Skip to main content

Part of the book series: Infectious Disease ((ID))

  • 1191 Accesses

To control the alarming spread of HIV, a vital need exists for developing an effective vaccine that would prevent individuals from becoming infected. In the context of NIAID-supported HIV vaccine research, identifying new vaccine concepts is the first step in the discovery and development of new vaccines. Basic research in HIV pathogenesis, immunology, virology, and development of animal models will form the basis for the identification of new vaccine concepts and will guide approaches for testing the most promising candidates in both domestic and international clinical trials (http://www3.niaid.nih.gov/research/topics/HIV/vaccines/).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Johnston, M. I. and Fauci, A. S. (2007) An HIV vaccine—evolving concepts, N. Engl. J. Med., 356(20), 2073–2081.

    Article  PubMed  CAS  Google Scholar 

  2. Letvin, N. L. (2005) Progress toward an HIV vaccine, Annu. Rev. Med., 56, 213–223.

    Article  PubMed  CAS  Google Scholar 

  3. Girard, M. P., Osmanov, S. K., and Kieny, M. P. (2006) A review of vaccine research and development: the human immunodeficiency virus (HIV), Vaccine, 24(19), 4062–4081.

    Article  PubMed  CAS  Google Scholar 

  4. Weiner, D. B. (2006) Progress in development and testing of novel recombinant vaccine platforms for HIV, Springer Seminars in Immunopathology, 28(3), 195–196.

    Article  PubMed  Google Scholar 

  5. Ensoli, B. (2005) Criteria for selection of HIV vaccine candidates—general principles, Microbes Infect., 7(14), 1433–1435.

    Article  PubMed  Google Scholar 

  6. Taub, D. D., Turcovski–Corrales, S. M., Key, M. L., Longo, D. L., and Murphy, W. J., (1986) Chemokines and T lymphocyte activation: I. Beta chemokines costimulate human T lymphocyte activation in vitro, J. Immunol., 156(6), 2095–2103.

    Google Scholar 

  7. Walker, C. M., Moody, D. J., Stites, D. P., et al. (1986) CD8+ lymphocytes can control HIV infection in vitro by suppressing virus replication, Science, 234, 1563–1566.

    Article  PubMed  CAS  Google Scholar 

  8. Janeway, C. A., Jr., Travers, P., Hunt, S., and Walport, M. (1997) Immunobiology: The Immune System in Health and Disease, 3rd ed., Garland, New York.

    Google Scholar 

  9. Spearman, P. (2006) Current progress in the development of HIV vaccines, Curr. Pharm. Des., 12, 1147–1167.

    Article  PubMed  CAS  Google Scholar 

  10. McMichael, A. J. (2006) HIV vaccines, Annu. Rev. Immunol., 24, 227–255.

    Article  PubMed  CAS  Google Scholar 

  11. Cocchi, F., DeVico, A. L., Garzino-Demo, A., Arya, S. K., Gallo, R. C., and Lusso, P. (1995) Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells, Science, 270, 1811–1815.

    Article  PubMed  CAS  Google Scholar 

  12. Zhao, A. and Kent, S. (1996) HIV-specific cytotoxic lymphocyte (CTL) responses control initial viremia in HIV infected macaques, 8th Annu. Conf. Australas. Soc. HIV Med., Sydney, Australia, November 14–17; 8:119 (Poster 139).

    Google Scholar 

  13. Pantaleo, G. and Koup, R. A. (2004) Correlates of immune protection in HIV-1 infection: what we know, what we don’t know, what we should know, Nat. Med., 10, 806–810.

    Article  PubMed  CAS  Google Scholar 

  14. Ogg, G. S., Jin, X., Bonhoeffer, S., et al. (1998) Quantitation of HIV-1 specific cytotoxic T lymphocytes and plasma load of viral RNA, Science, 279, 2103–2106.

    Article  PubMed  CAS  Google Scholar 

  15. Koup, R. A., Safrit, J. T., Cao, Y., et al. (1994) Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome, J. Virol., 68, 4650–4655.

    PubMed  CAS  Google Scholar 

  16. Schmitz, J. E., Kuroda, M. J., Santra, S., et al. (1999) Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes, Science, 283, 857–860.

    Article  PubMed  CAS  Google Scholar 

  17. Richman, D. D., Wrin, T., Little, S. J., et al. (2003) Rapid evolution of the neutralizing antibody response to HIV type-1 infection, Proc. Natl. Acad. Sci. U.S.A., 100, 4144–4149.

    Article  PubMed  CAS  Google Scholar 

  18. Wei, X., Decker, J. M., Wang, S., et al. (2003) Antibody neutralization and escape by HIV-1, Nature, 422, 307–312.

    Article  PubMed  CAS  Google Scholar 

  19. Allen, T. M., O’Connor, D. H., and Jing P. (2000) Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viremia, Nature, 407, 386–390.

    Article  PubMed  CAS  Google Scholar 

  20. Goulder, P. J., Phillips, R. E., and Colbert, R. A. (1997) Late escape from an immunodominant cytotoxic T lymphocyte response associated with progression to AIDS, Nat. Med., 3, 212–217.

    Article  PubMed  CAS  Google Scholar 

  21. Letvin, N. L., Mascola, J. R., Sun, Y., et al. (2006) Preserved CD4(+) central memory T cells and survival in vaccinated SIV-challenged monkeys, Science, 312, 1530–1533.

    Article  PubMed  CAS  Google Scholar 

  22. Polacino, P. S., Stallard, V., Klaniecki, J. E., et al. (1999) Role of immune responses against the envelope and the core antigens of simian immunodeficiency virus SIVmne in protection against homologous cloned and uncloned virus challenge in macaques, J. Virol., 73, 8201–8215.

    PubMed  CAS  Google Scholar 

  23. Amara, R. R., Villinger, F., Altman, J. D., et al. (2001) Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine, Science, 292, 69–74.

    Article  PubMed  CAS  Google Scholar 

  24. Mattapallil, J. J., Douek, D. C., Buckler-White, A., et al. (2006) Vaccination preserves CD4 memory T cells during acute simian immunodeficiency virus challenge, J. Exp. Med., 203, 1533–1541.

    Article  PubMed  CAS  Google Scholar 

  25. Gupta, S. B., Jacobson, L. P., Margolick, J. B., et al. (2207) Estimating the benefit of an HIV-1 vaccine that reduces viral load set point, J. Infect. Dis., 195, 546–550.

    Google Scholar 

  26. Barouch, D. H., Kunstman, J., Kuroda, M. J., et al. (2002) Eventual AIDS vaccine failure in a rhesus monkey by viral escape from cytotoxic T lymphocytes, Nature, 415, 335–339.

    Article  PubMed  CAS  Google Scholar 

  27. Cohen, J. (2003) AIDS vaccine trial produces disappointment and confusion, Science, 299, 129–1291.

    Google Scholar 

  28. Yewdell, J. W. and Bennink, J. R. (1999) Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses, Annu. Rev. Immunol., 17, 51–88.

    Article  PubMed  CAS  Google Scholar 

  29. Ishioka, G. Y., Fikes, J., Hermanson, G., et al. (1999) Utilization of MHC class I transgenic mice for development of minigene DNA vaccines encoding multiple HLA-restricted CTL epitopes, J. Immunol., 162(7), 3915–3925.

    PubMed  CAS  Google Scholar 

  30. McMichael, A. and Hanke, T. (2002) The quest for an AIDS vaccine: is the CD8+ T- cell approach feasible? Nat. Rev. Immunol., 2(4), 283–291.

    Article  PubMed  CAS  Google Scholar 

  31. Hanke, T., Samuel, R. V., Blanchard, T. J., et al. (1999) Effective induction of simian immunodeficiency virus-specific cytotoxic T lymphocytes in macaques by using a multiepitope gene and DNA prime-modified vaccinia virus Ankara boost vaccination regimen, J. Virol., 73(9), 7524–7532.

    PubMed  CAS  Google Scholar 

  32. Allen, T. M., Vogel, T. U., Fuller, D. H., et al. (2000) Induction of AIDS virus- specific CTL activity in fresh, unstimulated peripheral blood lymphocytes from rhesus macaques vaccinated with a DNA prime/modified vaccinia virus Ankara boost regimen, J. Immunol., 164(9), 4968–4978.

    PubMed  CAS  Google Scholar 

  33. Subbramanian, R. A., Kuroda, M. J., Charini, W. A., et al. (2003) Magnitude and diversity of cytotoxic-T-lymphocyte responses elicited by multiepitope DNA vaccination in rhesus monkeys, J. Virol., 77(18), 10113–10118.

    Article  PubMed  CAS  Google Scholar 

  34. McEvers, K., Elrefaei, M., Norris, P., et al. (2005) Modified anthrax fusion proteins deliver HIV antigens through MHC class I and II pathways, Vaccine, 23(32), 4128–4135.

    Article  PubMed  CAS  Google Scholar 

  35. Mortara, L., Gras-Masse, H., Rommens, C., Venet, A., Guillet, J. G., and Bourgault- Villada, I. (1999) Type 1 CD4(+) T-cell help is required for induction of antipeptide multispecific cytotoxic T lymphocytes by a lipopeptidic vaccine in rhesus macaques, J. Virol., 73(5), 4447–4451.

    PubMed  CAS  Google Scholar 

  36. Gahery-Segard, H., Pialoux, G., Charmeteau, B., et al. (2000) Multiepitopic B- and T-cell responses induced in humans by a human immunodeficiency virus type 1 lipopeptide vaccine, J. Virol., 74(4), 1694–1703.

    Article  PubMed  CAS  Google Scholar 

  37. Pialoux, G., Gahery-Segard, H., Sermet, S., et al. (2001) Lipopeptides induce cell- mediated anti-HIV immune responses in seronegative volunteers, AIDS, 15(10), 1239–1249.

    Article  PubMed  CAS  Google Scholar 

  38. Duerr, A., Wasserheit, J. N., and Corey, L. (2006) HIV vaccines: new frontiers in vaccine development, Clin. Infect. Dis., 43, 500–511.

    Article  PubMed  CAS  Google Scholar 

  39. Elbasha, E. H. and Gumel, A. B. (2006) Theoretical assessment of public health impact of imperfect prophylactic HIV-1 vaccines with therapeutic benefits, Bull. Math. Biol., 68, 577–614.

    Article  PubMed  Google Scholar 

  40. Shiver, J. W. and Emini, E. A. (2004) Recent advances in the development of HIV-1 vaccines using replication-incompetent adenovirus vectors, Annu. Rev. Med., 55, 355–372.

    Article  PubMed  CAS  Google Scholar 

  41. Roberts, D. M., Nanda, A., Havenga, M. J., et al. (2006) Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity, Nature, 441, 239–243.

    Article  PubMed  CAS  Google Scholar 

  42. Daniel, M. D., Kirchhoff, F., Czajak, S. C., et al. (1992) Protective effects of a live attenuated SIV vaccine with a deletion of the nef gene, Science, 258, 1938–1941.

    Article  PubMed  CAS  Google Scholar 

  43. Baba, T. W., Jeong, Y. S., Penninck, D., et al. (1995) Pathogenicity of live, attenuated SIV after mucosal infection of neonatal macaques, Science, 267, 1820–1825.

    Article  PubMed  CAS  Google Scholar 

  44. Learmont, J. C., Geczy, A. F., Mills, J., et al. (1999) Immunologic and virologic status after 14 to 18 years of infection with an attenuated strain of HIV-1, N. Engl. J. Med., 340, 1715–1722.

    Article  PubMed  CAS  Google Scholar 

  45. Donnelly, J. J., Ulmer, J. B., Shiver, J. W., et al. (1997) DNA vaccines, Annu. Rev. Immunol., 15, 617–648.

    Article  PubMed  CAS  Google Scholar 

  46. Egan, M. A., Charini, W. A., Kuroda, M. J., et al. (2000) Simian immunodeficiency virus (SIV) gag-DNA-vaccinated rhesus monkeys develop secondary cytotoxic T lymphocyte responses and control viral replication after pathogenic SIV infection, J. Virol., 74, 7485–7495.

    Article  PubMed  CAS  Google Scholar 

  47. Shen, L., Chen, Z. W., Miller, M. D., et al. (1991) Recombinant virus-vaccine- induced SIV-specific CD8+ cytotoxic T lymphocytes, Science, 252, 440–443.

    Article  PubMed  CAS  Google Scholar 

  48. Yasutomi, Y., Koenig, S., Haun, S. S., et al. (1993) Immunization with recombinant BCG-SIV elicits SIV-specific cytotoxic T lymphocytes in rhesus monkeys, J. Immunol., 150, 3101–3107.

    PubMed  CAS  Google Scholar 

  49. Redfield, R. R., Wright, D. C., James, W. D., et al. (1987) Disseminated vaccinia in a military recruit with human immunodeficiency virus (HIV) disease, N. Engl. J. Med., 316, 673–676.

    PubMed  CAS  Google Scholar 

  50. Hirsch, V. M., Fuerst, T. R., Sutter, G., et al. (1996) Patterns of viral replication correlate with outcome in simian immunodeficiency virus (SIV)-infected macaques: effect of prior immunization with a trivalent SIV vaccine in modified vaccinia virus Ankara, J. Virol.,., 70, 3741–3752.

    PubMed  CAS  Google Scholar 

  51. Santra, S., Schmitz, J. E., Kuroda, M. J., et al. (2002) Recombinant canarypox vaccine-elicited CTL specific for dominant and subdominant simian immunodeficiency virus epitopes in rhesus monkeys, J. Immunol., 168, 1847–1853.

    PubMed  CAS  Google Scholar 

  52. Evans, T. G., Keefer, M. C., Weinhold, K. J., et al. (1999) A canarypox vaccine expressing multiple human immunodeficiency virus type 1 genes given alone or with rgp 120 elicits broad and durable CD8+ cytotoxic T lymphocyte responses in seronegative volunteers, J. Infect. Dis., 280, 290–298.

    Article  Google Scholar 

  53. Shiver, J. W. and Emini, E. A. (2004) Recent advances in the development of HIV-1 vaccines using replication-incompetent adenovirus vectors, Annu. Rev. Med., 55, 355–372.

    Article  PubMed  CAS  Google Scholar 

  54. Shiver, J. W., Fu, T. M., Chen, L., et al. (2002) Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity, Nature, 415, 331–335.

    Article  PubMed  CAS  Google Scholar 

  55. Barouch, D. H., Pau, M. G., Custers, J. H., et al. (2004) Immunogenicity of recombinant adenovirus serotype 35 vaccine in the presence of pre-existing anti-Ad5 immunity, J. Immunol., 172, 6290–6297.

    PubMed  CAS  Google Scholar 

  56. Letvin, N. L., Huang, Y., Chakrabarti, B. K., et al. (2004) Heterologous envelope immunogens contribute to AIDS vaccine protection in rhesus monkeys, J. Virol., 78, 7490–7497.

    Article  PubMed  Google Scholar 

  57. Reitter, J. N., Means, R. E., and Desrosiers, R. C. (1998) A role for carbohydrates in immune evasion in AIDS, Nat. Med., 4, 679–684.

    Article  PubMed  CAS  Google Scholar 

  58. Ye, Y., Si, Z. H., Moore, J. P., et al. (2000) Association of structural changes in the V2 and V3 loops of the gp120 envelope glycoprotein with acquisition of neutralization resistance in simian-human immunodeficiency virus passaged in vivo, J. Virol., 74, 955–962.

    Google Scholar 

  59. Chan, D. C., Fass, D., Berger, J. M., et al. (1997) Core structure of gp41 from the HIV envelope glycoprotein, Cell, 93, 681–684.

    Article  Google Scholar 

  60. D’Souza, M. P., Livnat, D., Bradac, J. A., et al. (1997) Evaluation of monoclonal antibodies to human immunodeficiency virus type-1 primary isolates by neutralization assays: performance criteria for selecting candidate antibodies for clinical trials, J. Infect. Dis., 175, 1056–1062.

    Article  PubMed  Google Scholar 

  61. Darren, P. W. H. I. and Burton, D. R.. (2001) The antiviral activity of antibodies in vitro and in vivo, Adv. Immunol., 77, 195–262.

    Article  Google Scholar 

  62. Haynes, B. F., Fleming, J., St. Clair, E. W., et al. (2005) Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies, Science, 308, 1906–1908.

    Article  PubMed  CAS  Google Scholar 

  63. Haynes, B. F., Moody, M. A., Verkoczy, L., Kelsoe, G., and Alam, S. M. (2005) Antibody polyspecificity and neutralization of HIV-1: a hypothesis, Hum. Antibodies, 14, 59–67.

    PubMed  Google Scholar 

  64. Alam, S. M., McAdams, M., Boren, D., et al. (2007) The role of antibody polyspecificity and lipid reactivity in binding of broadly neutralizing anti-HIV-1 envelope human monoclonal antibodies 2F5 and 4E10 to glycoprotein 41 membrane proximal envelope epitopes, J. Immunol., 178, 4424–4435.

    PubMed  CAS  Google Scholar 

  65. Parren, P. W., Marx, P. A., Hessell, A. J., et al. (2001) Antibody protects macaques against vaginal challenge with a pathogenic R5 simian/human immunodeficiency virus at serum levels giving complete neutralization in vitro, J. Virol., 75, 8340–8347.

    Article  PubMed  CAS  Google Scholar 

  66. O’Leary, J. G., Goodarzi, M., Drayton, D. L., and von Andrian, U. H. (2006) T cell- and B cell-independent adaptive immunity mediated by natural killer cells, Nat. Immunol., 7, 507–516.

    Article  PubMed  Google Scholar 

  67. Kawai, T. and Akira, S. (2006) Innate immune recognition of viral infection, Nat. Immunol., 7, 131–137.

    Article  PubMed  CAS  Google Scholar 

  68. Sugaya, M., Loré, K., Koup, R. A., Douek, D. C., and Blauvelt, A. (2004) HIV- infected Langerhans cells preferentially transmit virus to proliferating autologous CD4+ memory T cells located within Langerhans cell-T cell clusters, J. Immunol., 172, 2219–2224.

    PubMed  CAS  Google Scholar 

  69. Roberts, D. M., Nanda, A., Havenga, M. J. E., Abbink, P., Lynch, D. M., Ewald, B. A., Liu, J., Thorner, A. R., Swanson, P. E., Gorgone, D. A., Lifton, M. A., Lemckert, A. A. C., Holterman, L., Chen, B., Dilraj, A., Carville, A., Mansfield, K. G., Goudsmit, J., and Barouch, D. H. (2006) Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity, Nature, 441, 239–243.

    Article  PubMed  CAS  Google Scholar 

  70. Liao, H.-X., Sutherland, L. L., Xia, S.-M., Brock, M. E., Scearce, R. M., Vanleeuwen, S., Alam, S. M., McAdams, M., Weaver, E. A., Camacho, Z. T., Ma, B.-J., Li, Y., Decker, J. M., Nabel, G. J., Montefiori, D. C., Hahn, B. H., Korber, B. T., Gao, F., and Haynes, B. F. (2006) A group M consensus envelope lycoprotein induces antibodies that neutralize subsets of subtype B and C HIV-1 primary viruses, Virology, 353(2) 268–282.

    Article  PubMed  CAS  Google Scholar 

  71. Zuñiga, R., Lucchetti, Z. R., Galvan, P., Sanchez, S., Sanchez, C., Hernandez, A., Sanchez, H., Frahm, N., Linde, C. H., Hewitt, H. S., Hildebrand, W., Altfeld, M., Allen, T. M., Walker, B. D., Korber, B. T., Leitner, T., Sanchez, J., and Brander, C. (2006) Relative dominance of gag p24-specific cytotoxic T lymphocytes is associated with human immunodeficiency virus control, J. Virol. 80(6), 3122–3125.

    Article  Google Scholar 

  72. Moore, P. L., Crooks, E. T., Porter, L., Zhu, P., Cayanan, C. S., Grise, H., Corcoran, P., Zwick, M. B., Franti, M., Morris, L., Roux, K. H., Burton, D. R., and Binley, J. M. (2006) Nature of nonfunctional envelope proteins on the surface of the human immunodeficiency virus, J. Virol., 80(5), 2515–2528.

    Article  PubMed  CAS  Google Scholar 

  73. Song, R. J., Chenine, A.-L., Rasmussen, R. A., Ruprecht, C. R., Mirshahidi, S., Grisson, R. D., Xu, W., Whitney, J. B., Goins, L. M., Ong, H., Li, P.-L., Shai-Kobiler, E., Wang, T., McCann, C. M., Zhang, H., Wood, C., Kankasa, C., Secor, W. E., McClure, H. M., Strobert, E., Else, J. G., and Ruprecht, R. M. (2006) Molecularly cloned SHIV-1157ipd3N4: a highly replication-competent, mucosally transmissible R5 simian-human immunodeficiency virus encoding HIV clade C env, J. Virol., 80(17), 8729–8738.

    Article  PubMed  CAS  Google Scholar 

  74. Van Rompay, K. K. A., Greenier, J. L., Cole, K. S., Earl, P., Moss, B., Steckbeck, J. D., Pahar, B., Rourke, T., Montelaro, R. C., Canfield, D. R., Tarara, R. P., Miller, C., McChesney, M. B., and Marthas, M. L. (2003) Immunization of newborn rhesus macaques with simian immunodeficiency virus (SIV) vaccines prolongs survival after oral challenge with virulent SIVmac251, J. Virol., 77, 179–190.

    Article  PubMed  Google Scholar 

  75. Greenier, J. L., Van Rompay, K. K. A., Montefiori, D., Earl, P., Moss, B., and Marthas, M. L. (2005) Simian immunodeficiency virus (SIV) envelope quasispecies transmission and evolution in infant rhesus macaques after oral challenge with uncloned SIVmac251: increased diversity is associated with neutralizing antibodies and improved survival in previously immunized animals, Virol. J., 2, 11.

    Article  PubMed  Google Scholar 

  76. Lichterfeld, M., Kauffman, D. E., Yu, X. G., Mui, S. K., Addo, M. M., Johnston, M. N., Cohen, D., Robbins, G. K., Pae, E., Alter, G., Wurcel, A., Stone, D., Rosenberg, E. S., Walker, B. D., and Altfeld, M. (2004) Loss of HIV-1-specific CD8+ T cell proliferation after acute HIV-1 infection and restoration by vaccine-induced HIV- specific CD4+ T cells, J. Exp. Med., 200(6), 701–712.

    Article  PubMed  CAS  Google Scholar 

  77. Goepfert, P. A., Horton, H., McElrath, M. J., Gurunathan, S., Ferrari, G., Tomaras, G. D., Montefiori, D. C., Allen, M., Chiu, Y-L., Spearman, P., Fuchs, J. D., Koblin, B. A., Blattner, W. A., Frey, S., Keefer, M. C., Baden, L. R., Corey, L., and the NIAID HIV Vaccine Trials Network (2005) High-dose recombinant canarypox vaccine expressing HIV-1 protein in seronegative human subjects, J. Infect. Dis., 192(7), 1249–1259.

    Google Scholar 

  78. Price, D. A., West, S. M., Betts, M. R., Ruff, L. E., Brenchley, J. M., Ambrozak, D. R., Edghill-Smith, Y., Kuroda, M. J., Bogdan, D., Kunstman, K., Letvin, N. L., Franchini, G., Wolinsky, S. M., Koup, R. A., and Douek, D. C. (2004) T cell receptor recognition motifs govern immune escape patterns in acute SIV infection, Immunity, 21, 793–803.

    Article  PubMed  CAS  Google Scholar 

  79. Bihl, F., Frahm, N., Di Giammarino, L., Sidney, J., John, M., Yusin, K., Woodberry, T., Sango, K., Hewitt, H. S., Henry, L., Linde, C. H., Chisholm III, J. V., Zaman, T. M., Pae, E., Mallal, S., Walker, B. D., Sette, A., Korber, B. T., Heckerman, D., and Brander, C. (2006) The impact of HLA-B alleles, epitope binding affinity, functional avidity, and viral coinfection on the immunodominance of virus-specific CTL responses, J. Immunol., 176(7), 4094–4101.

    PubMed  CAS  Google Scholar 

  80. Frahm, N., Kiepiela, P., Adams, S., Linde, C. H., Hewitt, H. S., Sango, K., Feeney, M. E., Addo, M. M., Lichterfeld, M., Lahaie, M. P., Pae, E., Wurcel, A. G., Roach, T., St. John, M. A., Altfeld, M., Marincola, F. M., Moore, C., Mallal, S., Carrington, M., Heckerman, D., Allen, T. M., Mullins, J. I., Korber, B. T., Goulder, P. J. R., Walker, B. D., and Brander, C. (2006) Control of human immunodeficiency virus replication by cytotoxic T lymphocytes targeting subdominant epitopes, Nat. Immunol., 7, 173–178.

    Article  PubMed  CAS  Google Scholar 

  81. Khurana, S., Needham, J., Mathieson, B., Rodriguez-Chavez, I. R., Catanzaro, A. T., Bailer, R. T., Kim, J., Polonis, V., Cooper, D. A., Guerin, J., Peterson, M. L., Gurwith, M., Nguyen, N., Graham, B. S., Golding, H., and the HIV Vaccine Trial Network (2006) Human immunodeficiency virus (HIV) vaccine trials: a novel assay for differential diagnosis of HIV infections in the face of vaccine-generated antibodies. J. Virol., 80(5), 2092–2099.

    Google Scholar 

  82. Khurana, S., Needham, J., Park, S., et al. (2006) Novel approach for differential diagnosis of HIV infections in the face of vaccine-generated antibodies: utility for detection of diverse HIV-1 subtypes, J. Acquir. Immune Defic. Syndr., 43(3), 304–312.

    Article  PubMed  CAS  Google Scholar 

  83. Pantaleo, G. (2008) HIV-1 T-cell vaccines: evaluating the next step, Lancet Infect. Dis., 8(2), 82–83.

    Article  PubMed  Google Scholar 

  84. Cohen, J. (2007) AIDS research. Did Merck’s failed HIV vaccine cause harm? Science, 318, 1048–1049.

    Article  PubMed  CAS  Google Scholar 

  85. Ledford, H. (2007) HIV vaccine may raise risk, Nature, 450, 325.

    Article  PubMed  CAS  Google Scholar 

  86. Desrosiers, R. (2008) Scientific obstacles to an effective HIV vaccine, 15th Conference on Retroviruses and Opportunistic Infections, Boston, MA, February 3–6, abstract 92.

    Google Scholar 

  87. Sekaly, R.-P. (2007) The failed HIV Merck vaccine study: a step back or a launching point for future vaccine development? J. Exp. Med., 205(1), 7–12.

    Article  Google Scholar 

  88. Shiver, J. W., Fu, T. M., Chen, L., Casimiro, D. R., Davies, M. E., Evans, R. K., Zhang, Z. Q., Simon, A. J., Trigona, W. L., Dubey, S. A., et al. (2002) Replication- incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity, Nature, 415, 331–335.

    Article  PubMed  CAS  Google Scholar 

  89. Casimiro, D. R., Wang, F., Schleif, W.A., Liang, X., Zhang, Z. Q., Tobery, T. W., et al. (2005) Attenuation of simian immunodeficiency virus SIVmac239 infection by prophylactic immunization with DNA and recombinant adenoviral vaccine vectors expressing Gag, J. Virol., 79, 15547–15555.

    Article  PubMed  CAS  Google Scholar 

  90. Gomez-Roman, V. R., Florese, R. H., Peng, B., Montefiori, D. C., Kalyanaraman, V. S., Venzon, D. et al. (2006) An adenovirus-based HIV subtype B prime/boost vaccine regimen elicits antibodies mediating broad antibody-dependent cellular cytotoxicity against non-subtype B HIV strains, J. Acquir. Immune Defic. Syndr., 4, 270–277.

    Google Scholar 

  91. Barouch, D. H., and Nabel. G. J. (2005) Adenovirus vector-based vaccines for human immunodeficiency virus type 1, Hum. Gene Ther., 16, 149–156.

    Article  PubMed  CAS  Google Scholar 

  92. Kostense, S., Koudstaal, W., Sprangers, M., Weverling, G. J., Penders, G., et al. (2004) Adenovirus types 5 and 35 seroprevalence in AIDS risk groups supports type 35 as a vaccine vector, AIDS, 18, 1213–1216.

    Article  PubMed  Google Scholar 

  93. Sumida, S. M., Truitt, D. M., Lemckert, A. A., Vogels, R., Custers, J. H., et al. (2005) Neutralizing antibodies to adenovirus serotype 5 vaccine vectors are directed primarily against the adenovirus hexon protein, J. Immunol., 174, 7179–7185.

    PubMed  CAS  Google Scholar 

  94. Roberts, D. M., Nanda, A., Havenga, M. J., Abbink, P., Lynch, D. M., Ewald, B. A., et al. (2006) Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity, Nature, 441, 239–243.

    Article  PubMed  CAS  Google Scholar 

  95. Cohen, J. (2007) Did Merck’s failed HIV vaccine cause harm? Science, 318(5853), 1048–1049.

    Article  PubMed  CAS  Google Scholar 

  96. NIAID Statement (2007) Immunizations are discontiued in two HIV vaccine trials (http://www3.niaid.nih.gov/news/newsreleases/2007/step_statement.htm).

  97. Borkow, G. (2005) Mouse models for HIV-1 infection, IUBMB Lif, 57, 819–823.

    Article  CAS  Google Scholar 

  98. Hu, S.L. (2005) Non-human primate models for AIDS vaccine research, Curr. Drug Targets Infect. Disord., 5, 193–201.

    Article  PubMed  CAS  Google Scholar 

  99. ScienceScope. (2007) New scrutiny on vaccine trial, Science, 318(5851), 529.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassil St. Georgiev PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Georgiev, V.S. (2009). Vaccine Development. In: Georgiev, V.S. (eds) National Institute of Allergy and Infectious Diseases, NIH. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-60327-297-1_35

Download citation

Publish with us

Policies and ethics