Skip to main content

Part of the book series: Infectious Disease ((ID))

  • 1169 Accesses

For nearly three decades, the human immunodeficiency virus (HIV) and the acquired immunodeficiency syndrome (AIDS) pandemic has claimed the lives of many millions of people to have a devastating impact on global health by changing its disease progression patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. World Health Organization, UNAIDS, UNICEF (2007) Towards universal access scaling up priorities in HIV/AIDS intervention in the health sector: progress report (http://www.who.int/hiv/mediacentre/universal_access_progress_report_en.pdf).

  2. Fauci, A. S. (2007) The expanding global health agenda: a welcome development, Nat. Med., 13(10), 21–23.

    Google Scholar 

  3. Wain-Hobson, S. (1989) HIV genome variability in vivo, AIDS, 3(Suppl. 1), 13–19.

    Google Scholar 

  4. Wain-Hobson, S. (1992) Human immunodeficiency virus type 1 quasispecies in vivo and ex vivo, Curr. Top. Microbiol. Immunol., 176, 181–193.

    PubMed  CAS  Google Scholar 

  5. Gelderbloom, H. R., Özel, M., and Pauli, G. (1989) Morphogenesis and morphology of HIV. Structure-function relations, Arch. Virol., 106, 1–13.

    Google Scholar 

  6. Wong-Stall, F. and Klotman, M. E. (1991) Human immunodeficiency virus (HIV) gene structure and genetic diversity. In: The Human Retroviruses (Gallo, R. C. and Jay, G., eds.), Academic Press, San Diego, CA, pp. 35–68.

    Google Scholar 

  7. Hope, T. J. and Trono, D. (2000) Structure, expression, and regulation of the HIV genome, HIV InSite Knowledge Base Chapter (http://hivinsite.ucsf.edu/InSite?page=kb-02-01-02).

  8. Felber, B. K., Hadzopoulou-Cladaras, M., Cladaras, C., Copeland, T., and Pavlakis, G. N. (1989) Rev protein of the human immunodeficiency virus type 1 affect the stability and transport of viral mRNA, Proc. Natl. Acad. Sci. U.S.A., 86, 1495–1499.

    PubMed  CAS  Google Scholar 

  9. Hadzopoulou-Cladaras, M., Felber, B. K., Cladaras, C., Athanassopoulos, A., Tse, A., and Pavlakis, G. N. (1980) The rev (trs/art) protein of the human immunodeficiency virus type 1 affects viral mRNA via a cis-acting sequence in the env region, J. Virol., 63, 1265–1274.

    Google Scholar 

  10. Briggs, J. A. G., Grünewald, K., Glass, B., Förster, F., Kräusslich, H.-G., and Fuller, S. D. (2006) The mechanism of HIV-1 core assembly: insights from three-dimensional reconstructions of authentic virions, Structure, 14, 15–20.

    PubMed  CAS  Google Scholar 

  11. Swanstrom, R. and Wills, J. W. (1997) Synthesis, assembly, and processing of viral proteins. In: Retroviruses (Coffin, J. M., Hughes, S. H., and Varmus, H. E., eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 263–334.

    Google Scholar 

  12. Briggs, J. A. G., Wilk, T., Welker, R., Kräusslich, H. G., and Fuller, S. D. (2003) Structural organization of authentic, mature HIV-1 virions and cores, EMBO J., 22, 1707–1715.

    PubMed  CAS  Google Scholar 

  13. Fuller, S. D., Wilk, T., Gowen, B. E., Kräusslich, H. G., and Vogt V. M. (1997) Cryo-electron microscopy reveals ordered domains in the immature HIV-1 particle, Curr. Biol., 7, 729–738.

    PubMed  CAS  Google Scholar 

  14. Wilk, T., Gross, I., Gowen, B. E., Rutten, T., de Haas, F., Welker, R., Kräusslich, H. G., Boulanger, P., and Fuller, S. D. (2001) Organization of immature human immunodeficiency virus type 1, J. Virol., 75, 759–771.

    PubMed  CAS  Google Scholar 

  15. Briggs, J. A. G., Watson, B. E., Gowen, B. E., and Fuller, S. D. (2004) Cryoelectron microscopy of mouse mammary tumor virus, J. Virol., 78, 2606–2608.

    PubMed  CAS  Google Scholar 

  16. Kingston, R. L., Olson, N. H., and Vogt, V. M. (2001) The organization of mature Rous sarcoma virus as studied by cryoelectron microscopy, J. Struct. Biol., 136, 67–80.

    PubMed  CAS  Google Scholar 

  17. Yeager, M., Wilson-Kubalek, E. M., Weiner, S. G., Brown, P. O., and Rein, A. (1998) Supramolecular organization of immature and mature murine leukemia virus revealed by electron cryo-microscopy: implications for retroviral assembly mechanisms, Proc. Natl. Acad. Sci. U.S.A., 95, 7299–7304.

    PubMed  CAS  Google Scholar 

  18. Vogt, V. M. (1997) Retroviral virions and genomes. In: Retroviruses (Coffin, J. M., Hughes, S. H., and Varmus, H. E., eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 27–69.

    Google Scholar 

  19. Briggs, J. A. G., Simon, M. N., Gross, I., Kräusslich, H. G., Fuller, S. D., Vogt, V. M., and Johnson, M. C. (2004) The stoichiometry of Gag protein in HIV-1, Nat. Struct. Mol. Biol., 11, 672–675.

    PubMed  CAS  Google Scholar 

  20. Feinberg, M. B., Baltimore, D., and Frankel, A. D. (1991) The role of Tat in the human immunodeficiency virus life cycle indicates a primary effect on transcriptional elongation, Proc. Natl. Acad. Sci. U.S.A., 88, 4045–4049.

    PubMed  CAS  Google Scholar 

  21. Zhu, Y., Pe’ery, T., Peng, J., Ramanathan, Y., Marshall, N., Marshall, T., Amendt, B., Mathews, M. B., and Price, D. H. (1997) Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro, Genes Dev., 11, 2622–2632.

    PubMed  CAS  Google Scholar 

  22. Muesing, M. A., Smith, D. H., Cabradilla, C. D., et al. (1985) Nucleic acid structure and expression of the human AIDS/lymphodenopathy virus, Nature, 313, 450–458.

    PubMed  CAS  Google Scholar 

  23. Gallo, R., Wong-Staal, F., Montagnier, L., et al (1988) HIV/HTLV gene nomenclature, Nature, 333, 504.

    PubMed  CAS  Google Scholar 

  24. Bryant, M. and Ratner, L. (1990) Myristoylation-dependent replication and assembly of human immunodeficiency virus, Proc. Natl. Acad. Sci. U.S.A., 87, 523–527.

    PubMed  CAS  Google Scholar 

  25. Gottlinger, H. G., Sodroski, J. G., and Haseltine, W. A. (1989) Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1, Proc. Natl. Acad. Sci. U.S.A., 86, 5781–5785.

    PubMed  CAS  Google Scholar 

  26. Gallay, P., Swingler, S., Song, J., et al. (1995) HIV nuclear import is governed by the phosphotyrosine-mediated binding of matrix to the core domain of integrase, Cell, 83, 569–576.

    PubMed  CAS  Google Scholar 

  27. Lewis, P., Hensel, M., and Emerman, M. (1992) Human immunodeficiency virus infection of cells arrested in the cell cycle, EMBO J., 11, 3053–3058.

    PubMed  CAS  Google Scholar 

  28. Harrison, G. P., and Lever, A. M. (1992) The human immunodeficiency virus type 1 packaging signal and major splice donor region have a conserved stable secondary structure, J. Virol., 66, 4144–4153.

    PubMed  CAS  Google Scholar 

  29. Poznansky, M., Lever, A., Bergeron, L., et al. (1991) Gene transfer into human lymphocytes by a defective human immunodeficiency virus type1 vector, J. Virol., 65, 532–536.

    PubMed  CAS  Google Scholar 

  30. Lapadat-Tapolsky, M., De Rocquigny, H., Van Gent, D., et al. (1993) Interactions between HIV-1 nucleocapsid protein and viral DNA may have important functions in the viral life cycle, Nucleic Acids Res., 21, 831–839.

    PubMed  CAS  Google Scholar 

  31. Paxton, W., Connor, R. I., and Landau, N. R. (1993) Incorporation of Vpr into human immunodeficiency virus type 1 virions: requirement for the p6 region of gag and mutational analysis, J. Virol., 67, 7229–7237.

    PubMed  CAS  Google Scholar 

  32. Jacks, T., Power, M. D., Masiarz, F. R., et al. (1988) Characterization of ribosomal frameshifting in HIV-1 gag-pol expression, Nature, 331, 280–283.

    PubMed  CAS  Google Scholar 

  33. Parkin, N. T., Chamorro, M., and Varmus, H. E. (1992) Human immunodeficiency virus type 1 gag-pol frameshifting is dependent on mRNA secondary structure: demonstration by expression in vivo, J. Virol., 66, 5147–5151.

    PubMed  CAS  Google Scholar 

  34. Ashorn, P., McQuade, T. J., Thaisrivongs, S., et al. (1990) An inhibitor of the protease blocks maturation of human and simian immunodeficiency viruses and spread of infection, Proc. Natl. Acad. Sci. U.S.A., 87, 7472–7476.

    PubMed  CAS  Google Scholar 

  35. Miller, M., Jaskolski, M., Rao, J. K., et al. (1989) Crystal structure of retroviral protease proves relationship to aspartic protease family, Nature, 337, 576–579.

    PubMed  CAS  Google Scholar 

  36. Navia, M. A., Fitzgerald, P. M., McKeever, B. M., et al. (1989) Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1, Nature, 337, 615–620.

    PubMed  CAS  Google Scholar 

  37. Zack, J. A., Arrigo, S. J., Weitsman, S. R., et al. (1990) HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a liable, latent viral structure, Cell, 61, 213–222.

    PubMed  CAS  Google Scholar 

  38. Harrich, D., Ulich, C., and Gaynor, R. B. (1996) A critical role for the TAR element in promoting efficient human immunodeficiency virus type 1 reverse transcription, J. Virol., 70, 4017–4027.

    PubMed  CAS  Google Scholar 

  39. Kohlstaedt, L. A., Wang, J., Friedman, J. M., Rice, P. A., and Steitz, T. A. (1992) Crystal structure at 3.5 Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor, Science, 256, 1783–1790.

    PubMed  CAS  Google Scholar 

  40. Bushman, F. D., Fujiwara, T., and Craigie, R. (1990) Retroviral DNA integration directed by HIV integration protein in vitro, Science, 249, 1555–1558.

    PubMed  CAS  Google Scholar 

  41. Pryciak, P. M. and Varmus, H. E. (1992) Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection, Cell, 69, 769–780.

    PubMed  CAS  Google Scholar 

  42. Pruss, D., Bushman, F. D., and Wolffe, A. P. (1994) Human immunodeficiency virus integrase directs integration to sites of severe DNA distortion within the nucleosome core, Proc. Natl. Acad. Sci. U.S.A., 91, 5913–5917.

    PubMed  CAS  Google Scholar 

  43. Bushman, F. D. (1994) Tethering human immunodeficiency virus 1 integrase to a DNA site directs integration to nearby sequences, Proc. Natl. Acad. Sci. U.S.A., 91, 9233–9237.

    PubMed  CAS  Google Scholar 

  44. Wiskerchen, M. and Muesing, M. A. (1995) Human immunodeficiency virus type 1 integrase: effects of mutations on viral ability to integrate, direct viral expression from unintegrated viral DNA templates, and sustain viral propagation in primary cells, J. Virol., 69, 376–386.

    PubMed  CAS  Google Scholar 

  45. Capon, D. J. and Ward, R. H. (1991) The CD-4-gp120 interaction and AIDS pathogenesis, Annu. Rev. Immunol., 9, 649–678.

    PubMed  CAS  Google Scholar 

  46. Bernstein, H. B., Tucker, S. P., Kar, S. R., et al. (1995) Oligomerization of the hydrophobic heptad repeat of gp41, J. Virol., 69, 2745–2750.

    PubMed  CAS  Google Scholar 

  47. Landau, N. R., Warton, M., and Littman, D. R. (1988) The envelope glycoprotein of the human immunodeficiency virus binds to the immunoglobulin-like domain of CD4, Nature, 334, 159–162.

    PubMed  CAS  Google Scholar 

  48. Kwong, P. D., Wyatt, R., Robinson, J., Sweet, R. W., Sodroski, J, and Hendrickson, W. A. (1998) Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody, Nature, 393, 648–659.

    PubMed  CAS  Google Scholar 

  49. Hwang, S. S., Boyle, T. J., Lyerly, H. K., and Cullen, B. R. (1991) Identification of the envelope V3 loop as the primary determinant of cell tropism in HIV-1, Science, 253, 71–74.

    PubMed  CAS  Google Scholar 

  50. Feng, Y., Broder, C. C., Kennedy, P. E., et al. (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor, Science, 272, 872–877.

    PubMed  CAS  Google Scholar 

  51. Deng, H., Liu, R., Ellmeier, W., et al. (1996) Identification of a major co-receptor for primary isolates of HIV-1, Nature, 381, 661–666.

    PubMed  CAS  Google Scholar 

  52. Goudsmit, J., Debouck, C., Meloen, R. H., et al. (1988) Human immunodeficiency virus type 1 neutralization epitope with conserved architecture elicit early type-specific antibodies in experimentally infected chimpanzees, Proc. Natl. Acad. Sci. U.S.A., 85, 4478–4482.

    PubMed  CAS  Google Scholar 

  53. Geijtenbeek, T. B., Kwon, D. S., Torensma, R., van Vliet, S. J., van Duijnhoven, G. C., Middel, J., Cornelissen, I. L., Nottet, H. S., KewalRamani, V. N., Littman, D. R., Figdor, C. G., and van Kooyk, Y. (2000) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells, Cell, 100, 587–597.

    PubMed  CAS  Google Scholar 

  54. Camerini, D. and Seed, B. (1990) A CD4 domain important for HIV-mediated syncytium formation lies outside the virus binding site, Cell, 60, 747–754.

    PubMed  CAS  Google Scholar 

  55. Ruben, S., Perkins, A., Purcell, R., et al. (1989) Structural and functional characterization of human immunodeficiency virus tat protein, J. Virol., 63, 1–8.

    PubMed  CAS  Google Scholar 

  56. Feng, S. and Holland, E. C. (1988) HIV-1 tat trans-activation requires the loop sequence within tar, Nature, 334, 65–167.

    Google Scholar 

  57. Roy, S., Delling, U., Chen, C. H., et al. (1990) A bulge structure in HIV-1 TAR RNA is required for Tat binding and Tat-mediated trans-activation, Genes Dev., 4, 1365.

    PubMed  CAS  Google Scholar 

  58. Kao, S. Y., Calman, A. F., Luciw, P. A., et al. (1987) Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product, Nature, 330, 489–493.

    PubMed  CAS  Google Scholar 

  59. Zhou, Q. and Sharp, P. A. (1996) Tat-SF1: cofactor for stimulation of transcriptional elongation by HIV-1 Tat, Science, 274(5287), 605–610.

    PubMed  CAS  Google Scholar 

  60. Zhu, Y., Pe’ery, T., Peng, J., Ramanathan, Y., Marshall, N., Marshall, T., Amendt, B., Mathews, M. B., and Price, D. H. (1997) Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro, Genes Dev., 11, 2622–2632.

    PubMed  CAS  Google Scholar 

  61. Wei, P., Garber, M. E., Fang, S. M., Fischer, W. H., and Jones, K. A. (1998) A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA, Cell, 92, 451–462.

    PubMed  CAS  Google Scholar 

  62. Brother, M. B., Chang, H. K., Lisziewicz, J., et al. (1996) Block of Tat mediated transactivation of tumor necrosis factor beta gene expression by polymeric-TAR decoys, Virology, 222(1), 252–256.

    PubMed  CAS  Google Scholar 

  63. Rasty, S., Thatikunta, P., Gordon, J., et al. (1996) Human immunodeficiency virus tat gene transfer to the murine central nervous system using a replication-defective herpes simplex virus vector stimulates transforming growth factor beta 1 gene expression, Proc. Natl. Acad. Sci. U.S.A., 93, 6073–6078.

    PubMed  CAS  Google Scholar 

  64. Sastry, K. J., Marin, M. C., Nehete, P. N., et al. (1996) Expression of human immunodeficiency virus type I tat results in down-regulation of bcl-2 and induction of apoptosis in hematopoietic cells, Oncogene, 13, 487–493.

    PubMed  CAS  Google Scholar 

  65. Sharma, V., Xu, M., Ritter, L. M., et al. (1996) HIV-1 tat induces the expression of a new hematopoietic cell-specific transcription factor and downregulates MIP-1 alpha gene expression in activated T cells, Biochem. Biophys. Res. Commun., 223, 526–533.

    PubMed  CAS  Google Scholar 

  66. Zapp, M. L. and Green, M. R. (1989) Sequence-specific RNA binding by the HIV-1 Rev protein, Nature, 342, 714–716.

    PubMed  CAS  Google Scholar 

  67. Kim, S. Y., Byrn, R., Groopman, J., et al. (1989) Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection: evidence for differential gene expression, J. Virol., 9(63), 3708–3713.

    Google Scholar 

  68. Malim, M. H., Hauber, J., Le, S. Y., et al. (1989) The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA, Nature, 338(6212), 254–257.

    PubMed  CAS  Google Scholar 

  69. Bartel, D. P., Zapp, M. L., Green, M. R., et al. (1991) HIV-1 Rev regulation involves recognition of non-Watson-Crick base pairs in viral RNA, Cell, 67, 529–536.

    PubMed  CAS  Google Scholar 

  70. Felber, B. K., Drysdale, C. M., and Pavlakis, G. N. (1990) Feedback regulation of human immunodeficiency virus type 1 expression by the Rev protein, J. Virol., 64, 3734–3741.

    PubMed  CAS  Google Scholar 

  71. Zapp, M. L., Hope, T. J., Parslow, T. G., et al. (1991) Oligomerization and RNA binding domains of the type 1 human immunodeficiency virus Rev protein: a dual function for an arginine-rich binding motif, Proc. Natl. Acad. Sci. U.S.A., 88, 7734–7738.

    PubMed  CAS  Google Scholar 

  72. Malim, M. H., Bohnlein, S., Hauber, J., et al. (1989) Functional dissection of the HIV-1 Rev trans-activator-derivation of a trans-dominant repressor of Rev function, Cell, 58, 205–214.

    PubMed  CAS  Google Scholar 

  73. Hope, T. J., McDonald, D., Huang, X. J., et al. (1990) Mutational analysis of the human immunodeficiency virus type 1 Rev transactivator: essential residues near the amino terminus, J. Virol., 64, 5360–5366.

    PubMed  CAS  Google Scholar 

  74. Wen, W., Meinkoth, J. L., Tsien, R. Y., et al. (1995) Identification of a signal for rapid export of proteins from the nucleus, Cell, 82, 463–473.

    PubMed  CAS  Google Scholar 

  75. Fischer, U., Huber, J., Boelens, W. C., et al. (1995) The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs, Cell, 82, 475–483.

    PubMed  CAS  Google Scholar 

  76. Hope, T. J., Klein, N. P., Elder, M. E., and Parslow, T. G. (1992) Trans-dominant inhibition of human immunodeficiency virus type 1 Rev occurs through formation of inactive protein complexes, J. Virol., 66, 1849–1855.

    PubMed  CAS  Google Scholar 

  77. Garcia, J. V. and Miller, A. D. (1992) Downregulation of cell surface CD4 by nef, Res. Virol., 143, 52–55.

    PubMed  CAS  Google Scholar 

  78. Aiken, C., Konner, J., Landau, N. R., et al. (1994) Nef induces CD4 endocytosis: requirement for a critical dileucine motif in the membrane-proximal CD4 cytoplasmic domain, Cell, 76, 853–864.

    PubMed  CAS  Google Scholar 

  79. Lama, J., Mangasarian, A., and Trono, D. (1999) Cell-surface expression of CD4 reduces HIV-1 infectivity by blocking Env incorporation in a Nef-and Vpu-inhibitable manner, Curr. Biol., 9, 622–631.

    PubMed  CAS  Google Scholar 

  80. Ross, T. M., Oran, A. E., and Cullen, B. R. (1999) Inhibition of HIV1 progeny virion release by cell-surface CD4 is relieved by expression of the viral Nef protein, Curr. Biol., 9, 613–621.

    PubMed  CAS  Google Scholar 

  81. Schwartz, O., Marechal, V., Le Gall, S., et al. (1996) Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein, Nat. Med., 2, 338–342.

    PubMed  CAS  Google Scholar 

  82. Luria, S., Chambers, I., and Berg, P. (1991) Expression of the type 1 human immunodeficiency virus Nef protein in T cells prevents antigen receptor-mediated induction of interleukin 2 mRNA, Proc. Natl. Acad. Sci. U.S.A., 88, 5326–5330.

    PubMed  CAS  Google Scholar 

  83. Skowronski, J., Parks, D., and Mariani, R. (1993) Altered T cell activation and development in transgenic mice expressing the HIV-1 nef gene, EMBO J., 12, 703–713.

    PubMed  CAS  Google Scholar 

  84. Baur, A. S., Sawai, E. T., Dazin, P., et al. (1994) HIV-1 Nef leads to inhibition or activation of T cells depending on its intracellular localization, Immunity, 1, 373–384.

    PubMed  CAS  Google Scholar 

  85. Miller, M. D., Warmerdam, M. T., Gaston, I., et al. (1994) The human immunodeficiency virus-1 nef gene product: a positive factor for viral infection and replication in primary lymphocytes and macrophages, J. Exp. Med., 179, 101–113.

    PubMed  CAS  Google Scholar 

  86. Pandori, M. W., Fitch, N. J., Craig, H. M., et al. (1996) Producercell modification of human immunodeficiency virus type 1: nef is a virion protein, J. Virol., 70, 4283–4290.

    PubMed  CAS  Google Scholar 

  87. Schwartz, O., Marechal, V., Danos, O., et al. (1995) Human immunodeficiency virus type 1 Nef increases the efficiency of reverse transcription in the infected cell, J. Virol., 69, 4053–4059.

    PubMed  CAS  Google Scholar 

  88. Goldsmith, M. A., Warmerdam, M. T., Atchison, R. E., et al. (1995) Dissociation of the CD4 downregulation and viral infectivity enhancement functions of human immunodeficiency virus type 1 Nef, J. Virol., 69, 4112–4121.

    PubMed  CAS  Google Scholar 

  89. Kestler, H. W., III, Ringler, D. J., Mori, K., et al. (1991) Importance of the nef gene for maintenance of high virus loads and for development of AIDS, Cell, 65, 651–662.

    PubMed  CAS  Google Scholar 

  90. Baba, T. W., Jeong, Y. S., Pennick, D., et al. (1995) Pathogenicity of live, attenuated SIV after mucosal infection of neonatal macaques, Science, 267, 1820–1825.

    PubMed  CAS  Google Scholar 

  91. Collins, K. L. and Nabel, G. J. (1999) Naturally attenuated HIV – lessons for AIDS vaccines and treatment, N. Engl. J. Med., 340, 1756–1757.

    PubMed  CAS  Google Scholar 

  92. Cohen, E. A., Dehni, G., Sodroski, J. G., et al. (1990) Human immunodeficiency virus vpr product is a virion-associated regulatory protein, J. Virol., 64, 3097–3099.

    PubMed  CAS  Google Scholar 

  93. Heinzinger, N. K., Bukinsky, M. I., Haggerty, S. A., et al. (1994) The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells, Proc. Natl. Acad. Sci. U.S.A., 91, 7311–7315.

    PubMed  CAS  Google Scholar 

  94. Vodicka, M. A., Koepp, D. M., Silver, P. A., and Emerman, M. (1998) HIV-1 Vpr interacts with the nuclear transport pathway to promote macrophage infection, Genes Dev., 12(2), 175–185.

    PubMed  CAS  Google Scholar 

  95. Rogel, M. E., Wu, L. I., and Emerman, M. (1995) The human immunodeficiency virus type 1 vpr gene prevents cell proliferation during chronic infection, J. Virol., 69, 882–888.

    PubMed  CAS  Google Scholar 

  96. Jowett, J. B., Planelles, V., Poon, B., et al. (1995) The human immunodeficiency virus type 1 vpr gene arrests infected T cells in the G2 + M phase of the cell cycle, J. Virol., 69, 6304–6313.

    PubMed  CAS  Google Scholar 

  97. Braaten, D., Franke, E. K., and Luban, J. (1995) Human immunodeficiency virus type 1 Vpr arrests the cell cycle in G2 by inhibiting the activation of p34cdc2-cyclin B, J. Virol., 69, 6859–6864.

    PubMed  Google Scholar 

  98. He, J., Choe, S., Walker, R., et al. (1995) Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity, J. Virol., 69, 6705–6711.

    PubMed  CAS  Google Scholar 

  99. Starcich, B., Ratner, L., Josephs, S. F., et al. (1985) Characterization of long terminal repeat sequences of HTLV-III, Science, 227, 538–540.

    PubMed  CAS  Google Scholar 

  100. Bouhamdan, M., Benichou, S., Rey, F., et al. (1996) Human immunodeficiency virus type 1 Vpr protein binds to the uracil DNA glycosylase DNA repair enzyme, J. Virol., 70, 697–704.

    PubMed  CAS  Google Scholar 

  101. Steagall, W. K., Robek, M. D., Perry, S. T., et al. (1995) Incorporation of uracil into viral DNA correlates with reduced replication of EIAV in macrophages, Virology, 10, 302–313.

    Google Scholar 

  102. Sato, A., Igarashi, H., Adachi, A., et al. (1990) Identification and localization of vpr gene product of human immunodeficiency virus type 1, Virus Genes, 4, 303–312.

    PubMed  CAS  Google Scholar 

  103. Schwartz, S., Felber, B. K., Fenyo, E. M., et al. (1990) Env and Vpu proteins of human immunodeficiency virus type 1 are produced from multiple bicistronic mRNAs, J. Virol., 64, 5448–5456.

    PubMed  CAS  Google Scholar 

  104. Schubert, U., Bour, S., Ferrer-Montiel, A. V., et al. (1996) The two biological activities of human immunodeficiency virus type 1 Vpu protein involve two separable structural domains, J. Virol., 70, 809–819.

    PubMed  CAS  Google Scholar 

  105. Willey, R. L., Maldarelli, F., Martin, M. A., et al. (1992) Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4, J. Virol., 66(12), 7193–7200.

    PubMed  CAS  Google Scholar 

  106. Klimkait, T., Strebel, K., Hoggan, M. A., et al. (1990) The human immunodeficiency virus type 1-specific protein vpu is required for efficient virus maturation and release, J. Virol., 64, 621–629.

    PubMed  CAS  Google Scholar 

  107. Strebel, K., Daugherty, D., Clouse, K., et al. (1987) The HIV A(sor) gene product is essential for virus infectivity, Nature, 328, 728–730.

    CAS  Google Scholar 

  108. Liu, H., Wu, X., Newman, M., et al. (1995) The Vif protein of human and simian immunodeficiency viruses is packaged into virions and associates with viral core structures, J. Virol., 69, 7630–7638.

    PubMed  CAS  Google Scholar 

  109. von Schwedler, U., Song, J., Aiken, C., et al. (1993) Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells, J. Virol., 67, 4945–4955.

    Google Scholar 

  110. Camaur, D. and Trono, D. (1996) Characterization of human immunodeficiency virus type 1 Vif particle incorporation, J. Virol., 70, 6106–6111.

    PubMed  CAS  Google Scholar 

  111. Simon, J. H., Gaddis, N. C., Fouchier, R. A., and Malim, M. H. (1998) Evidence for a newly discovered cellular anti-HIV-1 phenotype, Nat. Med., 4, 1397–1400.

    PubMed  CAS  Google Scholar 

  112. Simon, J. H., Miller, D. L., Fouchier, R. A., Soares, M. A., Peden, K. W., and Malim, M. H. (1998) The regulation of primate immunodeficiency virus infectivity by Vif is cell species restricted: a role for Vif in determining virus host range and cross-species transmission, EMBO J., 17, 1259–1267.

    PubMed  CAS  Google Scholar 

  113. Hoglund, S., Ohagen, A., Lawrence, K., et al. (1994) Role of vif during packing of the core of HIV-1, Virology, 201(2), 349–355.

    PubMed  CAS  Google Scholar 

  114. Schwartz, S., Felber, B. K., Benko, D. M., et al. (1990) Cloning and functional analysis of multiply spliced mRNA species of human immunodeficiency virus type 1, J. Virol., 4, 2519–2529.

    Google Scholar 

  115. Starcich, B., Ratner, L., Josephs, S. F., et al. (1985) Characterization of long terminal repeat sequences of HTLV-III, Science, 227, 538–540.

    PubMed  CAS  Google Scholar 

  116. Nabel, G. and Baltimore, D. (1987) An inducible transcription factor activates expression of human immunodeficiency virus in T cells, Nature, 326, 711–713.

    PubMed  CAS  Google Scholar 

  117. Okamoto, T., Matsuyama, T., Mori, S., et al. (1989) Augmentation of human immunodeficiency virus type 1 gene expression by tumor necrosis factor alpha, AIDS Res. Hum. Retroviruses, 5, 131–138.

    PubMed  CAS  Google Scholar 

  118. Kobayashi, N., Hamamoto, Y., Koyanagi, Y., et al. (1989) Effect of interleukin-1 on the augmentation of human immunodeficiency virus gene expression, Bioch. Biophys. Res. Commun., 165, 715–721.

    CAS  Google Scholar 

  119. Garcia, J. A., Harrich, D., Soultanakis, E., et al. (1989) Human immunodeficiency virus type 1 LTR TATA and TAR region sequences required for transcriptional regulation, EMBO J., 8, 765–778.

    PubMed  CAS  Google Scholar 

  120. Sheridan, P. L., Sheline, C. T., Cannon, K., et al. (1995) Activation of the HIV-1 enhancer by the LEF-1 HMG protein on nucleosome-assembled DNA in vitro, Genes Dev., 9, 2090–2104.

    PubMed  CAS  Google Scholar 

  121. Sheldon, M., Ratnasabapathy, R., and Hernandez, N. (1993) Characterization of the inducer of short transcripts, a human immunodeficiency virus type 1 transcriptional element that activates the synthesis of short RNAs, Mol. Cell Biol., 13, 1251–1263.

    PubMed  CAS  Google Scholar 

  122. Schwartz, S., Felber, B. K., and Pavlakis, G. N. (1992) Mechanism of translation of monocistronic and multicistronic human immunodeficiency virus type 1 mRNAs, Mol. Cell Biol., 12, 207–212.

    PubMed  CAS  Google Scholar 

  123. Wyatt, R. and Sodroski, J. (1998) The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens, Science, 280, 1884–1888.

    PubMed  CAS  Google Scholar 

  124. Berger, E. A., Murphy, P. M., and Farber, J. M. (1999) Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease, Annu. Rev. Immunol., 17, 657–700.

    PubMed  CAS  Google Scholar 

  125. Unutmaz, D., Kewalramani, V. N., and Littman, D. R. (1998) G protein-coupled receptors in HIV and SIV entry: new perspectives on lentivirus-host interactions and on the utility of animal models, Semin. Immunol., 10, 225–236.

    PubMed  CAS  Google Scholar 

  126. Marx, P. A. and Chen, Z. W. (1998) The function of simian chemokine receptors in the replication of SIV, Semin. Immunol., 10, 215–223.

    PubMed  CAS  Google Scholar 

  127. Feng, Y., Broder, C. C., Kennedy, P. E., and Berger, E. A. (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor, Science, 272, 872–877.

    PubMed  CAS  Google Scholar 

  128. Levy, J. A., Mackewicz, C. E., and Barker, E. (1996) Controlling HIV pathogenesis: the role of the noncytotoxic anti-HIV response of CD8(+) T cells, Immunol. Today, 17, 217–224.

    PubMed  CAS  Google Scholar 

  129. Cocchi, F., DeVico, A. L., Garzino-Demo, A., Arya, S. K., Gallo, R. C., and Lusso, P. (1995) Identification of RANTES, MIP-1α, and MIP-1β as the major HIV-suppressive factors produced by CD8 + T cells, Science, 270, 1811–1815.

    PubMed  CAS  Google Scholar 

  130. Samson, M., Labbe, O., Mollereau, C., Vassart, G., and Parmentier M. (1996) Molecular cloning and functional expression of a new human CC-chemokine receptor gene, Biochemistry, 35, 3362–3367.

    PubMed  CAS  Google Scholar 

  131. Combadiere, C., Ahuja, S. K., Tiffany, H. L., and Murphy, P. M. (1996) Cloning and functional expression of CC CKR5, a human monocyte CC chemokine receptor selective for MIP-1α MIP-1β, and RANTES, J. Leukocyte Biol. 60, 147–152.

    PubMed  CAS  Google Scholar 

  132. Raport, C. J., Gosling, J., Schweickart, V. L., Gray, P. W., and Charo, I. F. (1996) Molecular cloning and functional characterization of a novel human CC chemokine receptor (CCR5) for RANTES, MIP-1β, and MIP-1α J. Biol. Chem., 271, 17161–17166.

    PubMed  CAS  Google Scholar 

  133. Deng, H. K., Liu, R., Ellmeier, W., Choe, S., Unutmaz, D., Burkhart, M., Di Marzio, P., Marmon, S., Sutton, R. E., Hill, C. M., Davis, C. B., Peiper, S. C., Schall, T. J., Littman, D. R., and Landau, N. R. (1996) Identification of a major co-receptor for primary isolates of HIV-1, Nature, 381, 661–666.

    PubMed  CAS  Google Scholar 

  134. Dragic, T., Litwin, V., Allaway, G. P., Martin, S. R., Huang, Y. X., Nagashima, K. A., Cayanan, C., Maddon, P. J., Koup, R. A., Moore, J. P., and Paxton, W. A. (1996) HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5, Nature, 381, 667–673.

    PubMed  CAS  Google Scholar 

  135. Alkhatib, G., Combadiere, C., Broder, C. C., Feng, Y., Kennedy, P. E., Murphy, P. M., and Berger, E. A. (1996) CC CKR5: a RANTES, MIP-1α MIP-1β receptor as a fusion cofactor for macrophage-tropic HIV-1, Science, 272, 1955–1958.

    PubMed  CAS  Google Scholar 

  136. Choe, H., Farzan, M., Sun, Y., Sullivan, N., Rollins, B., Ponath, P. D., Wu, L., Mackay, C. R., Larosa, G., Newman, W., Gerard, N., Gerard, C., and Sodroski, J. (1996) The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates, Cell, 85, 1135–1148.

    PubMed  CAS  Google Scholar 

  137. Doranz, B. J., Rucker, J., Yi, Y. J., Smyth, R. J., Samson, M., Peiper, S. C., Parmentier, M., Collman, R. G., and Doms, R. W. (1996) A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors, Cell, 85, 1149–1158.

    PubMed  CAS  Google Scholar 

  138. Bleul, C. C., Farzan, M., Choe, H., Parolin, C., Clark-Lewis, I., Sodroski, J., and Springer, T. A. (1996) The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry, Nature, 382, 829–833.

    PubMed  CAS  Google Scholar 

  139. Oberlin, E., Amara, A., Bachelerie, F., Bessia, C., Virelizier, J. L., Arenzana-Seisdedos, F., Schwartz, O., Heard, J. M., Clark-Lewis, I., Legler, D. F., Loetscher, M., Baggiolini, M., and Moser, B. (1996) The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1, Nature, 382, 833–835.

    PubMed  CAS  Google Scholar 

  140. Brenchley, J. M., Price, D. A., and Douek, D. C. (2006) HIV disease: fallout from a mucosal catastrophe? Nat. Immunol., 7, 235–239.

    PubMed  CAS  Google Scholar 

  141. Brenchley, J. M., Schacker, T. W., Ruff, L. E., et al. (2004) CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract, J. Exp. Med., 200, 749–759.

    PubMed  CAS  Google Scholar 

  142. Guadalupe, M., Reay, E., Sankaran, S., et al. (2003) Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy, J. Virol., 77, 11708–11717.

    PubMed  CAS  Google Scholar 

  143. Li, Q., Duan, L., Estes, J. D., et al. (2005) Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells, Nature, 434, 1148–1152.

    PubMed  CAS  Google Scholar 

  144. Mattapallil, J. J., Douek, D. C., Hill, B., et al. (2005) Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection, Nature, 434, 1093–1097.

    PubMed  CAS  Google Scholar 

  145. Veazey, R. S., Demaria, M., Chalifoux, L. V., et al. (1998) Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection, Science, 280, 427–431.

    PubMed  CAS  Google Scholar 

  146. Haase, A. T. (2005) Perils at mucosal front lines for HIV and SIV and their hosts, Nat. Rev. Immunol., 5, 783–792.

    PubMed  CAS  Google Scholar 

  147. Picker, L. J. (2006) Immunopathogenesis of acute AIDS virus infection, Curr. Opin. Immunol., 18, 399–405.

    PubMed  CAS  Google Scholar 

  148. Arthos, J., Cicala, C., Martinelli, C., et al. (2008) HIV-1 envelope protein binds to and signals through integrin α4β7, the gut mucosal homing receptor for peripheral T cells, Nat. Immunol., 9, 301–309.

    PubMed  CAS  Google Scholar 

  149. von Andrian, U. H. and Mackay, C. R. (2000) T-cell function and migration. Two sides of the same coin, N. Engl. J. Med., 343, 1020–1034.

    Google Scholar 

  150. Wagner, N., LÖhler, J., Kunkel, E. J., et al. (1996) Critical role for β7 integrins in formation of the gut-associated lymphoid tissue, Nature, 382, 366–370.

    PubMed  CAS  Google Scholar 

  151. Domingo, E., Escarmis, C., Sevilla, N., et al. (1996) Basic concepts in RNA virus evolution, FASEB J., 10, 859–864.

    PubMed  CAS  Google Scholar 

  152. Coffin, J. M. (1992) Genetic diversity and evolution of retroviruses, Curr. Top. Microbiol. Immunol., 176, 143–164.

    PubMed  CAS  Google Scholar 

  153. Domingo, E. and Holland, J. J. (1997) RNA virus mutations and fitness for survival, Annu. Rev. Microbiol., 51, 151–178.

    PubMed  CAS  Google Scholar 

  154. Eigen, M. (1992) Steps Toward Life, Oxford University Press, Oxford, UK.

    Google Scholar 

  155. Eigen, M. (1993) The origins of genetic information: viruses as models, Gene 135, 37–47.

    PubMed  CAS  Google Scholar 

  156. Piatak, M., Jr., Saag, M. S., Yang, L. C., Clark, S. J., Kappes, J. C., Luk, K. C., Hahn, B. H., Shaw, G. M., and Lifson, J. D. (1993) High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR, Science, 259, 1749–1754.

    PubMed  CAS  Google Scholar 

  157. Wei, X., Ghosh, S. K., Taylor, M. E., Johnson, V. A., Emini, E. A., Deutsch, P., Lifson, J. D., Bonhoeffer, S., Nowak, M. A., Hahn, B. H., et al. (1995) Viral dynamics in human immunodeficiency virus type 1 infection, Nature, 373, 117–122.

    PubMed  CAS  Google Scholar 

  158. Ho, D. D., Neumann, A. U., Perelson, A. S., Chen, W., Leonard, J. M., and Markowitz, M. (1995) Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature, 373, 123–126.

    PubMed  CAS  Google Scholar 

  159. Perelson, A. S., Neumann, A. U., Markowitz, M., Leonard, J. M., and Ho, D. D. (1996) HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science, 271, 1582–1586.

    PubMed  CAS  Google Scholar 

  160. Coffin, J. M. (1995) HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy, Science, 267, 483–489.

    PubMed  CAS  Google Scholar 

  161. Leigh Brown, A. J. and Richman, D. D. (1997) HIV-1: gambling on the evolution of drug resistance? Nat. Med., 3, 268–271.

    CAS  Google Scholar 

  162. Leigh Brown, A. J. (1997) Analysis of the HIV-1 env gene sequences reveals evidence for a low effective number in the viral population, Proc. Natl. Acad. Sci. U.S.A., 94, 1862–1865.

    Google Scholar 

  163. Nijhuis, M., Boucher, C. A. B., Schipper, P., Leitner, T., Schuurman, R., and Albert, J. (1998) Stochastic processes strongly influence HIV-1 evolution during suboptimal protease-inhibitor therapy, Proc. Natl. Acad. Sci. U.S.A., 95(24), 14441–14446.

    PubMed  CAS  Google Scholar 

  164. Wedekind, J. E., Dance, G. S., Sowden, M. P., and Smith, H. C. (2003) Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business, Trends Genet., 19(4), 207–216.

    PubMed  CAS  Google Scholar 

  165. Cullen, B. R. (2006) Role and mechanism of action of the APOBEC3 protein family of antiretroviral resistance factors, J. Virol., 80(3), 1067–1076.

    PubMed  CAS  Google Scholar 

  166. Jarmuz, A., Chester, A., Bayliss, J., Gisbourne, J., Dunham, I., Scott, J., and Navaratnam, N. (2002) An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22, Genomics, 79, 285–296.

    PubMed  CAS  Google Scholar 

  167. Löchelt, M., Romen, F., Bastone, P., et al. (2005) The antiretroviral activity of APOBEC3 is inhibited by the foamy virus accessory Bet protein, Proc. Natl. Acad. Sci. U.S.A., 102, 7982–7987.

    PubMed  Google Scholar 

  168. Mariani, R., Chen, D., Schröfelbauer, B., et al. (2003) Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif, Cell, 114, 21–31.

    PubMed  CAS  Google Scholar 

  169. Bransteitter, R., Pham, P., Scharff, M. D., and Goodman, M. F. (2003) Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase, Proc. Natl. Acad. Sci. U.S.A., 100, 4102–4107.

    PubMed  CAS  Google Scholar 

  170. Alce, T. M. and Popik, W. (2004) APOBEC3G is incorporated into virus-like particles by a direct interaction with HIV-1 Gag nucleocapsid protein, J. Biol. Chem., 279, 34083–34086.

    PubMed  CAS  Google Scholar 

  171. Cen, S., Guo, F., Niu, M., et al. (2004) The interaction between HIV-1 Gag and APOBEC3G, J. Biol. Chem., 279, 33177–33184.

    PubMed  CAS  Google Scholar 

  172. Khan, M. A., Kao, S., Miyagi, E., et al.2005) Viral RNA is required for the association of APOBEC3G with human immunodeficiency virus type 1 nucleoprotein complexes, J. Virol., 79, 5870–5874.

    PubMed  CAS  Google Scholar 

  173. Luo, K., Liu, B., Xiao, Z., et al. (2004) Amino-terminal region of the human immunodeficiency virus type 1 nucleocapsid is required for human APOBEC3G packaging, J. Virol., 78, 11841–11852.

    PubMed  CAS  Google Scholar 

  174. Schäfer, A., Bogerd, H. P., and Cullen, B. R. (2004) Specific packaging of APOBEC3G into HIV-1 virions is mediated by the nucleocapsid domain of the gag polyprotein precursor, Virology, 328, 163–168.

    PubMed  Google Scholar 

  175. Zennou, V., Perez-Caballero, D., Göttlinger, H., and Bieniasz, P. D. (2004) APOBEC3G incorporation into human immunodeficiency virus type 1 particles, J. Virol., 78, 12058–12061.

    PubMed  CAS  Google Scholar 

  176. Svarovskaia, E. S., Xu, H., Mbisa, J. L., et al. (2004) Human apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) is incorporated into HIV-1 virions through interactions with viral and nonviral RNAs, J. Biol. Chem., 279, 35822–35828.

    PubMed  CAS  Google Scholar 

  177. Berkowitz, R. D., Ohagen, A., Hoglund, S., and Goff, S. P. (1995) Retroviral nucleocapsid domains mediate the specific recognition of genomic viral RNAs by chimeric Gag polyproteins during RNA packaging in vivo, J. Virol., 69, 6445–6456.

    PubMed  CAS  Google Scholar 

  178. Yu, X.-F. (2006) Innate cellular defenses of APOBEC3 cytidine deaminases and viral counter-defenses. Host factors, Curr. Opin. HIV AIDS, 1(3), 187–193.

    PubMed  Google Scholar 

  179. Chiu, Y.-L. (2007) The APOBEC3 cytidine deaminases: an innate defensive network opposing exogenous retroviruses and endogenous retroelements, Ann. Rev. Immunol., 26, 317–353.

    Google Scholar 

  180. Arriaga, M. E., Carr, J., Li, P., Wang, B., and Saksena, N. K. (2006) Interaction between HIV-1 and APOBEC3 sub-family of proteins, Curr. HIV Res., 4(4), 401–409.

    PubMed  CAS  Google Scholar 

  181. Goldschmidt, V., Bleiber, G., May, M., et al., and The Swiss HIV Cohort Study (2006) Role of common human TRIM5α variants in HIV-1 disease progression, Retrovirology, 3, 54.; doi: 10.1186/1742-4690-3-54.

    Google Scholar 

  182. Surridge, C. (2008) Innate immunity: getting in TRIM to fight retroviruses, Nat. Rev. Miciobiol., 6, 797

    CAS  Google Scholar 

  183. Nisole, S., Stoye, J. P., and Saib, A. (2005) TRIM family proteins: retroviral restriction and antiviral defence, Nat. Rev. Microbiol., 3, 799–808.

    PubMed  CAS  Google Scholar 

  184. Towers, G. J. (2006) Restriction of retroviruses by TRIM5 alpha, Future Virol., 1, 71–78.

    CAS  Google Scholar 

  185. Stremlau, M., Owens, C. M., Perron, M. J., Kiessling, M., Autissier, P., and Sodroski, J. (2004) The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys, Nature, 427, 848–853.

    PubMed  CAS  Google Scholar 

  186. Towers, G. J. (2007) The control of viral infection by tripartite motif proteins and cyclophilin A, Retrovirology, 4, 40; doi:10.1186/1742-4690-4-40.

    Google Scholar 

  187. Sawyer, S. L., Wu, L. I., Akey, J. M., Emerman, M., and Malik, H. S. (2006) High-frequency persistence of an impaired allele of the retroviral defense gene TRIM5alpha in humans, Curr. Biol., 16, 95–100.

    PubMed  CAS  Google Scholar 

  188. Speelmon, E. C., Livingston-Rosanoff, D., Li, S. S., et al. (2006) Genetic association of the antiviral restriction factor TRIM5alpha with human immunodeficiency virus type 1 infection, J. Virol., 80, 2463–2471.

    PubMed  CAS  Google Scholar 

  189. Stremlau, M., Perron, M., Lee, M., et al. (2006) Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor, Proc. Natl. Acad. Sci. U.S.A., 103, 5514–5519.

    PubMed  CAS  Google Scholar 

  190. Towers, G., Bock, M., Martin, S., Takeuchi, Y., Stoye, J. P., and Danos, O. (2000) A conserved mechanism of retrovirus restriction in mammals, Proc. Natl. Acad. Sci. U.S.A., 97, 12295–12299.

    PubMed  CAS  Google Scholar 

  191. Shibata, R., Sakai, H., Kawamura, M., Tokunaga, K., and Adachi, A. (1995) Early replication block of human immunodeficiency virus type 1 in monkey cells, J. Gen. Virol., 76, 2723–2730.

    PubMed  CAS  Google Scholar 

  192. Hofmann, W., Schubert, D., LaBonte, J., et al. (1999) Species-specific, postentry barriers to primate immunodeficiency virus infection, J. Virol., 73, 10020–10028.

    PubMed  CAS  Google Scholar 

  193. Towers, G., Collins, M., and Takeuchi, Y. (2002) Abrogation of Ref1 restriction in human cells, J. Virol., 76, 2548–2550.

    PubMed  CAS  Google Scholar 

  194. Besnier, C., Takeuchi, Y., and Towers, G. (2002) Restriction of lentivirus in monkeys, Proc. Natl. Acad. Sci. U.S.A., 99, 1920–11925.

    Google Scholar 

  195. Cowan, S., Hatziioannou, T., Cunningham, T., Muesing, M. A., Gottlinger, H. G., and Bieniasz, P. D. (2002) Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism, Proc. Natl. Acad. Sci. U.S.A., 99, 11914–11919.

    PubMed  CAS  Google Scholar 

  196. Keckesova, Z., Ylinen, L. M., and Towers, G. J. (2004) The human and African green monkey TRIM5alpha genes encode Ref1 and Lv1 retroviral restriction factor activities, Proc. Natl. Acad. Sci. U.S.A., 101, 10780–10785.

    PubMed  CAS  Google Scholar 

  197. Yap, M. W., Nisole, S., Lynch, C., and Stoye, J. P. (2004) Trim5alpha protein restricts both HIV-1 and murine leukemia virus, Proc. Natl. Acad. Sci. U.S.A., 101, 10786–10791.

    PubMed  CAS  Google Scholar 

  198. Hatziioannou, T., Perez-Caballero, D., Yang, A., Cowan, S., and Bieniasz, P. D. (2004) Retrovirus resistance factors Ref1 and Lv1 are species-specific variants of TRIM5alpha, Proc. Natl. Acad. Sci. U.S.A., 101, 10774–10779.

    PubMed  CAS  Google Scholar 

  199. Perron, M. J., Stremlau, M., Song, B., Ulm, W., Mulligan, R. C., and Sodroski, J. (2004) TRIM5alpha mediates the postentry block to N-tropic murine leukemia viruses in human cells, Proc. Natl. Acad. Sci. U.S.A., 101, 11827–11832.

    PubMed  CAS  Google Scholar 

  200. Asaoka, K., Ikeda, K., Hishinuma, T., Horie-Inoue, K., Takeda, S., and Inoue, S. (2005) A retrovirus restriction factor TRIM5alpha is transcriptionally regulated by interferons, Biochem. Biophys. Res. Commun., 338, 1950–1956.

    PubMed  CAS  Google Scholar 

  201. Borden, K. L., Lally, J. M., Martin, S. R., O’Reilly, N. J., Etkin, L. D., and Freemont, P. S. (1995) Novel topology of a zinc-binding domain from a protein involved in regulating early Xenopus development, EMBO J., 14, 5947–5956.

    PubMed  CAS  Google Scholar 

  202. Surridge, C. (2008) Innate immunity: getting in TRIM to fight retroviruses, Nat. Rev. Microbiol., 6, 797.

    CAS  Google Scholar 

  203. Xu, L., Yang, L., Moitra, P. K., et al. (2003) BTBD1 and BTBD2 colocalize to cytoplasmic bodies with the RBCC/tripartite motif protein, TRIM5delta, Exp. Cell Res., 288, 84–93.

    PubMed  CAS  Google Scholar 

  204. Perez-Caballero, D., Hatziioannou, T., Yang, A., Cowan, S., and Bieniasz, P. D. (2005) Human tripartite motif 5α domains responsible for retrovirus restriction activity and specificity, J. Virol., 79, 8969–8978.

    PubMed  CAS  Google Scholar 

  205. Mische, C. C., Javanbakht, H., Song, B., et al. (2005) Retroviral restriction factor TRIM5alpha is a trimer, J. Virol., 79, 14446–14450.

    PubMed  CAS  Google Scholar 

  206. Zhang, F., Hatziioannou, T., Perez-Caballero, D., Derse, D., and Bieniasz, P. D. (2006) Antiretroviral potential of human tripartite motif-5 and related proteins, Virology, 353(2), 369–409.

    Google Scholar 

  207. Yap, M. W., Nisole, S., and Stoye, J. P. (2005) A single amino acid change in the SPRY domain of human Trim5alpha leads to HIV-1 restriction, Curr. Biol., 15, 73–78.

    PubMed  CAS  Google Scholar 

  208. Stremlau, M., Perron, M. J., Welikala, S., and Sodroski, J. (2005) Species-specific variation in the B30.2(SPRY) domain of TRIM5alpha determines the potency of human immunodeficiency virus restriction, J. Virol., 79, 3139–3145.

    PubMed  CAS  Google Scholar 

  209. Passerini, L. D., Keckesova, Z., and Towers, G. J. (2006) Retroviral restriction factors Fv1 and TRM5α act independently and can compete for incoming virus before reverse transcription, J. Virol., 80, 2100–2105.

    PubMed  CAS  Google Scholar 

  210. Nethe, M., Berkhout, B., and van der Kuyl, A. C. (2005) Retroviral superinfection resistance, Retrovirology, 2, 52; doi: 10.1186/1742-4690-2-52.

    Google Scholar 

  211. Goff, S. P. (2004) Genetic control of retrovirus susceptibility in mammalian cells, Annu. Rev. Genet., 38, 61–85.

    PubMed  CAS  Google Scholar 

  212. Allen, T. M. and Altfeld, M. (2003) HIV-1 superinfection, J. Allergy Clin. Immunol., 112, 829–835.

    PubMed  Google Scholar 

  213. Doms, R. W. and Trono, D. (2000) The plasma membrane as a combat zone in the HIV battlefield, Genes Dev., 14, 2677–2688.

    PubMed  CAS  Google Scholar 

  214. Nisole, S. and Saib, A. (2004) Early steps of retrovirus replicative cycle, Retrovirology, 1, 9; doi: 10.1186/1742-4690-1-9.

    Google Scholar 

  215. Hoxie, J. A., Alpers, J. D., Rackowski, J. L., et al. (1986) Alterations in T4 (CD4) protein and mRNA synthesis in cells infected with HIV, Science, 234, 1123–1127.

    PubMed  CAS  Google Scholar 

  216. Salmon, P., Olivier, R., Riviere, Y., et al. (1988) Loss of CD4 membrane expression and CD4 mRNA during acute human immunodeficiency virus replication, J. Exp. Med., 168, 1953–1969.

    PubMed  CAS  Google Scholar 

  217. Le Guern, M. and Levy, J. A. (1992) Human immunodeficiency virus (HIV) type 1 can superinfect HIV-2-infected cells: pseudotype virions produced with expanded cellular host range, Proc. Natl. Acad. Sci. U.S.A., 89, 363–367.

    PubMed  CAS  Google Scholar 

  218. Oldridge, J. and Marsh, M. (1998) Nef – an adaptor adaptor? Trends Cell Biol., 8, 302–305.

    PubMed  CAS  Google Scholar 

  219. Lama, J. (2003) The physiological relevance of CD4 receptor down-modulation during HIV infection, Curr. HIV Res., 1, 167–184.

    PubMed  CAS  Google Scholar 

  220. Benson, R. E., Sanfridson, A., Ottinger, J. S., Doyle, C., and Cullen, B. R. (1993) Downregulation of cell-surface CD4 expression by simian immunodeficiency virus Nef prevents viral super infection, J. Exp. Med., 177, 1561–1566.

    PubMed  CAS  Google Scholar 

  221. Arganaraz, E. R., Schindler, M., Kirchhoff, F., Cortes, M. J., and Lama J. (2003) Enhanced CD4 down-modulation by late stage HIV-1 nef alleles is associated with increased Env incorporation and viral replication, J. Biol. Chem., 278, 33912–33919.

    PubMed  CAS  Google Scholar 

  222. Chenine, A. L., Sattentau, Q., and Moulard, M. (2000) Selective HIV-1-induced downmodulation of CD4 and coreceptors, Arch. Virol., 145, 455–471.

    PubMed  CAS  Google Scholar 

  223. Lusso, P., Cocchi, F., Balotta, C., et al. (1995) Growth of macrophage-tropic and primary human immunodeficiency virus type 1 (HIV-1) isolates in a unique CD4+ T-cell clone (PM1): failure to downregulate CD4 and to interfere with cell-line-tropic HIV-1, J. Virol., 69, 3712–3720.

    PubMed  CAS  Google Scholar 

  224. Shea, A., Sarr, D. A., Jones, N., et al. (2004) CCR5 receptor expression is down-regulated in HIV type 2 infection: implication for viral control and protection, AIDS Res. Hum. Retroviruses, 20, 630–635.

    PubMed  CAS  Google Scholar 

  225. Potash, M. J. and Volsky, D. J. (1998) Viral interference in HIV-1 infected cells, Rev. Med. Virol., 8, 203–211.

    PubMed  Google Scholar 

  226. Saha, K., Volsky, D. J., and Matczak, E. (1999) Resistance against syncytium-inducing human immunodeficiency virus type 1 (HIV-1) in selected CD4(+) T cells from an HIV-1-infected nonprogressor: evidence of a novel pathway of resistance mediated by a soluble factor(s) that acts after virus entry, J. Virol., 73, 7891–7898.

    PubMed  CAS  Google Scholar 

  227. Volsky, D. J., Simm, M., Shahabuddin, M., Li, G., Chao, W., and Potash, M. J. (1996) Interference to human immunodeficiency virus type 1 infection in the absence of downmodulation of the principal virus receptor, CD4, J. Virol., 70, 3823–3833.

    PubMed  CAS  Google Scholar 

  228. Federico, M., Nappi, F., Bona, R., D’Aloja, P., Verani, P., and Rossi, G. B. (1995) Full expression of transfected nonproducer interfering HIV-1 proviral DNA abrogates susceptibility of human He-La CD4+ cells to HIV, Virology, 206, 76–84.

    PubMed  CAS  Google Scholar 

  229. D’Aloja, P., Olivetta, E., Bona, R., et al. (1998) Gag, vif, and nef genes contribute to the homologous viral interference induced by a nonproducer human immunodeficiency virus type 1 (HIV-1) variant: identification of novel HIV-1-inhibiting viral protein mutants, J. Virol., 72, 4308–4319.

    PubMed  Google Scholar 

  230. Fackler, O. T., D’Aloja, P., Baur, A. S., Federico, M., and Peterlin, B. M. (2001) Nef from human immunodeficiency virus type 1(F12) inhibits viral production and infectivity, J. Virol., 75, 6601–6608.

    PubMed  CAS  Google Scholar 

  231. Tremblay, M., Numazaki, K., Li, X. G., Gornitsky, M., Hiscott, J., and Wainberg, A. (1990) Resistance to infection by HIV-1 of peripheral blood mononuclear cells from HIV-1-infected patients is probably mediated by neutralizing antibodies, J. Immunol., 145, 2896–2901.

    PubMed  CAS  Google Scholar 

  232. Shirazi, Y. and Pitha, P. M. (1992) Alpha interferon inhibits early stages of the human immunodeficiency virus type 1 replication cycle, J. Virol., 66, 1321–1328.

    PubMed  CAS  Google Scholar 

  233. Walker, C. M., Erickson, A. L., Hsueh, F. C., and Levy, J. A. (1991) Inhibition of human immunodeficiency virus replication in acutely infected CD4+ cells by CD8+ cells involves a noncytotoxic mechanism, J. Virol., 65, 5921–5927.

    PubMed  CAS  Google Scholar 

  234. Mackewicz, C. and Levy, J. A. (1992) CD8+ cell anti-HIV activity: nonlytic suppression of virus replication, AIDS Res. Hum. Retroviruses, 8, 1039–1050.

    PubMed  CAS  Google Scholar 

  235. Vella, C. and Daniels, R. S. (2003) CD8+ T-cell-mediated non-cytolytic suppression of human immuno-deficiency viruses, Curr. Drug Targets Infect. Disord., 3, 97–113.

    PubMed  CAS  Google Scholar 

  236. Ahmed, R. K., Biberfeld, G., and Thorstensson, R. (2005) Innate immunity in experimental SIV infection and vaccination, Mol. Immunol., 42, 251–258.

    PubMed  CAS  Google Scholar 

  237. Mackewicz, C. E., Blackbourn, D. J., and Levy, J. A. (1995) CD8+ T cells suppress human immunodeficiency virus replication by inhibiting viral transcription, Proc. Natl. Acad. Sci. U.S.A., 92, 2308–2312.

    PubMed  CAS  Google Scholar 

  238. Mackewicz, C. E., Patterson, B. K., Lee, S. A., and Levy, J. A. (2000) CD8(+) cell noncytotoxic anti-human immunodeficiency virus response inhibits expression of viral RNA but not reverse transcription or provirus integration, J. Gen. Virol., 81, 1261–1264.

    PubMed  CAS  Google Scholar 

  239. Mackewicz, C. E., Ortega, H. W., and Levy, J. A. (1991) CD8+ cell anti-HIV activity correlates with the clinical state of the infected individual, J. Clin. Invest., 87, 1462–1466.

    PubMed  CAS  Google Scholar 

  240. Mackewicz, C. E., Craik, C. S., and Levy, J. A. (2003) The CD8+ cell noncytotoxic anti-HIV response can be blocked by protease inhibitors, Proc. Natl. Acad. Sci. U.S.A., 100, 3433–3438.

    PubMed  CAS  Google Scholar 

  241. Barker, E., Bossart, K. N., Locher, C. P., Patterson, B. K., and Levy, J. A. (1996) CD8+ cells from asymptomatic human immunodeficiency virus-infected individuals suppress superinfection of their peripheral blood mononuclear cells, J. Gen. Virol., 77(Part 12), 2953–2962.

    PubMed  CAS  Google Scholar 

  242. Locher, C. P., Blackbourn, D. J., Barnett, S. W., et al. (1997) Superinfection with human immunodeficiency virus type 2 can reactivate virus production in baboons but is contained by a CD8 T cell antiviral response, J. Infect. Dis., 176, 948–959.

    PubMed  CAS  Google Scholar 

  243. Hohdatsu, T., Sasagawa, T., Yamazaki, A., et al. (2002) CD8+ T cells from feline immunodeficiency virus (FIV) infected cats suppress exogenous FIV replication of their peripheral blood mononuclear cells in vitro, Arch. Virol., 147, 1517–1529.

    PubMed  CAS  Google Scholar 

  244. Otten, R. A., Ellenberger, D. L., Adams, D. R., et al. (1999) Identification of a window period for susceptibility to dual infection with two distinct human immunodeficiency virus type 2 isolates in a Macaca nemestrina (pig-tailed macaque) model, J. Infect. Dis., 180, 673–684

    PubMed  CAS  Google Scholar 

  245. Fultz, P. N. (2004) HIV-1 superinfections: omens for vaccine efficacy? AIDS, 18, 115–119.

    PubMed  Google Scholar 

  246. Chun, T. W., Justement, J. S., Moir, S., et al. (2001) Suppression of HIV replication in the resting CD4+ T cell reservoir by autologous CD8+ T cells: implications for the development of therapeutic strategies, Proc. Natl. Acad. Sci. U.S.A., 98, 253–258.

    PubMed  CAS  Google Scholar 

  247. Blackbourn, D. J., Mackewicz, C. E., Barker, E., et al. (1996) Suppression of HIV replication by lymphoid tissue CD8+ cells correlates with the clinical state of HIV-infected individuals, Proc. Natl. Acad. Sci. U.S.A., 93(23), 13125–13130.

    PubMed  CAS  Google Scholar 

  248. Kostense, S., Vandenberghe, K., Joling, J., et al. (2002) Persistent numbers of tetramer+ CD8(+) T cells, but loss of interferon-gamma+ HIV-specific T cells during progression to AIDS, Blood, 99, 2505–2511.

    PubMed  CAS  Google Scholar 

  249. Brinchmann, J. E., Albert, J., and Vartdal, F. (1999) Few infected CD4+ T cells but a high proportion of replication-competent provirus copies in asymptomatic human immunodeficiency virus type 1 infection, J. Virol., 65, 2019–2023.

    Google Scholar 

  250. Yerly, S., Chamot, E., Hirschel, B., and Perrin, L. H. (1992) Quantitation of human immunodeficiency virus provirus and circulating virus: relationship with immunologic parameters, J. Infect. Dis., 166, 269–276.

    PubMed  CAS  Google Scholar 

  251. Jung, A., Maier, R., Vartanian, J. P. O., et al. (2002) Recombination multiply infected spleen cells in HIV patients, Nature, 418, 144.

    PubMed  CAS  Google Scholar 

  252. World Health Organization, Interagency Surveillance and Survey Working Group, Office of the U.S. Global AIDS Coordinator, U.S. Department of State; Division of Global AIDS, National Center for HIV, Viral Hepatitis, STDs, and Tuberculosis Prevention (CDC) (2006) The global HIV/AIDS pandemic, 2006, Morb. Mortal. Wkly Rep., 55(31), 841–844.

    Google Scholar 

  253. Centers for Disease Control and Prevention (1981) Pneumocystis Pneumonia– Los Angeles, Morb. Mortal. Wkly Rep., 30(21), 250–252.

    Google Scholar 

  254. Joint United Nations Programme on HIV/AIDS (UNAIDS) (2007) 2007 AIDS epidemic update. Geneva, Switzerland: UNAIDS (http://www.unaids.org/en/KnowledgeCentre/HIVData/EpiUpdate/EpiUpdArchive/2007/2007default.asp).

  255. World Health Organization (2006) Joint United Nations Programme on antiretroviral therapy: a report on “3 by 5” and beyond (http://www.who.int/hiv/fullreport_en_highres.pdf).

  256. Kumar, R., Jha, P., Arora, P., et al. (2006) Trends in HIV-1 in young adults in south India from 2000 to 2004: a prevalence study, Lancet, 367, 1164–1172.

    PubMed  Google Scholar 

  257. Centers for Disease Control and Prevention (2006) HIV prevalence among men who have sex with men – Thailand, 2003 and 2005, Morb. Mortal. Wkly Rep., 55(31), 844–848.

    Google Scholar 

  258. Centers for Disease Control and Prevention (2005) Trends in HIV/AIDS diagnosis – 33 states, 2001–2004, Morb. Mortal. Wkly Rep., 54(45), 1149–1153.

    Google Scholar 

  259. Corea, G. (1992) The Invisible Epidemic: The Story of Women and AIDS, HarperCollins, New York.

    Google Scholar 

  260. WISQARS (2005) Leading causes of death reports, 1999–2004 (http://webappa.cdc.gov/sasweb/ncipc/leadcaus10.html).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassil St. Georgiev PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Georgiev, V.S. (2009). Introduction. In: Georgiev, V.S. (eds) National Institute of Allergy and Infectious Diseases, NIH. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-60327-297-1_27

Download citation

Publish with us

Policies and ethics