F., Shiohara, M., Kwok, S. H., et al. (2001) Neutrophil-specific granule deficiency: homozygous recessive inheritance of a frameshift mutation in the gene encoding transcription factor CCAAT/enhancer binding protein-epsilon, Blood, 97, 2561–2567.

    Article  PubMed  CAS  Google Scholar 

  323. Turner, J., Cho, Y., Dinh, N. N., Waring, A. J., and Lehrer, R. I. (1998) Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils, Antimicrob. Agents Chemother., 42, 2206–2214.

    PubMed  CAS  Google Scholar 

  324. Zanetti, M., Gennaro, R., and Romeo, D. (1995) Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain, FEBS Lett., 374, 1–5.

    Article  PubMed  CAS  Google Scholar 

  325. Panyutich, A., Shi, J., Boutz, P. L., Zhao, C., and Ganz, T. (1997) Porcine polymorphonuclear leukocytes generate extracellular microbicidal activity by elastase-mediated activation of secreted proprotegrins, Infect. Immun., 65, 978–985.

    PubMed  CAS  Google Scholar 

  326. Scocchi, M., Skerlavaj, B., Romeo, D., and Gennaro, R. (1992) Proteolytic cleavage by neutrophil elastase converts inactive storage proforms to antibacterial bactenecins, Eur. J. Biochem., 209, 589–595.

    Article  PubMed  CAS  Google Scholar 

  327. Zanetti, M., Litteri, L., Griffiths, G., Gennaro, R., and Romeo, D. (1991) Stimulus- induced maturation of probactenecins, precursors of neutrophil antimicrobial polypeptides, J. Immunol., 146, 4295–4300.

    PubMed  CAS  Google Scholar 

  328. Levy, O., Weiss, J., Zarember, K., Ooi, C. E., and Elsbach, P. (1993) Antibacterial 15-kDa protein isoforms (p15s) are members of a novel family of leukocyte proteins, J. Biol. Chem., 268, 6058–6063.

    PubMed  CAS  Google Scholar 

  329. Zarember, K., Elsbach, P., Shin-Kim, K., and Weiss, J. (1997) p15s (15-kD antimicrobial proteins) are stored in the secondary granules of rabbit granulocytes: implications for antibacterial synergy with the bactericidal/permeability-increasing protein in inflammatory fluids, Blood, 89, 672–679.

    PubMed  CAS  Google Scholar 

  330. Gudmundsson, G. H., Agerberth, B., Odeberg, J., et al. (1996) The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes, Eur. J. Biochem., 238, 325–332.

    Article  PubMed  CAS  Google Scholar 

  331. Sorenson, O. E., Follin, P., Johnsen, A. H., et al. (2001) Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3, Blood, 97, 3951–3959.

    Article  Google Scholar 

  332. Oren, Z., Lerman, J. C., Gudmunsson, G. H., Agerberth, B., and Shai, Y. (1999) Structure and organization of the human antibacterial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity, Biochem. J., 341, 501–513.

    Article  PubMed  CAS  Google Scholar 

  333. De, Y., Chen, Q., Schmidt, A. P., et al. (2000) LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL 1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T-cells, J. Exp. Med., 192, 1069–1074.

    Article  Google Scholar 

  334. Frohm, N. M., Sandstedt, B., Sorensen, O., et al. (1999) The human cationic antimicrobial protein (hCAP18), a peptide antibiotic, is widely expressed in human squamous epthelia and colocalizes with interleukin-6, Infect. Immun., 67, 2561–2566.

    Google Scholar 

  335. Bals, R., Wang, X., Zasloff, M., and Wilson, J. M. (1998) The peptide antibiotic LL-37/hCAP-18 is express in epithelia of the human lung where it has broad antimicrobial activity at the airway surface, Proc. Natl. Acad. Sci. U.S.A., 95, 9541–9546.

    Article  PubMed  CAS  Google Scholar 

  336. Malm, J., Sorensen, O., Persson, T., et al. (2000) The human cationic antimicrobial protein (hCAP-18) is expressed in the epithelium of human epididymis, is present in seminal plasma at high concentrations, and is attached to spermatozoa, Infect. Immun., 68, 4297–4302.

    Article  PubMed  CAS  Google Scholar 

  337. Islam, D., Bandholtz, L., Nilsson, J., et al. (2001) Downregulation of bacterial peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator, Nat. Med., 7, 180–185.

    Article  PubMed  CAS  Google Scholar 

  338. Bals, R., Weiner, D. J., Meegalla, R. L., and Wilson, J. M. (1999) Transfer of cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model, J. Clin. Invest., 103, 1113–1117.

    Article  PubMed  CAS  Google Scholar 

  339. Bals, R., Weiner, D. J., Moscioni, A. D., Meegalla, R. L., and Wilson, J. M. (1999) Augmentation of innate host defense by expression of a cathelicidin antimicrobial peptide, Infect. Immun., 67, 6084–6089.

    PubMed  CAS  Google Scholar 

  340. Underhill, D. M. (2003) Innate immune signaling during phagocytosis. In: Innate Immunity (Ezekowitz, R. A. B. and Hoffmann, J. A., eds.), Humana Press, Totowa, NJ, pp. 341–359.

    Google Scholar 

  341. Aderem, A. and Underhill, D. M. (1999) Mechanisms of phagocytosis in macrophages, Annu. Rev. Immunol., 17, 593–623.

    Article  PubMed  CAS  Google Scholar 

  342. Ernest, J. D. (2000) Bacterial inhibition of phagocytosis, Cell. Microbiol., 2, 279–386.

    Google Scholar 

  343. Greenberg, S. (1999) Modular components of phagocytosis, J. Leukoc. Biol., 66, 712–717.

    PubMed  CAS  Google Scholar 

  344. Revetch, J. V. and Clynes, R. A. (1998) Divergent roles for Fc receptors and complement in vivo, Annu. Rev. Immunol., 16, 421–432.

    Article  Google Scholar 

  345. Daeron, M. (1997) Fc receptor biology, Annu. Rev. Immunol., 15, 203–234.

    Article  PubMed  CAS  Google Scholar 

  346. Ross, G. D. (2000) Regulation of adhesion versus cytotoxic functions of the Mac- 1/CR3/alphaM-beta-2-integrin glycoprotein, Crit. Rev. Immunol., 20, 197–222.

    PubMed  CAS  Google Scholar 

  347. Blystone, S. D. and Brown, E. J. (1999) Integrin receptors of phagocytes. In Phagocytosis: The Host (Gordon, S., ed.), JAI Press, Stamford, CT, pp. 102–147.

    Google Scholar 

  348. Dib, K. (2000) BETA 2 integrin signaling in leukocyes, Front. Biosci., 5, D438–D451.

    Google Scholar 

  349. Berger, M., O’Shea, J., Cross, A. S., et al. (1984) Human neutrophils increase expression of C3bi as well as C3b receptors upon activation, J. Clin. Invest., 74, 1566–1571.

    Article  PubMed  CAS  Google Scholar 

  350. Sengelov, H., Kjeldsen, L., Diamond, M. S., Springer, T. A., and Borregaard, N. (1993) Subcellular localization and dynamics of Mac-1 (alpha m beta 2) in human neutrophils, J. Clin. Invest., 92, 1467–1476.

    Article  PubMed  CAS  Google Scholar 

  351. Jones, S. L., Knaus, U. G., Bokoch, G. M., and Brown, E. J. (1998) Two signaling mechanisms for activation of alphaM beta2 avidity in polymorphonuclear neutrophils, J. Biol. Chem., 273, 10556–10566.

    Article  PubMed  CAS  Google Scholar 

  352. Wroght, S. D. and Griffin, F. M., Jr. (1985) Activation of phagocytic cells’ C3 receptors for phagocytosis, J. Leukoc. Biol., 38, 327–339.

    Google Scholar 

  353. Wright, S. D., Craigmyle, L. S., and Silverstein, S. C. (1983) Fibronectin and serum amyloid P component stimulate C3b- and C3bi-mediated phagocytosis in cultured human monocytes, J. Exp. Biol., 158, 1338–1343.

    CAS  Google Scholar 

  354. Pommier, C. G., Inada, S., Fries, L. F., et al. (1983) Plasma fibronectin enhances phagocytosis of opsonized particles by human peripheral blood monocytes, J. Exp. Med., 157, 1844–1854.

    Article  PubMed  CAS  Google Scholar 

  355. Di Carlo, F. J. and Fiore, J. V. (1958) On the composition of zymosan, Science, 127, 756–757.

    Article  Google Scholar 

  356. Lipke, P. N. and Ovalle, R. (1998) Cell wall architecture in yeast: new structure and new challenges, J. Bacteriol., 180, 3735–3740.

    PubMed  CAS  Google Scholar 

  357. Sung, S. S., Nelson, R. S., and Silverstein, S. C. (1983) Yeast mannans inhibit binding and phagocytosis of zymosan by mouse peritoneal macrophages, J. Cell. Biol., 96, 160–166.

    Article  PubMed  CAS  Google Scholar 

  358. Goldman, R. (1988) Characteristics of the beta-glucan receptor of murine macrophages, Exp. Cell. Res., 174, 481–490.

    Article  PubMed  CAS  Google Scholar 

  359. Janusz, M. J., Austen, K. F., and Czop, J. K. (1986) Isolation of soluble yeast beta-glucans that inhibit human monocyte phagocytosis mediated by beta-glucan receptors, J. Immunol., 137, 3270–3276.

    PubMed  CAS  Google Scholar 

  360. Giaimis, J., Lombard, Y., Fonteneau, P., et al. (1993) Both mannose and beta- glucan receptors are involved in the phagocytosis of unopsonized, heat-killed Saccharomyces cerevisiae by murine macrophages, J. Leukoc. Biol., 54, 564–571.

    PubMed  CAS  Google Scholar 

  361. Platt, N., Haworth, R., da Silva, R. P., and Goedon, S. (1999) Scavenger receptors and phagocytosis of bacteria and apoptotic cells. In: Phagocytosis: The Host (Gordon, S., ed.), JAI Press, Stamford, CT, pp. 71–85.

    Google Scholar 

  362. Peiser, L., Gough, P. J., Kodama, T., and Goedon, S. (2000) Macrophage class A scavenger receptor-mediated phagocytosis of Escherichia coli: role of the cell heterogeneity, microbial strain, and culture conditions in vitro, Infect. Immun., 68, 1953–1963.

    Article  PubMed  CAS  Google Scholar 

  363. Thomas, C. A., Li, Y., Kodama, T., et al. (2000) Protection from lethal gram- positive infection by macrophage scavenger receptor-dependent phagocytosis, J. Exp. Med., 191, 147–156.

    Article  PubMed  CAS  Google Scholar 

  364. Elomaa, O., Kangas, M., Sahlberg, C., et al. (1995) Cloning of a novel bacteria- binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages, Cell, 80, 603–609.

    Article  PubMed  CAS  Google Scholar 

  365. van der Laan, L. J., Dopp, E. A., and Haworth, R., et al. (1999) Regulation and functional involvement of macrophage scavenger receptor MARCO in clearance of bacteria in vivo, J. Immunol., 162, 939–947.

    PubMed  Google Scholar 

  366. Placecanda, A., Paulauskis, J., Al-Mutairi, E., et al. (1999) Role of the scavenger receptor MARCO in alveolar macrophage binding of unopsonized environmental particles, J. Exp. Med., 189, 1497–1506.

    Article  Google Scholar 

  367. Albert, M. L., Pearce, S. F., Francisco, L. M., et al. (1998) Immature dendritic cells phagocytose apoptotic cells via ανβ5 and CD36, and cross-present antigens to cytotoxic T lymphocytes, J. Exp. Med., 188, 1359–1368.

    Article  PubMed  CAS  Google Scholar 

  368. Fadok, V. A., Warner, M. L., Bratton, D. L., and Henson, P. M. (1998) CD36 is required for phagocytosis of apoptotic cells by human macrophages that use either a phosphatidylserine receptor or the vitronectin receptor ανβ5, J. Immunol., 161, 6250–6257.

    PubMed  CAS  Google Scholar 

  369. Franc, N. C., Heitzler, P., Ezekowitz, R. A., and White, K. (1999) Requirement for croquemort in phagocytosis of apoptotic cells in Drosophila, Science, 284, 1991–1994.

    Article  PubMed  CAS  Google Scholar 

  370. Allen, L. A. and Aderem, A. (1996) Molecular definition of distinct cytoskeletal structures involved in complement- and Fc receptor-mediated phagocytosis in macrophages, J. Exp. Med., 184, 627–637.

    Article  PubMed  CAS  Google Scholar 

  371. Allen, L. A. and Aderem, A. (1996) Mechanisms of phagocytosis, Curr. Opin. Immunol., 8, 36–40.

    Article  PubMed  CAS  Google Scholar 

  372. Crowley, M. T., Costello, P. S., Fitzer-Attas, C. J., et al. (1997) A critical role for Syk in signal transduction and phagocytosis mediated by Fcgamma receptors on macrophages, J. Exp. Med., 186, 1027–1039.

    Article  PubMed  CAS  Google Scholar 

  373. Kusner, D. J., Hall, C. F., and Schlesinger, L. S. (1996) Activation of phospholipase D is tightly coupled to the phagocytosis of Mycobacterium tuberculosis or opsonized zymosan by human macrophages, J. Exp. Med., 184, 585–595.

    Article  PubMed  CAS  Google Scholar 

  374. Lin, T. H., Aplin, A. E., Shen, Y., Chen, Q., et al. (1997) Integrin-mediated activation of MAP kinase is independent of FAK: evidence for dual integrin signaling pathways in fibroblasts, J. Cell Biol., 136(6), 1385–1995.

    Article  PubMed  CAS  Google Scholar 

  375. Ip, Y. T. and Davis, R. J. (1998) Signal transduction by the c-Jun N-terminal kinase (JNK) – from inflammation to development, Curr. Opin. Cell. Biol., 10, 205–219.

    Article  PubMed  CAS  Google Scholar 

  376. Allen, L. H. and Aderem, A. (1995) A role for MARCKS, the alpha isozyme of protein kinase C and myosin I in zymosan phagocytosis by macrophages, J. Exp. Med., 182, 829–840.

    Article  PubMed  CAS  Google Scholar 

  377. Melendez, A. J., Harnett, M. M., and Allen, J. M. (1999) Differentiation-dependent switch in protein kinase C isoenzyme activation by FcgammaRI, the human high- affinity receptor for immunoglobulin G, Immunology, 96, 457–464.

    Article  PubMed  CAS  Google Scholar 

  378. Zheng, L., Zomerdijk, T. P., Aarnoudse, C., van Furth, R., and Nibbering, P. H. (1995) Role of protein kinase C isozymes in Fc gamma receptor-mediated intracellular killing of Staphylococcus aureus by human monocytes, J. Immunol., 155, 776–784.

    PubMed  CAS  Google Scholar 

  379. Zheleznyak, A. and Brown, E. J. (1992) Immunoglobulin-mediated phagocytosis by human monocytes requires protein kinase C activation. Evidence for protein kinase C translocation to phagosomes, J. Biol. Chem., 267, 12042–12048.

    PubMed  CAS  Google Scholar 

  380. Aderem, A. (1992) The MARCKS brothers: a family of protein kinase C substrates, Cell, 71, 713–716.

    Article  PubMed  CAS  Google Scholar 

  381. Shapira, L., Takashiba, S., Champagne, C., Amar, S., and van Dyke, T. E. (1992) Involvement of protein kinase C and protein tyrosine kinase in lipopolysaccharide-induced TNF-alpha and IL-1 beta production by human monocytes, J. Immunol., 153, 1818–1824.

    Google Scholar 

  382. Kovacs, E. J., Radzioch, D., Young, H. A., and Varesio, L. (1988) Differential inhibition of IL-1 and TNF-alpha mRNA expression by agents which block second messenger pathways in murine macrophages, J. Immunol., 141, 3101–3105.

    PubMed  CAS  Google Scholar 

  383. Huwiler, A. and Pfeilschifter, J. (1993) A role for protein kinase X-alpha in zymosan-stimulated eicosanoid synthesis in mouse peritoneal macrophages, Eur. J. Biochem., 217, 69–75.

    Article  PubMed  CAS  Google Scholar 

  384. Giroux, M. and Descoteaux, A. (2000) Cyclooxygenase-2 expression in macrophages: modulation by protein kinase C-alpha, J. Immunol., 165, 3985–3991.

    PubMed  CAS  Google Scholar 

  385. St-Denis, A., Chano, F., Tremblay, P., St-Pierre, Y., and Descoteaux, A. (1998) Protein kinase C-alpha modulates lipopolysaccharide-induced functions in a murine macrophage cell line, J. Biol. Chem., 273, 32787–32792.

    Article  PubMed  CAS  Google Scholar 

  386. St-Denis, A., Caouras, V., Gervais, F., and Descoteaux, A. (1999) Role of protein kinase C-alpha in the control of infection by intracellular pathogens in macrophages, J. Immunol., 163, 5505–5511.

    PubMed  CAS  Google Scholar 

  387. Larsen, E. C., DiGennaro, J. A., Saito, N., et al. (2000) Differential requirement for classic and novel PKC isoforms in respiratory burst and phagocytosis in RAW 264.7 cells, J. Immunol., 165, 2809–2817.

    PubMed  CAS  Google Scholar 

  388. Botelho, R. J., Teruel, M., Dierckman, R., et al. (2000) Localized biphasic changes in phosphatidylinositol-4,5-biphosphate at sites of phagocytosis, J. Cell. Biol., 151, 1353–1368.

    Article  PubMed  CAS  Google Scholar 

  389. Chan, T. O., Rittenhouse, S. E., and Tsichlis, P. N. (1999) AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation, Annu. Rev. Biochem., 68, 965–1014.

    Article  PubMed  CAS  Google Scholar 

  390. Lennartz, M. R. (1999) Phospholipases and phagocytosis: the role of phospholipid- derived second messengers in phagocytosis, Int. J. Biochem. Cell. Biol., 31, 415–430.

    Article  PubMed  CAS  Google Scholar 

  391. Celli, J., Oliver, M., and Finlay, B. B. (2001) Enteropathogenic Escherichia coli mediates antiphagocytosis through the inhibition of PI 3-kinase-dependent pathways, EMBO J., 20, 1245–1258.

    Article  PubMed  CAS  Google Scholar 

  392. Araki, N., Johnson, M. T., and Swanson, J. A. (1996) A role for phosphoinositide 3- kinase in the completion of macropinocytosis and phagocytosis by macrophages, J. Cell. Biol., 135, 1249–1260.

    Article  PubMed  CAS  Google Scholar 

  393. Gold, E. S., Underhill, D. M., Morrissette, N. S., et al. (1999) Dynamin 2 is required for phagocytosis in macrophages, J. Exp. Med., 190, 1849–1856.

    Article  PubMed  CAS  Google Scholar 

  394. Arbibe, L., Mira, J. P., Teusch, N., et al. (2000) Toll-like receptor 2-mediated NF- kappa B activation requires a Rac 1-dependent pathway, Nat. Immun., 1, 533–540.

    Article  CAS  Google Scholar 

  395. Chimini, G. and Chavrier, P. (2000) Function of Rho family proteins in actin dynamics during phagocytosis and engulfment, Nat. Cell. Biol., 2, E191–E196.

    Article  PubMed  CAS  Google Scholar 

  396. Schmitz, A. A., Govek, E. E., Bottner, B., and van Aelst, L. (2000) Rho GTPases: signaling, migration, and invasion, Exp. Cell. Res., 261, 1–12.

    Article  PubMed  CAS  Google Scholar 

  397. Caron, E. and Hall, A. (1998) Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases, Science, 282, 1717–1721.

    Article  PubMed  CAS  Google Scholar 

  398. Massol, P., Montcourrier, P., Guillemot, J. C., and Chavrier, P. (1998) Fc receptor- mediated phagocytosis requires CDC42 and Rac1, EMBO J., 17, 6219–6229.

    Article  PubMed  CAS  Google Scholar 

  399. Guillen, N., Boquet, P., and Sansonetti, P. (1998) The small GTP-binding protein RacG regulates uroid formation in the protozoan parasite Entamoeba histolytica, J. Cell. Biol., 111, 1729–1739.

    CAS  Google Scholar 

  400. Cox, D., Chang, P., Zhang, Q., et al. (1997) Requirements for both Rac1 and Cdc42 in membrane ruffing and phagocytosis in leukocytes, J. Exp. Med., 186, 1487–1494.

    Article  PubMed  CAS  Google Scholar 

  401. Von Pawel-Rammingen, U., Telepnev, M.V., Schmidt, G., et al. (2000) GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure, Mol. Microbiol., 36, 737–748.

    Article  Google Scholar 

  402. Goehring, U. M., Schmidt, G., Pederson, K. J., Aktories, K., and Barbieri, J. T. (1999) The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases, J. Biol. Chem., 274, 36369–36372.

    Article  PubMed  CAS  Google Scholar 

  403. Leusen, J. H. W., Verhoeven, A. J., and Roos, D. (1996) Interactions between the components of the human NADPH oxidase: a review about the intrigues in the phox family, Front. Biosci., 1, 72–90.

    Google Scholar 

  404. DeLeo, F. R., Allen, L. A., Apicella, M., and Nauseef, W. M. (1999) NADPH oxidase activation and assembly during phagocytosis, J. Immunol., 163, 6732–6740.

    PubMed  CAS  Google Scholar 

  405. Segal, A. W., Wientjes, F., Stockely, R. W., and Dekker, L. V. (1999) Components and organization of the NADPH oxidase of phagocytic cells. In: Phagocytosis: The Host (Gordon, S., ed.), JAI Press, Stamford, CT, pp. 441–483.

    Google Scholar 

  406. Wright, S. D. and Silverstein, S. C. (1983) Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes, J. Exp. Med., 158, 2016–2023.

    Article  PubMed  CAS  Google Scholar 

  407. Yamamoto, K. and Johnston, R. B., Jr. (1984) Dissociation of phagocytosis from stimulation of the oxidative metabolic burst in macrophages, J. Exp. Med., 159, 405–416.

    Article  PubMed  CAS  Google Scholar 

  408. Berton, G. and Gordon, S. (1983) Modulation of macrophage mannosyl-specific receptors by cultivation on immobilized zymosan. Effects on superoxide-anion release and phagocytosis, Immunology, 49, 705–715.

    PubMed  CAS  Google Scholar 

  409. Berton, G., Laudanna, C., Sorio, C., and Rossi, F. (1992) Generation of signals activating neutrophil functions by leukocyte integrins: LFA-1 and gp150/95, but not CR3, are able to stimulate the respiratory burst of human neutrophils, J. Cell. Biol., 116, 1007–1017.

    Article  PubMed  CAS  Google Scholar 

  410. Laudanna, C., Melotti, P., Bonizatto, C., et al. (1993) Ligation of members of the beta 1 or the beta 2 subfamilies of integrins by antibodies triggers eosinophil respiratory burst and spreading, Immunology, 80, 273–280.

    PubMed  CAS  Google Scholar 

  411. Ozinsky, A., Underhill, D. M., Fontenot, J. D., et al. (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors, Proc. Natl. Acad. Sci. U.S.A., 97, 13766–13771.

    Article  PubMed  CAS  Google Scholar 

  412. Underhill, D. M., Ozinsky, A., Hajjar, A. M., et al. (1999) The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens, Nature, 401, 811–815.

    Article  PubMed  CAS  Google Scholar 

  413. Boyce, J. A. and Austen, K. F. (2003) The role of mast cells in innate immunity. In: Innate Immunity (Ezekowitz, R. A. B. and Hoffmann, J. A., eds.), Humana Press, Totowa, NJ, pp. 361–385.

    Google Scholar 

  414. McNeil, H. P. and Austen, K. F. (1995) Biology of the mast cell. In: Sampter’s Immunologic Diseases, 5th ed. (Frank, M. M., Austen, K. F., Claman, H. N., et al., eds.), Williams 8 Wilkins, Baltimore, MD, pp. 185–204.

    Google Scholar 

  415. Guy-Grant, D., Dy, M., Luffau, G., et al. (1984) Gut mucosal mast cells: origin, traffic and differentiaton, J. Exp. Med., 160, 12–28.

    Article  Google Scholar 

  416. Gurish, M. F., Tao, H., Abonia, J. P., et al. 2001) Intestinal mast cell progenitor require CD49dβ7 (α4β7) for tissue-specific homing, J. Exp. Med., 194, 1243–1252.

    Google Scholar 

  417. Rosenkranz, A. R., Coxon, A., Maurer, M., et al. (1998) Impaired mast cell development and innate immunity in Mac-1 (CD11b/CD18, CR3)-deficient mice, J. Immunol., 168, 6463–6467.

    Google Scholar 

  418. Tachimoto, H., Hudson, S. A., and Bochner, B. S. (2001) Acquisition and alteration of adhesion molecules during cultured human mast cell differentiation, J. Allergy Clin. Immunol., 107, 10–16.

    Article  Google Scholar 

  419. Nilsson, G., Butterfield, J. H., Nilsson, K., and Siegbahn, A. (1994) Stem cell factor is a chemotactic factor for human mast cells, J. Immunol., 153, 3717–3723.

    PubMed  CAS  Google Scholar 

  420. Meininger, C. J., Yano, H., Rottapel, R., et al. (1992) The c-kit receptor ligand functions as a mast cell chemoattractant, Blood, 79, 958–963.

    PubMed  CAS  Google Scholar 

  421. Schwartz, L. B., Irani, A. M., Roller, K., et al. (1987) Quantitation of histamine, tryptase, and chymase in human T and TC mast cells, J. Immunol., 138, 2611–2615.

    PubMed  CAS  Google Scholar 

  422. Benditt, E. P., Arase, M., and Roeper, M. E. (1956) Histamine and heparine in isolated rat mast cells, J. Histochem. Cytochem., 4, 419.

    Google Scholar 

  423. Leino, L. and Lilius, E.-M. (1990) Histamine receptors on leukocytes are expressed differently in vitro and ex vivo, Int. Arch. Allergy Appl. Immunol., 91, 30–35.

    PubMed  CAS  Google Scholar 

  424. Falus, A. and Meretey, K. (1992) Histamine: an early messenger in inflammatory and immune reactions, Immunol. Today, 13, 154–156.

    Article  PubMed  CAS  Google Scholar 

  425. Schwartz, L. B., Lewis, R. A., and Austen, K. F. (1981) Tryptase from human pulmonary mast cells. Purification and characterization, J. Biol. Chem., 256, 11939–11943.

    PubMed  CAS  Google Scholar 

  426. Schechter, N. M., Choi, J. K., Slavin, D. A., et al. (1986) Identification of a chymotrypsin-like proteinase in human mast cells, J. Immunol., 137, 962–970.

    PubMed  CAS  Google Scholar 

  427. Pallaoro, M., Fejzo, M. S., Shayesteh, L., et al. (1999) Characterization of genes encoding known and novel human mast cell tryptases on chromosome 16p13.3, J. Biol. Chem., 274(6), 3355–3362.

    Article  PubMed  CAS  Google Scholar 

  428. Schchter, N. M., Irani, A. M., Sprows, J. L., et al. (1990) Identification of cathepsin G-like proteinase in the MCTC type of human mast cell, J. Immunol., 145, 2652–2661.

    Google Scholar 

  429. Reynolds, D. S., Stevens, R. L., Gurley, D. S., et al. (1989) Isolation and molecular cloning of mast cell carboxypeptidase A: a novel member of the carboxypeptidase gene family, J. Biol. Chem., 264, 20094–20099.

    PubMed  CAS  Google Scholar 

  430. Irani, A. M., Goldstein, S. M., Wintroub, B. U., et al. (1991) Human mast cell carboxypeptidase. Selective localization to MCTC cells, J. Immunol., 147, 247–253.

    PubMed  CAS  Google Scholar 

  431. Irani, A. A., Schechter, N. M., Craig, S. S., et al. (1986) Two types of human mast cells that have distinct neutral protease compositions, Proc. Natl. Acad. Sci. U.S.A., 83, 4464–4468.

    Article  PubMed  CAS  Google Scholar 

  432. Irani, A. M., Craig, S., DeBlois, G., et al. (1987) Deficiency of the tryptase-positive, chymase-negative mast cell type in gastrointestinal mucosa of patients with defective T lymphocyte function, J. Immunol., 138, 4381–4386.

    PubMed  CAS  Google Scholar 

  433. Chandrasekharan, U. M., Sanker, S., Glynias, M. J., et al. (1996) Angiotensin II- forming activity in a reconstructed ancestral chymase, Science, 271, 502–505.

    Article  PubMed  CAS  Google Scholar 

  434. Sanker, S., Chandrasekharan, U. M., Wilk, D., et al. (1997) Distinct multisite synergistic interactions determine substrate specificities of human chymase and rat chymase-1 for angiotensin II formation and degradation, J. Biol. Chem., 272, 2963–2968.

    Article  PubMed  CAS  Google Scholar 

  435. Coussens, L. M., Raymond, W. W., Bergers, G., et al. (1999) Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis, Genes Dev., 13, 1382–1397.

    Article  PubMed  CAS  Google Scholar 

  436. Kofford, M. W., Schwartz, L. B., Schechter, N. M., et al. (1997) Cleavage of type I procollagen by human mast cell chymase initiates collagen fibril formation and generates a unique carboxyl-terminal propeptide, J. Biol. Chem., 272, 7127–7131.

    Article  PubMed  CAS  Google Scholar 

  437. Longley, B. J., Tyrrell, L., Ma, Y., et al. (1997) Chymase cleavage of stem cell factor yields a bioactive, soluble product, Proc. Natl. Acad. Sci. U.S.A., 94, 9017–9021.

    Article  PubMed  CAS  Google Scholar 

  438. Reynolds, D. S., Gurley, D. S., Stevens, R. L., et al. (1989) Cloning of cDNAs that encode human mast cell carboxypeptidase A, and comparison of the protein with mouse mast cell carboxypeptidase A and rat pancreatic carboxypeptidases, Proc. Natl. Acad. Sci. U.S.A., 86(23), 9480–9484.

    Article  PubMed  CAS  Google Scholar 

  439. Caughey, G. H. (1989) Roles of mast cell tryptase and chymase in airway function, Am. J. Physiol., 257, L39.

    Google Scholar 

  440. Humphries, D. E., Nicodemus, C. F., Schiller, V., et al. (1992) The human serglycin gene. Nucleotide sequence and methylation pattern in human promyelitic leukemia HL-60 cells and T-lymphoblast Molt-4 cells, J. Biol. Chem., 267, 13558–13563.

    PubMed  CAS  Google Scholar 

  441. Avraham, S., Stevens, R. L., Gartner, M. C., et al. (1988) Isolation of a cDNA that encodes the peptide core of the secretory proteoglycan of rat basophilic leukemia-1 cells and assessment of its homology to the human analogue, J. Biol. Chem., 263, 7292–7296.

    PubMed  CAS  Google Scholar 

  442. Avraham, S., Stevens, R. L., Nicodemus, C. F., et al. (1989) Molecular cloning of a cDNA that encodes the peptide core of a mouse mast cell secretory granule proteoglycan and comparison with the analogous rat and human cDNA, Proc. Natl. Acad. Sci. U.S.A., 86, 3763–3767.

    Article  PubMed  CAS  Google Scholar 

  443. Metcalfe, D. D., Soter, N. A., Wasserman, S. I., et al. (1980) Identification of sulfated mucopolysaccharides including heparin in the lesional skin of a patient with systemic mastocytosis, J. Invest. Dermatol., 74, 210–215.

    Article  PubMed  CAS  Google Scholar 

  444. Metcalfe, D. D., Lewis, R. A., Silbert, J. E., et al. (1979) Isolation and characterization of heparin from human lung, J. Clin. Invest., 64, 1537–1543.

    Article  PubMed  CAS  Google Scholar 

  445. Stevens, R. L., Fox, C. C., Lichtenstein, L. M., et al. (1988) Identification of chondroitin sulfate E proteoglycans in the secretory granules of human lung mast cells, Proc. Natl. Acad. Sci. U.S.A., 85, 2284–2287.

    Article  PubMed  CAS  Google Scholar 

  446. Eliakim, R., Gilead, L., Ligumsky, M., et al. (1986) Possible presence of E-mast cells in the human colon, Proc. Natl. Acad. Sci. U.S.A., 83, 461–464.

    Article  PubMed  CAS  Google Scholar 

  447. Schwartz, L. B., Riedel, C., Caufield, J. P., et al. (1981) Cell association of complexes of chymase, heparin proteoglycan, and protein after degranulation by rat mast cells, J. Immunol., 126, 2071–2078.

    PubMed  CAS  Google Scholar 

  448. Schwartz, L. B., Riedel, C., Schratz, J. J., et al. (1982) Localization of carboxypeptidase A to the macromolecular heparin proteoglycan-protein complex in secretory granules of rat serosal mast cells, J. Immunol., 128, 1128–1133.

    PubMed  CAS  Google Scholar 

  449. Serafin, W. E., Katz, H. R., Austen, K. F., et al. (1986) Complexes of heparin proteoglycans, chondroitin sulfate E proteoglycans, and [3H] diisopropyl fluorophosphates-binding proteins are exocytosed from activated mouse bone marrow-mast cells, J. Biol. Chem., 261, 15017–15021.

    PubMed  CAS  Google Scholar 

  450. Goldstein, S. M., Leong, J., Schwartz, L. B., et al. (1992) Protease composition of exocytosed human skin mast cell protease-proteoglycan complexes, J. Immunol., 148, 2475–2482.

    PubMed  CAS  Google Scholar 

  451. Paterson, N. A. M., Wasserman, S. I., Said, J. W., et al. (1976) Release of chemical mediators from partially purified human lung mast cells, J. Immunol., 117, 1356–1362.

    PubMed  CAS  Google Scholar 

  452. Heavey, D. J., Ernst, P. B., Stevens, R. L., et al. (1988) Generation of leukotriene C4, leukotriene B4 and prostaglandin D2 by immunologically activated rat intestinal mucosal mast cells, J. Immunol., 140, 1953–1957.

    PubMed  CAS  Google Scholar 

  453. Murakami, M., Austen, K. F., and Arm, J. P. (1995) The immediate phase of c-kit ligand stimulation of mouse bone marrow-derived mast cells elicits rapid leukotriene C4 generation through posttranslational activation of cytosolic phospholipase A2 and 5-lipoxygenase, J. Exp. Med., 182, 197–206.

    Article  PubMed  CAS  Google Scholar 

  454. Columbo, M., Horowitz, E. M., Botana, L. M., et al. (1992) The human recombinant c-kit receptor ligand, rhSCF, induces mediator release from human cutaneous mast cells and peripheral blood basophils, J. Immunol., 149, 599–608.

    PubMed  CAS  Google Scholar 

  455. Clark, J. D., Lin, L.-L., Kriz, R. W., et al. (1991) A novel arachidonic acid-selective cytosolic PLA2 contains a Ca2+-dependent translocation domain with homology to PKC and GAP, Cell, 65, 1043–1051.

    Article  PubMed  CAS  Google Scholar 

  456. Malavia, R., Malavia, R., and Jakschik, B. A. (1993) Reversible translocation of 5- lipoxygenase in mast cells upon IgE/antigen stimulation, J. Biol. Chem., 268, 4939–4944.

    Google Scholar 

  457. Dixon, R. A. F., Diehl, R. E., Opas, E., et al. (1990) Requirement of a 5- lipoxygenase-activating protein for leukotriene biosynthesis, Nature, 343, 282–284.

    Article  PubMed  CAS  Google Scholar 

  458. Evans, J. F., Dupuis, P., and Ford-Hutchinson, A. W. (1985) Purification and characterization of leukotriene A4 hydrolase from rat neutrophils, Biochem. Biophys. Acta, 840, 43–50.

    PubMed  CAS  Google Scholar 

  459. Lam, B. K., Penrose, J. F., Freeman, G. J., et al. (1994) Expression cloning of a cDNA for human leukotriene C4 synthase, an integral membrane protein conjugating reduced glutathione to leukotriene A4, Proc. Natl. Acad. Sci. U.S.A., 91, 7663–7667.

    Article  PubMed  CAS  Google Scholar 

  460. Lam, B. K., Gagnon, L., Austen, K. F. et al. (1990) The mechanism of leukotriene B4 export from human polymorphonuclear leukocytes, J. Biol. Chem., 265, 13438–13441.

    PubMed  CAS  Google Scholar 

  461. Lam, B. K., Xu, K., Atkins, M. B., et al. (1992) Leukotriene C4 uses a probenicid-sensitive export carrier that does not recognize leukotriene B4, Proc. Natl. Acad. Sci. U.S.A., 89, 11598–11602.

    Article  PubMed  CAS  Google Scholar 

  462. Lindbom, L., Hedqvist, P., Dahlen, S. E., et al. (1982) Leukotriene B4 induces extravasation and migration of polymorphonuclear leukocytes in vivo, Acta Physiol. Scand., 116, 105–108.

    Article  PubMed  CAS  Google Scholar 

  463. Yokomizo, T., Izumi, T., Chang, K., Takuwa, Y., and Shimizu, T. (1997) A G- protein-coupled receptor for leukotriene B4 that mediates chemotaxis, Nature, 387, 620–624.

    Article  PubMed  CAS  Google Scholar 

  464. Yokomizu, T., Kato, K., Terawaki, K., Izumi, T., and Shimizu, T. (2000) A second leukotriene B(4) receptor, BLT2. A new therapeutic target in inflammation and immunological disorders, J. Exp. Med., 192, 421–432.

    Article  Google Scholar 

  465. Raulf, M., Stuning, M., and Konig, W. (1985) Metabolism of leukotrienes by L- gamma-glutamyl-transpeptidase and dipeptidase from human polymorphonuclear granulocytes, Immunology, 55, 135–147.

    PubMed  CAS  Google Scholar 

  466. Davidson, A. B., Lee, T. H., Scanlon, P. D., et al. (1987) Bronchoconstrictor effects of leukotriene E4 in normal and asthmatic subjects, Am. Rev. Respir. Dis., 135, 333–337.

    PubMed  CAS  Google Scholar 

  467. Griffin, M., Weiss, J. W., Leitch, A. G., et al. (1983) Effect of leukotriene D4 on the airways in asthma, N. Engl. J. Med., 308, 436–439.

    PubMed  CAS  Google Scholar 

  468. Laitinen, L. A., Laitinen, A., Haahtela, T., et al. (1993) Leukotriene E4 and granulocytic infiltration into asthmatic airways, Lancet, 341, 989–990.

    Article  PubMed  CAS  Google Scholar 

  469. Lynch, K. R., O’Neill, G. P., Liu, Q., et al. (1999) Characterization of the human cysteinyl leukotriene CysLT1 receptor, Nature, 399, 789–793.

    Article  PubMed  CAS  Google Scholar 

  470. Heise, C. E., O’Dowd, B. F., Figueroa, D. J., et al. (2000) Characterization of the human cysteinyl leukotriene 2 receptor, J. Biol. Chem., 275, 30531–30536.

    Article  PubMed  CAS  Google Scholar 

  471. Mellor, E. A., Maekawa, A., Austen, K. F., and Boyce, J. A. (2001) Cysteinyl leukotriene receptor 1 is also a pyrimidinergic receptor and is expressed by human mast cells, Proc. Natl. Acad. Sci. U.S.A., 98, 7964–7969.

    Article  PubMed  CAS  Google Scholar 

  472. Kanaoka, Y., Maekawa, A., Penrose, J. F., Austen, K. F., and Lam, B. K. (2001) Attenuated zymosan-induced peritoneal vascular permeability and IgE-dependent passive cutaneous anaphylaxis in mice lacking leukotriene C4 synthase, J. Biol. Chem., 276, 22608–22613.

    Article  PubMed  CAS  Google Scholar 

  473. Murakami, M., Matsumoto, R., Urade, Y., et al. (1995) c-kit ligand mediates increased expression of cytosolic phospholipase A2, prostaglandin endoperoxide synthase 1, and hematopoietic prostaglandin D2 synthase and increased IgE- dependent PGD2 generation in immature mouse mast cells, J. Biol. Chem., 270, 3239–3246.

    Article  PubMed  CAS  Google Scholar 

  474. Liu, M. C., Bleecker, E. R., Lichtenstein, L. M., et al. (1990) Evidence for elevated levels of histamine, prostaglandin D2 and other bronchoconstricting prostaglandins in the airways of subjects with mild asthma, Am. Rev. Respir. Dis., 142, 126–132.

    PubMed  CAS  Google Scholar 

  475. Roberts, L. J., II, Seibert, K., Liston, T. E., et al. (1987) PGD2 is transformed by human coronary arteries to 9 alpha, 11 beta-PGF2, which contracts human coronary artery rings, Adv. Prostaglandin Thromboxane Leukotr. Res., 17A, 427–429.

    Google Scholar 

  476. Hirai, H., Tanaka, K., Yoshie, O., et al. (2001) Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven- transmembrane receptor CRTH2, J. Exp. Med., 193, 255–261.

    Article  PubMed  CAS  Google Scholar 

  477. Boie, Y., Sawyer, N., Slipetz, D. M., Metters, K. M., and Abramovitz, M. (1995) Molecular cloning and characterization of the human prostanoid DP receptor, J. Biol. Chem., 270, 18910–18916.

    Article  PubMed  CAS  Google Scholar 

  478. Gordon, J. R. and Galli, S. J. (1990) Mast cells as a source of both preformed and immunologically inducible TNF-α/cachectin, Nature, 346, 274–276.

    Article  PubMed  CAS  Google Scholar 

  479. Subramanian, N. and Bray, M. A. (1987) Interleukin 1 releases histamine from human basophils and mast cells in vitro, J. Immunol., 138, 271–274.

    PubMed  CAS  Google Scholar 

  480. Lu-Kuo, J. M., Austen, K. F., and Katz, H. R. (1996) Post-transcriptional stabilization by interleukin-1β of interleukin-6 mRNA induced by c-kit ligand and interleukin-10 in mouse bone marrow-derived mast cells, J. Biol. Chem., 271, 22169–22174.

    Article  PubMed  CAS  Google Scholar 

  481. Gagari, E., Tsai, M., Lantz, C. S., et al. (1997) Differential release of mast cell interleukin-6 via c-kit, Blood, 89, 2654–2663.

    PubMed  CAS  Google Scholar 

  482. Walsh, L. J., Trinchieri, G., Waldorf, H. A., et al. (1991) Human dermal mast cells contain and release tumor nectosis factor α, which induces endothelial leukocyte adhesion molecule 1, Proc. Natl. Acad. Sci., U.S.A., 88, 4220–4224.

    Article  PubMed  CAS  Google Scholar 

  483. Bradding, P., Mediwake, R., Feather, I. H., et al. (1995) TNF-α is localized to nasal mucosal mast cells and is released in acute allergic rhinitis, Clin. Exp. Allergy, 25, 406–415.

    Article  PubMed  CAS  Google Scholar 

  484. Bradding, P., Roberts, J. A., Britten, K. M., et al. (1994) Interleukin-4, -5, and -6 and tumor necrosis factor-α in normal and asthmatic airways: evidence for the human mast cell as a source of these cytokines, Am. J. Respir. Cell. Mol. Biol., 10, 471–480.

    PubMed  CAS  Google Scholar 

  485. Echtenacher, B., Mannel, D. N., and Hultner, L. (1996) Critical protective role of mast cells in a model of acute septic peritonitis, Nature, 381, 75–79.

    Article  PubMed  CAS  Google Scholar 

  486. Barata, L. T., Ying, S., Meng, Q., et al. (1998) IL-4 and IL-5-positive T lymphocytes, eosinophils, and mast cells in allergen-induced late-phase cutaneous reactions in atopic subjects, J. Allergy Clin. Immunol., 101, 222–230.

    Article  PubMed  CAS  Google Scholar 

  487. Bradding, P., Feather, I. H., Wilson, S., et al. (1993) Immunolocalization of cytokines in the nasal mucosa of normal and perennial rhinitis subjects. The mast cell as a source of IL-4, IL-5, and IL-6 in human allergic mucosal inflammation, J. Immunol., 151, 3853–3865.

    PubMed  CAS  Google Scholar 

  488. Ochi, H., Hirani, W. M., Yuan, Q., et al. (1999) T helper type-2 cytokine-mediated comitogenic responses and CCR3 expression during differentiation of human mast cells in vitro, J. Exp. Med., 190, 267–280.

    Article  PubMed  CAS  Google Scholar 

  489. Okayama, Y., Semper, A., Holgate, S. T., and Church, M. K. (1995) Multiple cytokine mRNA expression in human mast cells stimulated via Fc epsilon RI, Int. Arch. Allergy Immunol., 107, 158–159.

    Article  PubMed  CAS  Google Scholar 

  490. Grutzkau, A., Kruger-Krasagakes, S., Kogel, H., et al. (1997) Detection of intracellular interleukin-β in human mast cells: flow cytometry as a guide for immunoelectron microscopy, J. Histochem. Cytochem., 45, 935–945.

    PubMed  CAS  Google Scholar 

  491. Moller, A., Lippert, U., Lessmann, D., et al. (1993) Human mast cells produce IL-8, J. Immunol., 151, 3261–3266.

    PubMed  CAS  Google Scholar 

  492. Yano, K., Yamaguchi, M., de Mora, F., et al. (1977) Production of macrophage inflammatory protein-1 alpha by human mast cells: increased anti-IgE-dependent secretion after IgE-dependent enhancement of mast cell IgE-binding ability, Lab. Invest., 77, 185–193.

    Google Scholar 

  493. Baghestanian, M., Hofbauer, R., Kiener, H. P., et al. (1997) The c-kit ligand stem cell factor and anti-IgE promote expression of monocyte chemoattractant protein-1 in human lung mast cells, Blood, 90, 4438–4449.

    PubMed  CAS  Google Scholar 

  494. Hogaboam, C., Kunkel, S. L., Strieter, R. M., et al. (1998) Novel role of transmembrane SCF for mast cell activation and eotaxin production in mast cell-fibroblast interactions, J. Immunol., 160, 6166–6171.

    PubMed  CAS  Google Scholar 

  495. Boesiger, J., Tsai, M., Maurer, M., et al. (1998) Mast cells can secrete vascular permeability factor/vascular endothelial cell growth factor and exhibit enhanced release after immunoglobulin E-dependent upregulation of FcεI expression, J. Exp. Med., 188, 1135–1145.

    Article  PubMed  CAS  Google Scholar 

  496. Kanbe, N., Kurosawa, M., Nagata, H., et al. (1999) Cord blood-derived human cultured mast cells produce transforming growth factor β1, Clin. Exp. Allergy, 29, 105–113.

    Article  PubMed  CAS  Google Scholar 

  497. Reed, J. A., Albino, A. P., and McNutt, N. S. (1995) Human cutaneous mast cells express basic fibroblast growth factor, Lab. Invest., 72, 215–222.

    PubMed  CAS  Google Scholar 

  498. Zhang, S., Anderson, D. F., Bradding, P., et al. (1998) Human mast cells express stem cell factor, J. Pathol., 186, 59–66.

    Article  PubMed  CAS  Google Scholar 

  499. de Paulis, A., Minopoli, G., Arbustini, E., et al. (1999) Stem cell factor is localized in, released from, and cleaved by human mast cells, J. Immunol., 163, 2799–2808.

    PubMed  Google Scholar 

  500. Sher, A., Hein, A., Moser, G., and Caulfield, J. P. (1979) Complement receptors promote the phagocytosis of bacteria by rat peritoneal mast cells, Lab. Invest., 41, 490–499.

    PubMed  CAS  Google Scholar 

  501. Zhang, Y., Ramos, B. F., and Jaschik, B. A. (1992) Neutrophil recruitment by tumor necrosis factor from mast cells in immune complex peritonitis, Science, 258, 1957–1959.

    Article  PubMed  CAS  Google Scholar 

  502. Malaviya, R., Ikeda, T., Ross, E., et al. (1996) Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha, Nature, 381, 77–80.

    Article  PubMed  CAS  Google Scholar 

  503. Maurer, M., Echtenacher, B., Hulktner, L., et al. (2001) the c-kit ligand, stem cell factor, can enhance innate immunity through effects on mast cells, J. Exp. Med., 188, 2343–2348.

    Article  Google Scholar 

  504. Lorentz, A., Schwengberg, S., Sellge, G., et al. (2000) Human intestinal mast cells are capable of producing different cytokine profiles: role of IgE receptor cross-linking and IL-4, J. Immunol., 164, 43–48.

    PubMed  CAS  Google Scholar 

  505. Ochi, H., De Jesus, N. H., Hsieh, F., Austen, K. F., and Boyce, J. A. (2000) Interleukins 4 and 5 prime human mast cells for different profiles of IgE-dependent cytokine production, Proc. Natl. Acad. Sci. U.S.A., 97, 10509–10513.

    Article  PubMed  CAS  Google Scholar 

  506. Huang, C., Friend, D. S., Qui, W. T., et al. (1998) Induction of a selective and persistent extravasation of neutrophils into the peritoneal cavity by tryptase mouse mast cell protease 6, J. Immunol., 160, 1910–1919.

    PubMed  CAS  Google Scholar 

  507. Huang, C., De Sanctis, G. T., O’Brien, P. J., et al. (2001) Evaluation of the substrate specificity of human mast cell tryptase beta 1 and demonstration of its importance in bacterial infections of the lung, J. Biol. Chem., 276, 26276–26284.

    Article  PubMed  CAS  Google Scholar 

  508. Malaviya, R., Navara, C., and Uckun, F. M. (2001) Role of Janus kinase 3 in mast cell-mediated innate immunity against gram-negative bacteria, Immunity, 18, 313–321.

    Article  Google Scholar 

  509. Prodeus, A. P., Zhou, X., Maurer, M., Galli, S. J., and Carroll, M. C. (1997) Impaired mast cell-dependent natural immunity in complement C3-deficient mice, Nature, 390, 172–175.

    Article  PubMed  CAS  Google Scholar 

  510. Gommerman, J. L., Oh, D. Y., Zhou, X., et al. (2000) A role for CD21/CD35 and CD19 in responses to acute septic peritonitis: a potential mechanism for mast cell activation, J. Immunol., 165, 6915–6921.

    PubMed  CAS  Google Scholar 

  511. Artis, D., Humphreys, N. E., Potten, C. S., et al. (2000) β7 Integrin-deficient mice: delayed leukocyte recruitment and attenuated protective imminity in the small intestine during enteric helminth infection, Eur. J. Immunol., 30, 1656–1664.

    Article  PubMed  CAS  Google Scholar 

  512. Moody, D. B. (2003) CD1-restricted T-cells. In: Innate Immunity (Ezekowitz, R. A. B. and Hoffmann, J. A., eds.), Humana Press, Totowa, NJ, pp. 387–402.

    Google Scholar 

  513. Garcia, K. C., Degano, M., Stanfield, R. L., et al. (1996) An alpha beta T cell receptor structure at 2.5 Å and its orientation in the TCR-MHC complex, Science, 274, 209–219.

    Article  PubMed  CAS  Google Scholar 

  514. Porcelli, S. A. (1995) The CD1 family: a third lineage of antigen-presenting molecules, Adv. Immunol., 59, 1–98.

    Article  PubMed  CAS  Google Scholar 

  515. Calabi, F. and Milstein, C. (1986) A novel family of human major histocompatibility complex-related genes not mapping to chromosome 6, Nature, 323, 540–543.

    Article  PubMed  CAS  Google Scholar 

  516. Beckman, E. M., Porcelli, S. A., Morita, C. T., et al. (1994) Recognition of a lipid antigen by CD1-restricted alpha beta+ T cells, Nature, 372, 691–694.

    Article  PubMed  CAS  Google Scholar 

  517. Sieling, P. A., Chatterjee, D., Porcelli, S. A., et al. (1995) CD1-restricted T cell recognition of microbial lipoglycan antigens, Science, 269, 227–230.

    Article  PubMed  CAS  Google Scholar 

  518. Moody, D. B., Reinhold, B. B., Guy, M. R., et al. (1997) Structural requirements for glycolipid antigen recognition by CD1b-restricted T cells, Science, 278, 283–286.

    Article  PubMed  CAS  Google Scholar 

  519. Kawano, T., Cui, J., Koezuka, Y., et al. (1997) CD1d-restricted and TCR-mediated activation of Vα 14 NKT cells by glycosylceramides, Science, 278, 1626–1629.

    Article  PubMed  CAS  Google Scholar 

  520. Porcelli, S., Morita, C. T., and Brenner, M. B. (1992) CD1b restricts the response of human CD48 T lymphocytes to a microbial antigen, Nature, 360, 593–597.

    Article  PubMed  CAS  Google Scholar 

  521. Koseki, H., Imai, K., Nakayama, F., et al. (1990) Homogenous junctional sequence of the V 14+ T-cell antigen receptor alpha chain expanded in unprimed mice, Proc. Natl. Acad. Sci. U.S.A., 180, 5248–5252.

    Article  Google Scholar 

  522. Lantz, O. and Bendelac, A. (1994) An invariant T cell receptor alpha chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD48 T cells in mice and humans, J. Exp. Med., 180, 1097–1106.

    Article  PubMed  CAS  Google Scholar 

  523. Porcelli, S., Gerdes, D., Fertig, A. M., and Balk, S. P. (1996) Human T cells expressing an invariant V alpha 24-J alpha Q TCR alpha are CD4- and heterogeneous with respect to TCR beta expression, Hum. Immunol., 48, 63–67.

    Article  PubMed  CAS  Google Scholar 

  524. Medzhitov, R. and Janeway, C. A., Jr. (1997) Innate immunity: the virtues of a nonclonal system of recognition, Cell, 91, 295–298.

    Article  PubMed  CAS  Google Scholar 

  525. Park, S. H., Chiu, Y. H., Jayawardena, J., et al. (1998) Innate and adaptive functions of the CD1 pathway of antigen presentation, Semin. Immunol., 10, 391–398.

    Article  PubMed  CAS  Google Scholar 

  526. Grant, E. P., Degano, M., Rosat, J. P., et al. (1999) Molecular recognition of lipid antigens by T cell receptors, J. Exp. Med., 189, 195–205.

    Article  PubMed  CAS  Google Scholar 

  527. Cardell, S., Tangri, S., Chan, S., et al. (1995) CD1-restricted CD4+ T cells in major histocompatibility complex class II-deficient mice, J. Exp. Med., 182, 993–1004.

    Article  PubMed  CAS  Google Scholar 

  528. Behar, S. M., Podrebarac, T. A., Roy, C. J., Wang, C. R., and Brenner, M. B. (1999) Diverse TCRs recognize murine CD1, J. Immunol., 162, 161–167.

    PubMed  CAS  Google Scholar 

  529. Moody, D. B., Besra, G. S., Wilson, I. A., and Porcelli, S. A. (1999) The molecular basis of CD1-mediated presentation of lipid antigens, Immunol. Rev., 172, 285–296.

    Article  PubMed  CAS  Google Scholar 

  530. Moore, P. F., Schrenzel, M. D., Affolter, V. K., Olivry, T., and Naydan, D. (1996) Canine cutaneous histiocytoma is an epidermotrophic Langerhans cell histiocytosis that expresses CD1 and specific beta 2-integrin molecules, Am. J. Pathol., 148, 1699–1708.

    PubMed  CAS  Google Scholar 

  531. Dascher, C. C., Hiromatsu, K., Naylor, J. W., et al. (1999) Conservation of a CD1 multigene family in the guinea pig, J. Immunol., 163, 5478–5488.

    PubMed  CAS  Google Scholar 

  532. Woo, J. C. and Moore, P. F. (1997) A feline homologue of CD1 is defined using a feline-specific monoclonal antibody, Tissue Antigens, 49, 244–251.

    Article  PubMed  CAS  Google Scholar 

  533. Ichimiya, S., Kikuchi, K., and Matsuura, A. (1994) Structural analysis of the rat homologue of CD1. Evidence for evolutionary conservation of the CD1D class and widespread transcription by rat cells, J. Immunol., 153, 1112–1123.

    PubMed  CAS  Google Scholar 

  534. Calabi, F., Belt, K. T., Yu, C. Y., et al. (1989) The rabbit CD1 and the evolutionary conservation of the CD1 gene family, Immunogenetics, 30, 370–377.

    Article  PubMed  CAS  Google Scholar 

  535. Sugita, M., Moody, D. B., Jackman, R. M., et al. (1998) CD1-a new paradigm for antigen presentation and T cell activation, Clin. Immunol. Immunopathol., 87(1), 8–14.

    Article  PubMed  CAS  Google Scholar 

  536. Bradbury, A., Belt, K. T., Neri, T. M., Milstein, C., and Calabi, F. (1988) Mouse CD1 is distinct from and co-exists with TL in the same thymus, EMBO J., 7, 3081–3086.

    PubMed  CAS  Google Scholar 

  537. MacHugh, N. D., Bensaid, A., Davis, W. C., et al. (1988) Characterization of a bovine thymic differentiation antigen analogous to CD1 in the human, Scand. J. Immunol., 27, 541–547.

    Article  PubMed  CAS  Google Scholar 

  538. Dutia, B. M. and Hopkins, J. (1991) Analysis of the CD1 cluster in sheep, Vet. Immunol. Immunopathol., 27, 189–194.

    Article  PubMed  CAS  Google Scholar 

  539. Calabi, F., Jarvis, J. M., Martin, L., and Milstein, C. (1989) Two classes of CD1 genes, Eur. J. Immunol., 19, 285–292.

    Article  PubMed  CAS  Google Scholar 

  540. Angenieux, C., Salamero, J., Fricker, D., et al. (2000) Characterization of CD1e, a third type of CD1 molecule expressed in dendritic cells, J. Biol. Chem., 275, 37757–37764.

    Article  PubMed  CAS  Google Scholar 

  541. Mirones, I., Oteo, M., Parra-Cuadrado, J. F., and Martinez-Naves, E. (2000) Identification of two novel human CD1E alleles, Tissue Antigens, 56, 159–161.

    Article  PubMed  CAS  Google Scholar 

  542. Rosat, J. P., Grant, E. P., Beckman, E. M., et al. (1999) CD1-restricted microbial lipid antigen-specific recognition found in the CD8+ alpha beta T cell pool, J. Immunol., 162, 366–371.

    PubMed  CAS  Google Scholar 

  543. Beckman, E. M., Melian, A., Behar, S. M., et al. (1996) CD1c restricts responses of mycobacteria-specific T cells. Evidence for antigen presentation by a second member of the human CD1 family, J. Immunol., 157, 2795–2803.

    PubMed  CAS  Google Scholar 

  544. Han, M., Hannick, L. I., DiBrino, M., and Robinson, M. A. (1999) Polymorphism of human CD1 genes, Tissue Antigens, 54, 122–127.

    Article  PubMed  CAS  Google Scholar 

  545. Bauer, A., Huttinger, R., Staffler, G., et al. (1997) Analysis of the requirement for beta 2-microglobulin for expression and formation of human CD1 antigens, Eur. J. Immunol., 27, 1366–1373.

    Article  PubMed  CAS  Google Scholar 

  546. Gadola, S. D., Zaccai, N. R., Harlos, K., et al. (2002) Structure of human CD1b with bound ligands at 2.3 Å, a maze for alkyl chains, Nat. Immunol., 3, 721–726.

    Article  PubMed  CAS  Google Scholar 

  547. Zeng, Z., Castaño, A. R., Segelke, B. W., et al., (1997) Crystal structure of mouse CD1: an MHC-like fold with a large hydrophobic binding groove, Science, 277, 339–345.

    Article  PubMed  CAS  Google Scholar 

  548. Moody, D. B., Ulrich, T., Muhlecker, W., et al. (2000) CD1c-mediated T cell recognition of mycobacterial glycolipids in M. tuberculosis infection, Nature, 404, 884–888.

    Article  PubMed  CAS  Google Scholar 

  549. Shamshiev, A., Donda, A., Carena, I., et al. (1999) Self glycolipids as T-cell autoantigens, Eur. J. Immunol., 29, 1667–1675.

    Article  PubMed  CAS  Google Scholar 

  550. Gumperz, J., Roy, Makowska, A., et al. (2000) Murine CD1d-restricted T cell recognition of cellular lipids, Immunity, 12, 211–221.

    Article  PubMed  CAS  Google Scholar 

  551. Schofield, L., McConville, M. J., Hansen, D., et al. (1999) CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells, Science, 283, 225–229.

    Article  PubMed  CAS  Google Scholar 

  552. Castaño, A. R., Tangri, S., Miller, J. E., et al. (1995) Peptide binding and presentation by mouse CD1, Science, 269, 223–226.

    Article  PubMed  Google Scholar 

  553. Brossay, L., Naidenko, O., Burdin, N., et al. (1998) Structural requirements for galactosylceramide recognition by CD1-restricted NK T cells, J. Immunol., 161, 5124–5128.

    PubMed  CAS  Google Scholar 

  554. Park, S. H., Weiss, A., Benlagha, K., et al. (2001) The mouse CD1d-restricted repertoire is dominated by a few autoreactive T cell receptor families, J. Exp. Med., 193, 893–904.

    Article  PubMed  CAS  Google Scholar 

  555. Benlagha, K., Weiss, A., Beavis, A., Teyton, L., and Bendelac, A. (2000) In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers, J. Exp. Med., 191, 1895–1903.

    Article  PubMed  CAS  Google Scholar 

  556. Matsuda, J. L., Naidenko, O. V., Gapin, L., et al. (2000) Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers, J. Exp. Med., 192, 741–754.

    Article  PubMed  CAS  Google Scholar 

  557. Porcelli, S. A. (1995) The CD1 family: a third lineage of antigen-presenting molecules, Adv. Immunol., 59, 1–98.

    Article  PubMed  CAS  Google Scholar 

  558. Sugita, M., Grant, E. P., van Donselaar, E., et al. (1999) Separate pathways for antigen presentation by CD1 molecules, Immunity, 11, 743–752.

    Article  PubMed  CAS  Google Scholar 

  559. Sugita, M., Jackman, R. M., van Donselaar, E., et al. (1996) Cytoplasmic tail- dependent localization of CD1b antigen-presenting molecules to MIICs, Science, 273, 349–352.

    Article  PubMed  CAS  Google Scholar 

  560. Sugita, M., van der Wel, N., Rogers, R. A., Petters, P. J., and Brenner, M. B. (2000) CD1c molecules broadly survey the endocytic system, Proc. Natl. Acad. Sci. U.S.A., 97, 8445–8450.

    Article  PubMed  CAS  Google Scholar 

  561. Briken, V., Jackman, R. M., Watts, G. F., Rogers, R. A., and Porcelli, S. A. (2000) Human CD1b and CD1c isoforms survey different intracellular compartments for the presentation of microbial lipid antigens, J. Exp. Med., 192, 281–288.

    Article  PubMed  CAS  Google Scholar 

  562. Jackman, R. M., Stenger, S., Lee, A., et al. (1998) The tyrosine-containing cytoplasmic tail of CD1b is essential for its efficient presentation of bacterial lipid antigens, Immunity, 8, 341–351.

    Article  PubMed  CAS  Google Scholar 

  563. Jayawardena-Wolf, J., Benlagha, K., Chiu, Y. H., Mehr, R., and Bendelac, A. (2001) CD1d endosomal trafficking is independently regulated by an intrinsic CD1d-encoded tyrosine motif and by the invariant chain, Immunity, 15, 897–908.

    Article  PubMed  CAS  Google Scholar 

  564. Bonifacino, J. S. and Dell’Angelica, E. C. (1999) Molecular bases for the recognition of tyrosine-based sorting signals, J. Cell. Biol., 145, 923–926.

    Article  PubMed  CAS  Google Scholar 

  565. Briken, V., Moody, D. B., and Porcelli, S. A. (2000) Diversification of CD1 proteins: sampling the lipid content of different cellular compartments, Semin. Immunol., 12, 517–525.

    Article  PubMed  CAS  Google Scholar 

  566. Moody, D. B. and Porcelli, S. A. (2001) CD1 trafficking invariant chain gives a new twist to the tale, Immunity, 15(6), 861–865.

    Article  PubMed  CAS  Google Scholar 

  567. Sugita, M., Peters, P. J., and Brenner, M. B. (2000) Pathways for lipid antigen presentation by CD1 molecules: nowhere for intracellular pathogens to hide, Traffic, 1, 295–300.

    Article  PubMed  CAS  Google Scholar 

  568. Moody, D. B., Reinhold, B. B., Reinhold, V. N., Besra, G. S., and Porcelli, S. A. (1999) Uptake and processing of glycosylated mycolates for presentation to CD1b-restricted T cells, Immunol. Lett., 65, 85–91.

    Article  PubMed  CAS  Google Scholar 

  569. Chiu, Y. H., Jayawardena, J., Weiss, A., et al. (1999) Distinct subsets of DC1d- restricted T cells recognize self-antigens loaded in different cellular compartments, J. Exp. Med., 189, 103–110.

    Article  PubMed  CAS  Google Scholar 

  570. Spada, F. M., Koezuka, Y., and Porcelli, S. A. (1998) CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells, J. Exp. Med., 188, 1529–1534.

    Article  PubMed  CAS  Google Scholar 

  571. Moody, D. B., Briken, V., Cheng, T. Y., et al. (2002) Lipid length controls antigen entry into endosomal and nonendosomal pathways for CD1b presentation, Nat. Immunol., 3, 435–442.

    PubMed  CAS  Google Scholar 

  572. Bendelac, A., Killeen, N., Littman, D. R., and Schwartz, R. H. (1994) A subset of CD4+ thymocytes selected by MHC class I molecules, Science, 263, 1774–1778.

    Article  PubMed  CAS  Google Scholar 

  573. Beutner, U., Launois, P., Ohteki, T., Louis, J. A., and MacDonald, H. R. (1997) Natural killer-like T cells develop in SJL mice despite genetically distinct defects in NK1.1 expression and in inducible interleukin-4 production, Eur. J. Immunol., 27, 928–934.

    Article  PubMed  CAS  Google Scholar 

  574. Asea, A. and Stein-Streilein, J. (1998) Signaling through NK1.1 triggers NK cells to die but induces NK T cells to produce interleukin-4, Immunology, 93, 296–305.

    Article  PubMed  CAS  Google Scholar 

  575. Bendelac, A., Lantz, O., Quimby, M. E., et al. (1995) CD1 recognition by mouse NK1+ T lymphocytes, Science, 268, 863–865.

    Article  PubMed  CAS  Google Scholar 

  576. Smiley, S. T., Kaplan, M. H., and Grusby, M. J. (1997) Immunoglobulin E production in the absence of interleukin-4-secreting CD1-dependent cells, Science, 275, 977–979.

    Article  PubMed  CAS  Google Scholar 

  577. Gapin, L., Matsuda, J. L., Surh, C. D., and Kronenberg, M. (2001) NKT cells derive from double-positive thymocytes that are positively selected by CD1d, Nat. Immunol., 2, 971–978.

    Article  PubMed  CAS  Google Scholar 

  578. Coles, M. C. and Raulet, D. H. (2000) NK1.1+ T cells in the liver arise in the thymus and are selected by interactions with class I molecules on CD4+CD8+ cells, J. Immunol., 164, 2412–2418.

    PubMed  CAS  Google Scholar 

  579. Shimamura, M., Ohteki, T., Beutner, U., and MacDonald, H. R. (1997) Lack of directed V alpha 14-J alpha 281 rearrangement in NK1+ T cells, Eur. J. Immunol., 27, 1576–1579.

    Article  PubMed  CAS  Google Scholar 

  580. Mendiratta, S. K., Martin, W. D., Hong, S., et al. (1997) CD1d1 mutant mice are deficient in natural T cells that promptly produce IL-4, Immunity, 6, 469–477.

    Article  PubMed  CAS  Google Scholar 

  581. Chen, Y. H., Chiu, N. M., Mandal, M., Wang, N., and Wang, C. R. (1997) Impaired NK1+ T cell development and early IL-4 production in CD1-deficient mice, Immunity, 6, 459–467.

    Article  PubMed  CAS  Google Scholar 

  582. Joyce, S., Woods, A. S., Yewdell, J. W. (1998) Natural ligand of mouse CD1d1: cellular glycosylphosphatidylinositol, Science, 279, 1541–1544.

    Article  PubMed  CAS  Google Scholar 

  583. Molano, A., Park, S. H., Chiu, Y. H., et al. (2000) Cutting edge: the IgG response to the circumsporozoite protein is MHC class II-dependent and CD1d-independent: exploring the role of GPI in NK T cell activation and antimalarial responses, J. Immunol., 164, 5005–5009.

    PubMed  CAS  Google Scholar 

  584. Romero, J. F., Eberl, G., MacDonald, H. R., and Corradin, G. (2001) CD1d- restricted NK T cells are dispensable for specific antibody responses and protective immunity against liver stage malaria infection in mice, Parasite Immunol., 23, 267–269.

    Article  PubMed  CAS  Google Scholar 

  585. Kawano, T., Nakayama, T., Kamada, N., et al. (1999) Antitumor toxicity mediated by ligand-activated human V alpha24 NKT cells, Cancer Res., 59, 5102–5105.

    PubMed  CAS  Google Scholar 

  586. Miyamoto, K., Miyake, S., Yamamura, T. (2001) A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer cells, Nature, 413, 531–534.

    Article  PubMed  CAS  Google Scholar 

  587. Hong, S., Wilson, M. T., Serizawa, I., et al. (2001) The natural killer T-cell ligand alpha-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice, Nat. Med., 7, 1052–1056.

    Article  PubMed  CAS  Google Scholar 

  588. Sharif, S., Arreaza, G. A., Zucker, P., et al. (2001) Activation of natural killer T cells by alpha-galactosylceramide treatment prevents the onset and recurrence of autoimmune type 1 diabetes, Nat. Med., 7, 1057–1062.

    Article  PubMed  CAS  Google Scholar 

  589. Shi, F. D., Flodstrom, M., Balasa, B., et al. (2001) Germ line deletion of the CD1 locus exacerbates diabetes in the NOD mouse, Proc. Natl. Acad. Sci. U.S.A., 98, 6777–6782.

    Article  PubMed  CAS  Google Scholar 

  590. Wang, B., Geng, Y. B., and Wang, C. R. (2001) CD1-restricted NK T cells protect nonobese diabetic mice from developing diabetes, J. Exp. Med., 194, 313–320.

    Article  PubMed  Google Scholar 

  591. Behar, S. M., Porcelli, S. A., Beckman, E. M., and Brenner, M. B. (1995) A pathway of costimulation that prevents anergy in CD28-T cells: B7-independent costimulation of CD1-restricted T cells, J. Exp. Med., 182, 2007–2018.

    Article  PubMed  CAS  Google Scholar 

  592. Pal, E., Tabira, T., Kawano, T., et al. (2001) Costimulation-dependent modulation of experimental autoimmune encephalomyelitis by ligand stimulation of V alpha 14 NK T cells, J. Immunol., 166, 662–668.

    PubMed  CAS  Google Scholar 

  593. Barry, C. E., Lee, R. E., Mdluli, K., et al. (1998) Mycolic acids: structure, biosynthesis and physiological functions, Prog. Lipid Res., 37, 143–179.

    Article  PubMed  CAS  Google Scholar 

  594. Bhardwaj, N., Friedman, S. M., Cole, B. C., and Nisanian, A. J. (1992) Dendritic cells are potent antigen-presenting cells for microbial superantigens, J. Exp. Med., 175, 267–273.

    Article  PubMed  CAS  Google Scholar 

  595. Sieling, P. A., Jullien, D., Dahlem, M., et al. (1999) CD1 expression by dendritic cells in human leprosy lesions: correlation with effective host immunity, J. Immunol., 162, 1851–1858.

    PubMed  CAS  Google Scholar 

  596. Stenger, S., Hanson, D. A., Teitelbaum, R., et al. (1998) An antimicrobial activity of cytolytic T cells mediated by granulysin, Science, 282, 121–125.

    Article  PubMed  CAS  Google Scholar 

  597. Stenger, S., Mazzaccaro, R. J., Uyemura, K., et al. (1997) Differential effects of cytolytic T cell subsets on intracellular infection, Science, 276, 1684–1687.

    Article  PubMed  CAS  Google Scholar 

  598. Starnes, T., Broxmeyer, H. E., Robertson, M. J., and Hromas, R. (2002) Cutting edge: IL-17D, a novel member of the IL-17 family, stimulates cytokine production and inhibits hemopoiesis, J. Immunol., 169, 642–646.

    PubMed  CAS  Google Scholar 

  599. Thomson, A. W. (1998) The Cytokine Handbook, 3rd ed., Academic Press, San Diego, CA, p. xxii; 1017.

    Google Scholar 

  600. Rouvier, E., Luciani, M. F., Mattei, M. G., Denizot, F., and Golstein, P. (1993) CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene, J. Immunol., 150, 5445–5456.

    PubMed  CAS  Google Scholar 

  601. Yao, Z., Painter, S. L., Fanslow, W. C., Ulrich, D., Macduff, B. M., Spriggs, M. K., and Armitage, R. J. (1995) Human IL-17: a novel cytokine derived from T cells, J. Immunol., 155, 5483–5486.

    PubMed  CAS  Google Scholar 

  602. Yao, Z., Fanslow, W. C., Seldin, M. F., Rousseau, A. M., Painter, S. L., Comeau, M. R., Cohen, J. I., and Spriggs, M. K. (1995) Herpesvirus saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor, Immunity, 3(6), 811–821.

    Article  PubMed  CAS  Google Scholar 

  603. Yao, Z., Spriggs, M. K., Derry, J. M., Strockbine, L., Park, L. S., VandenBos, T., Zappone, J. D., Painter, S. L., and Armitage, R. J. (1997) Molecular characterization of the human interleukin (IL)-17 receptor, Cytokine, 9, 794–800.

    Article  PubMed  CAS  Google Scholar 

  604. Weaver, C. T., Hatton, R. D., Mangan, P. R., and Harrington, L. E. (2007) IL-17 family cytokines and the expanding diversity of effector T cell lineages, Annu. Rev. Immunol., 25, 821–852.

    Article  PubMed  CAS  Google Scholar 

  605. Kolls, J. K. and Linden, A. (2004) Interleukin-17 family members and inflammation, Immunity, 21, 467–476.

    Article  PubMed  CAS  Google Scholar 

  606. Fort, M. M., Cheung, J., Yen, D., Li, J., Zurawski, S. M., et al. (2001) IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo, Immunity, 15, 985–995.

    Article  PubMed  CAS  Google Scholar 

  607. Hymowitz, S. G., Filvaroff, E. H., Yin, J. P., Lee, J., Cai, L., et al. (2001) IL-17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL-17F, and implications for receptor binding, EMBO J., 20(19), 5332–5341.

    Article  PubMed  CAS  Google Scholar 

  608. Li, H., Chen, J., Huang, A., Stinson, J., Heldens, S., Foster, J., et al. (2000) Cloning and characterization of IL-17B and IL-17C, two new members of the IL-17 cytokine family, Proc. Natl. Acad. Sci. U.S.A., 97(2), 773–778.

    Article  PubMed  CAS  Google Scholar 

  609. Shi, Y., Ullrich, S. J., Zhang, J., Connolly, K., et al. (2000) A novel cytokine receptor-ligand pair: identification, molecular characterization, and in vivo immunomodulatory activity, J. Biol. Chem., 275(25), 19167–19176.

    Article  PubMed  CAS  Google Scholar 

  610. Lee, J., Ho, W. H., Maruoka, M., Corpuz, R. T., Baldwin, D. T., et al. (2001) IL- 17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1, J. Biol. Chem., 276(2), 1660–1664.

    Article  PubMed  CAS  Google Scholar 

  611. Starnes, T., Robertson, M. J., Sledge, G., Kelich, S., Nakshatri, H., et al. (2001) Cutting edge: IL-17F, a novel cytokine selectively expressed in activated T cells and monocytes, regulates angiogenesis and endothelial cell cytokine production, J. Immunol., 167, 4137–4140.

    PubMed  CAS  Google Scholar 

  612. Kawaguchi, M., Onuchic, L. F., Li, X. D., Essayan, D. M., Schroeder, J., et al. (2001) Identification of a novel cytokine, ML-1, and its expression in subjects with asthma, J. Immunol., 167, 4430–4435.

    PubMed  CAS  Google Scholar 

  613. Aggarwal, S. and Gurney, A. L. (2002) IL-17: prototype member of an emerging cytokine family, J. Leukocyte Biol., 71, 1–8.

    PubMed  CAS  Google Scholar 

  614. Fossiez, F., Banchereau, J., Murray, R., Van Kooten, C., Garrone, P., and Lebecque, S. (1998) Interleukin-17, Int. Rev. Immunol., 16(5–6), 541–551.

    Article  PubMed  CAS  Google Scholar 

  615. Jovanovic, D. V., Di Battista, J. A., Martel-Pelletier, J., Jolicoeur, F. C., He, Y., Zhang, M., Mineau, F., and Pelletier, J. P. (1998) IL-17 stimulates the production and expression of proinflammatory cytokines, IL-β and TNF-⍺, by human macrophages, J. Immunol., 160, 3513–3521.

    PubMed  CAS  Google Scholar 

  616. Fossiez, F., Djossou, O., Chomarat, P., Flores-Romo, L., Ait-Yahia, S., et al. (1996) T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines, J. Exp. Med., 183, 2593–2603.

    Article  PubMed  CAS  Google Scholar 

  617. Lubberts, E., Koenders, M. I., Oppers-Walgreen, B., van den Bersselaar, L., Coenen-de Roo, C. J. J., Joosten, L. A. B., and van den Berg, W. B. (2004) Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of colagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erasion, Arthritis Rheum., 50(2), 650–659.

    Article  PubMed  CAS  Google Scholar 

  618. Antonysamy, M. A., Fanslow, W. C., Fu, F., Li, W., Qian, S., Troutt, A. B., and Thomson, A. W. (1999) Evidence for a role of IL-17 in organ allograft rejection: IL-17 promotes the functional differentiation of dendritic cell progenitors, J. Immunol., 162, 577–584.

    PubMed  CAS  Google Scholar 

  619. Van Kooten, C., Boonstra, J. G., Paape, M. E., Fossiez, F., Banchereau, J., et al. (1998) Interleukin-17 activates human renal epithelial cells in vitro and is expressed during renal allograft rejection, J. Am. Soc. Nephrol., 9, 1526–1534.

    PubMed  Google Scholar 

  620. Kurusawa, K., Hirose, K., Sano, H., Endo, H., Shinkai, H., Nawata, Y., et al. (2000) Increased interleukin-17 production in patients with systemic sclerosis, Arthritis Rheum., 43, 2455–2463.

    Article  Google Scholar 

  621. Matsumoto K. and Kanmatsuse, K. (2002) Increased urinary excretion of interleukin-17 in nephrotic patients, Nephron, 91, 243–249.

    Article  PubMed  CAS  Google Scholar 

  622. Wong, C. K., Ho, C. Y., Li, E. K., and Lam, C. W. (2000) Elevation of proinflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus, Lupus, 9(8), 589–593.

    Article  PubMed  CAS  Google Scholar 

  623. Kotake, S., Udagawa, N., Takahashi, N., Matsuzaki, K., Itoh, K., et al. (1999) IL- 17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis, J. Clin. Invest., 103, 1345–1352.

    Article  PubMed  CAS  Google Scholar 

  624. Chabaud, M., Garnero, P., Dayer, J. M., Guerne, P. A., Fossiez, F., and Miossec, P. (2000) Contribution of interleukin 17 to synovium matrix destruction in rheumatoid arthritis, Cytokine, 12(7), 1092–1099.

    Article  PubMed  CAS  Google Scholar 

  625. Tartour, E., Fossiez, F., Joyeux, I., Galinha, A., Gey, A., Claret, E., et al. (1999) Interleukin 17, a T-cell-derived cytokine, promotes tumorigenicity of human cervical tumors in nude mice, Cancer Res., 59, 3698–3704.

    PubMed  CAS  Google Scholar 

  626. Hirahara, N., Nio, Y., Sasaki, S., Minari, Y., Takamura, M., et al. (2001) Inoculation of human interleukin-17 gene-transfected Meth-A fibrosarcoma cells induces T cell-dependent tumor-specific immunity in mice, Oncology, 61(1), 79–89.

    Article  PubMed  CAS  Google Scholar 

  627. Schwandner, R., Yamaguchi, K., and Cao, Z. (2000) Requirement of tumor necrosis factor receptor-associated factor (TRAF) 6 in interleukin 17 signal transduction, J. Exp. Med., 191, 1233–1240.

    Article  PubMed  CAS  Google Scholar 

  628. Tian, E., Sawyer, J. R., Largaespada, D. A., Jenkins, N. A., Copeland, N.G., and Shaughnessy, J. D., Jr. (2000) Evi27 encodes a novel membrane protein with homology to the IL17 receptor, Oncogene, 19, 2098–2109.

    Article  PubMed  CAS  Google Scholar 

  629. Haudenschild, D., Moseley, T., Rose, L., and Reddi, A. H. (2002) Soluble and transmembrane isoforms of novel interleukin-17 receptor-like protein by RNA splicing and expression in prostate cancer, J. Biol. Chem., 277, 4309–4316.

    Article  PubMed  CAS  Google Scholar 

  630. Ye, P., Rodriguez, F. H., Kanaly, S., Stocking, K. L., Schurr, J., et al. (2001) Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense, J. Exp. Med., 194, 519–527.

    Article  PubMed  CAS  Google Scholar 

  631. Kramer, J. M., Yi, L., Shen, F., Maitra, A., Jiao, X., et al. (2006) Evidence for ligand-independent multimerization of the IL-17 receptor, J. Immunol., 176, 711–715.

    PubMed  CAS  Google Scholar 

  632. Toy, D., Kugler, D., Wolfson, M., Bos, T. V., Gurgel, J., Derry, J., Tocker, J., and Peschon, J. (2006) Cutting edge: interleukin 17 signals through a heteromeric receptor complex, J. Immunol., 177, 36–39.

    PubMed  CAS  Google Scholar 

  633. Sredni, B., Tse, H. Y., and Schwartz, R. H. (1980) Direct cloning and extended culture of antigen-specific MHC-restricted, proliferating T lymphocytes, Nature, 283, 581–583.

    Article  PubMed  CAS  Google Scholar 

  634. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A., and Coffman, R. L. (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins, J. Immunol., 136, 2348–2357.

    PubMed  CAS  Google Scholar 

  635. Coffman, R. L. and Carty, J. (1986) A T cell activity that enhances polyclonal IgE production and its inhibition by interferon-γ, J. Immunol., 136, 949–954.

    PubMed  CAS  Google Scholar 

  636. Mosmann, T. R. and Coffman, R. L. (1987) Two types of mouse helper T-cell clone, Immunol. Today, 8, 223–227.

    Article  Google Scholar 

  637. Fernandez-Botran, R., Sanders, V. M., Mosmann, T. R., and Vitetta, E. S. (1988) Lymphokine-mediated regulation of the proliferative response of clones of T helper 1 and T helper 2 cells, J. Exp. Med., 168, 543–558.

    Article  PubMed  CAS  Google Scholar 

  638. Gajewski, T. F. and Fitch, F. W. (1988) Anti-proliferative effect of IFN-γ in immune regulation. I. IFN-γ inhibits the proliferation of Th2 but not Th1 murine helper T lymphocyte clones, J. Immunol., 140, 4245–4252.

    PubMed  CAS  Google Scholar 

  639. Mosmann, T. R. and Coffman, R. (1989) Th1 and Th2 cells: different patterns of lymphokine secretion lead to different functional properties, Annu. Rev. Immunol. 7, 145–173.

    Article  PubMed  CAS  Google Scholar 

  640. Finkelman, F. D., Shea-Donohue, T., Goldhill, J., Sullivan, C. A., Morris, S. C., et al. (1997) Cytokine regulation of host defense against parasitic gastrointestinal nematodes: lessons from studies with rodent models, Annu. Rev. Immunol., 15, 505–533.

    Article  PubMed  CAS  Google Scholar 

  641. Sadick, M. D., Heinzel, F. P., Shigekane, V. M., Fisher, W. L., and Locksley, R. M. (1987) Cellular and humoral immunity to Leishmania major in genetically susceptible mice after in vivo depletion of L3T4+ T cells, J. Immunol., 139, 1303–1309.

    PubMed  CAS  Google Scholar 

  642. Heinzel, F. P., Sadick, M. D., Holaday, B.J., Coffman, R. L., and Locksley, R.M. (1989). Reciprocal expression of interferon γ or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets, J. Exp. Med., 169, 59–72.

    Article  PubMed  CAS  Google Scholar 

  643. Scott, P., Natovitz, P., Coffman, R.L., Pearce, E., and Sher, A. (1988) Immunoregulation of cutaneous leishmaniasis. T cell lines that transfer protective immunity or exacerbation belong to different T helper subsets and respond to distinct parasite antigens, J. Exp. Med., 168, 1675–1684.

    Article  PubMed  CAS  Google Scholar 

  644. Hsieh, C. S., Macatonia, S. E., O’Garra, A., and Murphy, K. M. (1993) Pathogen- induced Th1 phenotype development in CD4+αβ-TCR transgenic T cells is macrophage dependent, Int. Immunol., 5, 371–382.

    Article  PubMed  CAS  Google Scholar 

  645. Kobayashi, M., Fitz, L., Ryan, M., Hewick, R. M., Clark, S. C., et al. (1989) Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes, J. Exp. Med., 170, 827–845.

    Article  PubMed  CAS  Google Scholar 

  646. Hsieh, C. S., Macatonia, S. E., Tripp, C. S., Wolf, S. F., O’Garra, A., and Murphy, K. M. (1993) Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages, Science, 260, 547–549.

    Article  PubMed  CAS  Google Scholar 

  647. Seder, R. A., Gazzinelli, R., Sher, A., and Paul, W. E. (1993) Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon-γ production and diminishes interleukin 4 inhibition of such priming, Proc. Natl. Acad. Sci. U.S.A., 90, 10188–10192.

    Article  PubMed  CAS  Google Scholar 

  648. Seder, R. A. and Paul, W. E. (1994) Acquisition of lymphokine-producing phenotype by CD4+ T cells, Annu. Rev. Immunol., 12, 635–673.

    Article  PubMed  CAS  Google Scholar 

  649. Murphy, K. M. and Reiner, S. L. (2002) The lineage decisions of helper T cells, Nat. Rev. Immunol., 2, 933–944.

    Article  PubMed  CAS  Google Scholar 

  650. Boulay, J. L., O’Shea, J. J., and Paul, W. E. (2003) Molecular phylogeny within type I cytokines and their cognate receptors, Immunity, 19, 159–163.

    Article  PubMed  CAS  Google Scholar 

  651. Min, B., Prout, M., Hu-Li, J., Zhu, J. F., Jankovic, D., et al. (2004) Basophils produce IL-4 and accumulate in tissues after infection with a Th2-inducing parasite, J. Exp. Med., 200, 507–517.

    Article  PubMed  CAS  Google Scholar 

  652. Shinkai, K., Mohrs, M., and Locksley, R. M. (2002) Helper T cells regulate type-2 innate immunity in vivo, Nature, 420, 825–829.

    Article  PubMed  CAS  Google Scholar 

  653. Seder, R. A., Plaut, M., Barbieri, S., Urban, J. J., Finkelman, F. D., and Paul, W. E. (1991) Purified Fc εR+ bone marrow and splenic non-B, non-T cells are highly enriched in the capacity to produce IL-4 in response to immobilized IgE, IgG2a, or ionomycin, J. Immunol., 147, 903–909.

    PubMed  CAS  Google Scholar 

  654. Yoshimoto, T., Bendelac, A., Watson, C., Hu-Li, J., and Paul, W. E. (1995) Role of NK1.1+ T cells in a TH2 response and in immunoglobulin E production, Science, 270, 1845-1847.

    Article  PubMed  CAS  Google Scholar 

  655. Voehringer, D., Reese, T., Huang, X., Shinkai, K., and Locksley, R. M. (2006) Type 2 immunity is controlled by IL-4/IL-13 expression in hematopoietic non- eosinophil cells of the innate immune system, J. Exp. Med., 203, 1435–1446.

    Article  PubMed  CAS  Google Scholar 

  656. Yi, J. J. and Gaffen, S. L. (2008) Interleukin-17: a novel inflammatory cytokine that bridges innate and adaptive immunity, Front. Biosci., 13, 170–177.

    Article  Google Scholar 

  657. Ruddy, M. J., Shen, F., Smith, J., Sharma, A., and Gaffen, S. L. (2004) Interleukin-17 regulates expression of the CXC chemokine LIX/CXCL5 in osteoblasts: implications for inflammation and neutrophil recruitment, J. Leukoc. Biol., 76, 135–144.

    Article  PubMed  CAS  Google Scholar 

  658. Ruddy, M. J., Wong, G. C., Liu, X. K., Yamamoto, H., et al. (2004) Functional cooperation between interleukin-17 and tumor necrosis factor-alpha is mediated by CCAAT/enhancer binding protein family members, J. Biol. Chem., 279, 2559–2567.

    Article  PubMed  CAS  Google Scholar 

  659. Shen, F., Ruddy, M. J., Plamondon, P., and Gaffen, S. L. (2005) Cytokines link osteoblasts and inflammation: microarray analysis of interleukin-17- and TNF-alpha-induced genes in bone cells, J. Leukoc. Biol., 77, 388–399.

    Article  PubMed  CAS  Google Scholar 

  660. Fossiez, F., Djossou, O., Chomarat, P., Flores-Romo, L., Ait-Yahia, S., et al. (1996) T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines, J. Exp. Med., 183, 2593–2603.

    Article  PubMed  CAS  Google Scholar 

  661. Park, H., Li, Z., Yang, X. O., Chang, S. H., Nurieva, R., et al. (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17, Nat. Immunol., 6, 1133–1141.

    Article  PubMed  CAS  Google Scholar 

  662. Moseley, T. A., Haudenschild, D. R., Rose, L., and Reddi, A. H. (2003) Interleukin- 17 family and IL-17 receptors, Cytokine Growth Factor Rev., 14, 155–174.

    Article  PubMed  CAS  Google Scholar 

  663. Gaffen, S. L., Kramer, J. M., Yu, J. J., and Shen, F. (2006) The IL-17 cytokine family. In: Vitamins and Hormones (Litwack, G., ed.), Academic Press, London.

    Google Scholar 

  664. Shin, H. C., Benbernou, N., Esnault, S., and Guenounou, M. (1999) Expression of IL-17 in human memory CD45RO+ T lymphocytes and its regulation by protein kinase A pathway, Cytokine, 11, 257–266.

    Article  PubMed  CAS  Google Scholar 

  665. Chabaud, M., Fossiez, F., Taupin, J. L., and Miossec, P. (1998) Enhancing effect of IL-17 on IL-1-induced IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synoviocytes and its regulation by Th2 cytokines, J. Immunol., 161, 409–414.

    PubMed  CAS  Google Scholar 

  666. Gaffen, S. L. (2005) Biology of recently discovered cytokines: interleukin-17A unique inflammatory cytokine with roles in bone biology and arthritis, Arthritis Res. Ther., 6(6), 240–247.

    Article  CAS  Google Scholar 

  667. Aarvak, T., Chabaud, M., Miossec, P., and Natvig, J. B. (1999) IL-17 is produced by some proinflammatory Th1/Th0 cells but not by Th2 cells, J. Immunol., 162, 1246–1251.

    PubMed  CAS  Google Scholar 

  668. McGeachy, M. J., Bak-Jensen, K. S., Chen, Y., Tato, C. M., et al. (2007) TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain Th-17 cell–mediated pathology, Nat. Immunol., 8, 1390–1397.

    Article  PubMed  CAS  Google Scholar 

  669. Steinman, L. (2007) A brief history of T (H)17, the first major revision in the T (H)1/T (H)2 hypothesis of T cell-mediated tissue damage, Nat. Med., 13, 139–145.

    Article  PubMed  CAS  Google Scholar 

  670. Mangan, P. R., Harrington, L. E., O’Quinn, B., Helms, W. S., et al. (2006) Transforming growth factor-beta induces development of the T (H)17 lineage, Nature, 441, 231–234.

    Article  PubMed  CAS  Google Scholar 

  671. Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M., and Stockinger, B. (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells, Immunity, 24, 179–189.

    Article  PubMed  CAS  Google Scholar 

  672. Bettelli, E., Carrier, Y., Gao, W., Korn, T., et. al. (2006) Reciprocal developmental pathways for the generation of pathogenic effector T (H)17 and regulatory T cells, Nature, 441, 235–238.

    Article  PubMed  CAS  Google Scholar 

  673. Ivanov, I. I., McKenzie, B. S., Zhou, L., Tadokoro, C. E., Lepelley, A., et al. (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells, Cell, 126, 1121–1133.

    Article  PubMed  CAS  Google Scholar 

  674. Harrington, L. E., Hatton, R. D., Mangan, P. R., Turner, H., et al. (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages, Nat. Immunol., 6, 1123–1132.

    Article  PubMed  CAS  Google Scholar 

  675. Langrish, C. L., Chen, Y., Blumenschein, W. M., Mattson, J., et al. (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation, J. Exp. Med., 201, 233–240.

    Article  PubMed  CAS  Google Scholar 

  676. Liang, S. C., Tan, X. Y., Luxenberg, D. P., Karim, R., Dunussi-Joannopoulos, K., Collins, M., and Fouser, L. A. (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides, J. Exp. Med., 203, 2271–2279.

    Article  PubMed  CAS  Google Scholar 

  677. Chung, Y., Yang, X., Chang, S. H., Ma, L., Tian, Q., and Dong, C. (2006) Expression and regulation of IL-22 in the IL-17-producing CD4+ T lymphocytes, Cell Res., 16, 902–907.

    Article  PubMed  CAS  Google Scholar 

  678. Cua, D. J. and Kastelein, R. A. (2006) TGF-beta, a “double agent” in the immune pathology war, Nat. Immunol., 7, 557–559.

    Article  PubMed  CAS  Google Scholar 

  679. Lockhart, E., Green, A. M., and Flynn, J. L. (2006) IL-17 production is dominated by gamma-delta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection, J. Immunol., 177, 4662–4669.

    PubMed  CAS  Google Scholar 

  680. Shibata, K., Yamada, H., Hara, H., Kishihara, K., and Yoshikai, Y. (2007) Resident V{delta}1+ {gamma} {delta} T cells control early infiltration of neutrophils after Escherichia coli Infection via IL-17 production, J. Immunol., 178, 4466–4472.

    PubMed  CAS  Google Scholar 

  681. Shulze-Koops, H. (2003) The balance of Th1/Th2 cytokines in rheumatoid arthritis, Best Practice 8 Research Clin. Rheumatol., 15(5), 677–691.

    Article  CAS  Google Scholar 

  682. Arend, W. P. and Dayer, J. M. (1995) Inhibition of the production and effects of interleukin-1 and tumor necrosis factor α in rheumatoid arthritis, Arthritis Rheum., 38, 151–160.

    Article  PubMed  CAS  Google Scholar 

  683. Thorbecke, G. J., Shah, R., Leu, C. H., Kuruvilla, A. P., Hardison, A. M., and Palladino, M. A. (1992) Involvement of endogenous tumor necrosis factor α and transforming growth factor β during induction of collagen type II arthritis in mice, Proc. Natl. Acad. Sci. U.S.A., 89, 7375–7379.

    Article  PubMed  CAS  Google Scholar 

  684. van den Berg, W. B., Joosten, L. A., Helsen, M., and van de Loo, F. A. (1004) Amelioration of established murine collagen-induced arthritis with anti-IL-1 treatment, Clin. Exp. Immunol., 95, 237–243.

    Google Scholar 

  685. Joosten, L. A. B., Helsen, M. M. A., van de Loo, F. A. J., and van den Berg, W. B. (1996) Anticytokine treatment of established type II collagen-induced arthritis in DBA/1 mice: a comparative study using anti-TNF-α, anti-IL-1α/β, and IL-1Ra, Arthritis Rheum., 39, 797–809.

    Article  PubMed  CAS  Google Scholar 

  686. Chabaud, M., Durand, J. M., Buchs, N., Fossiez, F., Page, G., Frappart, L., et al. (1999) Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium, Arthritis Rheum., 42, 963–970.

    Article  PubMed  CAS  Google Scholar 

  687. Ziolkowska, M., Koc, A., Luszczykiewicz, G., Ksiezopolska-Pietrzak, K., Klimczak, E., Chwalinska-Sadowska, H., et al. (2000) High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporin A-sensitive mechanism, J. Immunol., 164, 2832–2838.

    PubMed  CAS  Google Scholar 

  688. Koenders, M., Lubberts, E., Joosten, L., Oppers, B., van den Bersselaar, L., Kolls, J., and van den Berg, W. B. (2003) TNF-α dependency of IL-17-induced joint pathology differs under naive and arthritis conditions in vivo, Arthritis Res. Ther., 5(Suppl. 1), 46.

    Google Scholar 

  689. Kehlen, A., Thiele, K., Riemann, D., and Langner, J. (2002) Expression, modulation and signalling of IL-17 receptor in fibroblast-like synoviocytes of patients with rheumatoid arthritis, Clin. Exp. Immunol., 127(3), 539–546.

    Article  PubMed  CAS  Google Scholar 

  690. Chabaud, M., Fossiez, F., Taupin, J. L., and Miossec, P. (1998) Enhancing effect of IL-17 on IL-1-induced IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synoviocytes and its regulation by Th2 cytokines, J. Immunol., 161, 409–414.

    PubMed  CAS  Google Scholar 

  691. Lubberts, E., Joosten, L. A.B., Oppers, B., van den Bersselaar, L., Coenen-de Roo, C. J. J., Kolls, J. K., et al. (2001) IL-1-independent role of IL-17 in synovial inflammation and joint destruction during collagen-induced arthritis, J. Immunol., 167, 1004–1013.

    PubMed  CAS  Google Scholar 

  692. Bush, K. A., Farmer, K. M., Walker, J. S., and Kirkham, B.W. (2002) Reduction of joint inflammation and bone erosion in rat adjuvant arthritis by treatment with interleukin-17 receptor IgG1 Fc fusion protein, Arthritis Rheum.., 46, 802–805.

    Article  PubMed  CAS  Google Scholar 

  693. Chabaud, M., Lubberts, E., Joosten, L., van den Berg, W., and Miossec, P. (2001) IL-17 derived from juxta-articular bone and synovium contributes to joint degradation in rheumatoid arthritis, Arthritis Res., 3, 168–177.

    Article  PubMed  CAS  Google Scholar 

  694. Lubberts, E., Joosten, L. A. B., van de Loo, F. A. J., van den Bersselaar, L. A., and van den Berg, W. B. (2000) Reduction of interleukin-17-induced inhibition of chondrocyte proteoglycan synthesis in intact murine articular cartilage by interleukin-4, Arthritis Rheum.., 43, 1300–1306.

    Article  PubMed  CAS  Google Scholar 

  695. Martel-Pelletier, J., Mineau, F., Jovanovic, D., Di Battista, J. A., and Pelletier, J. P. (1999) Mitogen-activated protein kinase and nuclear factor κB together regulate interleukin-17-induced nitric oxide production in human osteoarthritic chondrocytes: possible role of transactivating factor mitogen-activated protein kinase-activated protein kinase (MAPKAPK), Arthritis Rheum., 42, 2399–2409.

    Article  PubMed  CAS  Google Scholar 

  696. Kotake, S., Udagawa, N., Takahashi, N., Matsuzaki, K., Itoh, K., Ishiyama, S., et al. (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis, J. Clin. Invest., 103, 1345–1352.

    Article  PubMed  CAS  Google Scholar 

  697. Lubberts, E., van den Bersselaar, L., Oppers-Walgreen, B., Schwarzenberger, P., Coenen-de Roo, C. J. J., Kolls, J. K., et al. (2003) IL-17 promotes bone erosion in murine collagen-induced arthritis through loss of the receptor activator of NF-κB ligand/osteoprotegerin balance, J. Immunol., 170, 2655–2662.

    PubMed  CAS  Google Scholar 

  698. Cooke, A. (2006) Th17 cells in inflammatory conditions, Rev. Diabet. Stud., 3(2), 72–75.

    Article  PubMed  Google Scholar 

  699. Bottomly, K. (1988) A functional dichotomy in CD4+ T lymphocytes, Immunol. Today, 9(9), 268–274.

    Article  PubMed  CAS  Google Scholar 

  700. Fehervari, Z. and Sakaguchi, S. (2004) Development and function of CD25+CD4+ regulatory T cells, Curr. Opin. Immunol., 16(2), 203–208.

    Article  PubMed  CAS  Google Scholar 

  701. Fitch, F. W., McKisic, M. D., Lancki, D. W., and Gajewski, T. F. (1993) Differential regulation of murine T lymphocyte subsets, Annu. Rev. Immunol., 11, 29–48.

    Article  PubMed  CAS  Google Scholar 

  702. Fontenot, J. D. and Rudensky, A. Y. (2005) A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3, Nat. Immunol., 6(4), 331–337.

    Article  PubMed  CAS  Google Scholar 

  703. Szabo, S. J., Jacobson, N. G., Dighe, A. S., Gubler, U., and Murphy, K. M. (1995) Developmental commitment to the Th2 lineage by extinction of IL-12 signaling, Immunity, 2(6), 665–675.

    Article  PubMed  CAS  Google Scholar 

  704. O’Garra, A. (1998) Cytokines induce the development of functionally heterogeneous T helper cell subsets, Immunity, 8(3), 275–283.

    Article  PubMed  Google Scholar 

  705. Chen, W., Jin, W., Hardegen, N., Lei, K. J., Li, L., Marinos, N., McGrady, G., and Wahl, S. M. (2003) Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3, J. Exp. Med., 198(12), 1875–1886.

    Article  PubMed  CAS  Google Scholar 

  706. Gorelik, L. and Flavell, R. A. (2002) Transforming growth factor-beta in T-cell biology, Nat. Rev. Immunol., 2(1), 46–53.

    Article  PubMed  CAS  Google Scholar 

  707. Aggarwal, S., Ghilardi, N., Xie, M. H., de Sauvage, F. J., and Gurney, A. L. (2003) Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17, J. Biol. Chem., 278(3), 1910–1914.

    Article  PubMed  CAS  Google Scholar 

  708. Langrish, C. L., Chen, Y., Blumenschein, W. M., Mattson, J., Basham, B., et al. (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation, J. Exp. Med., 201(2), 233–240.

    Article  PubMed  CAS  Google Scholar 

  709. Murphy, C. A., Langrish, C. L., Chen, Y., Blumenschein, W., McClanahan, T., Kastelein, R. A., Sedgwick, J. D., and Cua, D. J. (2003) Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation, J. Exp. Med., 198(12), 1951–1957.

    Article  PubMed  CAS  Google Scholar 

  710. Cua, D. J., Sherlock, J., Chen, Y., Murphy, C. A., Joyce, B., Seymour, B., et al. (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain, Nature, 421(6924), 744–748.

    Article  PubMed  CAS  Google Scholar 

  711. Yen, D., Cheung, J., Scheerens, H., Poulet, F., McClanahan, T., McKenzie, B., et al. (2006) IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6, J. Clin. Invest., 116(5), 1310–1316.

    Article  PubMed  CAS  Google Scholar 

  712. Shalom-Barak, T., Quach, J., and Lotz, M. (1998) Interleukin-17-induced gene expression in articular chondrocytes is associated with activation of mitogen-activated protein kinases and NF-κB, J. Biol. Chem., 273(42), 27467–27473.

    Article  PubMed  CAS  Google Scholar 

  713. Miljkovic, D., Cvetkovic, I., Momcilovic, M., Maksimovic-Ivanic, D., Stosic- Grujicic, S., and Trajkovic, V. (2005) Interleukin-17 stimulates inducible nitric oxide synthase-dependent toxicity in mouse beta cells, Cell Mol. Life Sci., 62(22), 2658–2668.

    Article  PubMed  CAS  Google Scholar 

  714. Mensah-Brown, E. P., Shahin, A., Al-Shamisi, M., Wei, X., and Lukic, M. L. (2006) IL-23 leads to diabetes induction after subdiabetogenic treatment with multiple low doses of streptozotocin, Eur. J. Immunol., 36(1), 216–223.

    Article  PubMed  CAS  Google Scholar 

  715. Kurusawa, K., Hirose, K., Sano, H., Endo, H., Shinkai, H., Nawata, Y., et al. (2000) Increased interleukin-17 production in patients with systemic sclerosis, Arthritis Rheum., 43, 2455–2463.

    Article  Google Scholar 

  716. Teunissen, M. B., Koomen, C. W., de Waal Malefyt, R., Wierenga, E. A., and Bos, J. D. (1998) Interleukin-17 and interferon-gamma synergize in the enhancement of proinflammatory cytokine production by human keratinocytes, J. Invest. Dermatol., 111(4), 645–649.

    Article  PubMed  CAS  Google Scholar 

  717. Albanesi, C., Scarponi, C., Cavani, A., Federici, M., Nasorri, F., and Girolomoni, G. (2000) Interleukin-17 is produced by both Th1 and Th2 lymphocytes, and modulates interferon-gamma- and interleukin-4-induced activation of human keratinocytes, J. Invest. Dermatol., 115(1), 81–87.

    Article  PubMed  CAS  Google Scholar 

  718. Eugster, H. P., Frei, K., Kopf, M., Lassmann, H., and Fontana, A. (1998) IL-6- deficient mice resist myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis, Eur. J. Immunol., 28(7), 2178–2187.

    Article  PubMed  CAS  Google Scholar 

  719. Alonzi, T., Fattori, E., Lazzaro, D., Costa, P., Probert, L., et al. (1998) Interleukin 6 is required for the development of collagen-induced arthritis, J. Exp. Med., 187(4), 461–468.

    Article  PubMed  CAS  Google Scholar 

  720. Ohshima, S., Saeki, Y., Mima, T., Sasai, M., Nishioka, K., et al. (1998) Interleukin 6 plays a key role in the development of antigen-induced arthritis, Proc. Natl. Acad. Sci. U.S.A., 95(14), 8222–8226.

    Article  PubMed  CAS  Google Scholar 

  721. Okuda, Y., Sakoda, S., Bernard, C. C., Fujimura, H., Saeki, Y., Kishimoto, T., and Yanagihara, T. (1998) IL-6-deficient mice are resistant to the induction of experimental autoimmune encephalomyelitis provoked by myelin oligodendrocyte glycoprotein, Int. Immunol., 10(5), 703–708.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassil St. Georgiev PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Georgiev, V.S. (2009). Mammalian Host Defenses: Innate and Adaptive Immunity. In: Georgiev, V.S. (eds) National Institute of Allergy and Infectious Diseases, NIH. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-60327-297-1_38

Download citation

Publish with us

Policies and ethics