Skip to main content

Part of the book series: Infectious Disease ((ID))

  • 1220 Accesses

Malaria is an infectious disease caused by parasites of the genus Plasmodiumthat are transmitted by mosquitoes. The illness results in recurrent attacks of chills and fever and is characterized by high morbidity and mortality rates. Of the four known human Plasmodium species, Plasmodium falciparum is the most lethal. Although malaria has been virtually eradicated in regions with temperate climates, it is still prevalent in the tropical and subtropical countries in Africa, Asia, the Middle East, and Central and South America. Evolving strains of drug-resistant parasites and insecticide-resistant mosquitoes continue to make the threat of malaria a global health peril, especially in children in sub-Saharan Africa. One of the most prevalent diseases worldwide, malaria affects more than 400 million people and causes more than 2.5 million deaths every year (1). Approximately 10,000 to 30,000 travelers from industrialized countries are expected to contract malaria each year (2). The incidence of imported malaria is increasing, and the case fatality rate remains high despite progress in intensive care and antimalarial treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sachs, J. and Malaney, P. (2002) The economic and social burden of malaria, Nature, 415, 680–685.

    Article  PubMed  CAS  Google Scholar 

  2. Kain, K. C. and Keystone, J. S. (1998) Malaria in travelers. Epidemiology, disease, and prevention, Infect. Dis. Clin. North Am., 12, 267–284.

    Article  PubMed  CAS  Google Scholar 

  3. Trampuz, A., Jereb, M., Muzlovic, I., and Prabhu, R. M. (2003) Clinical review: severe malaria, Crit. Care, 7, 315–323.

    Article  PubMed  Google Scholar 

  4. Llinás, M. and DeRisi, J. L. (2004) Pernicious plans revelead: Plasmodium falciparum genome wide expression analysis, Curr. Opin. Microbiol., 7, 382–387.

    Google Scholar 

  5. Bannister, L. H., Hopkins, J. M., Fowler, R. E., Krishna, S., and Mitchell, G. H. (2000) A brief illustrated guide to the ultrastructure of Plasmodium falciparum asexual blood stages, Parasitol. Today, 16, 427–433.

    Article  PubMed  CAS  Google Scholar 

  6. Garcia, L. S. (2001) Malaria and babesiosis. In: Diagnostic Medical Parasitology (Garcia, L. S., ed.), American Society of Microbiology, Washington, DC, pp. 159–204.

    Google Scholar 

  7. Nacher, M., Singhasivanon, P., Silachamroon, U., Treeprasertsuk, S., Tosukhowong, T., Vannaphan, S., Gay, F., Mazier, D., and Looareesuwan, S. (2002) Decreased hemoglobin concentrations, hyperparasitemia, and severe malaria are associated with increased Plasmodium falciparum gametocyte carriage, J. Parasitol., 88(1), 97–101.

    PubMed  Google Scholar 

  8. Gratzer, W. B. and Dluzewski, A. R. (1993) The red blood cell and malaria parasite invasion, Semin. Hematol., 30, 232–247.

    PubMed  CAS  Google Scholar 

  9. Aubouy, A., Migot-Nabias, F., and Derolon, P. (2003) Polymorphism in two merozoite surface proteins of Plasmodium falciparum from Gabon, Malar. J., 2, 12 (http://www.malariajournal.com/content/2/1/12).

    Google Scholar 

  10. Mitchell, G. H., Thomas, A. W., Margos, G., Dluzewski, A. R., and Banister, L. H. (2004) Apical membrane antigen 1, a major malaria vaccine candidate, mediates the close attachment of invasive merozoites to host red blood cells, Infect. Immun., 72, 154–158.

    Article  PubMed  CAS  Google Scholar 

  11. Carruthers, V. B. and Sibley, L. D. (1999) Mobilization of intracellular calcium stimulates microneme discharge in Toxoplasma gondii, Mol. Microbiol., 31, 421–428.

    Article  CAS  Google Scholar 

  12. Culvenor, J. G., Day, K. P., and Anders, R. F (1991) P. falciparum ring-infected erythrocyte surface antigen is released from merozoite dense granules after erythrocyte invasion, Infect. Immun., 59, 1183–1187.

    PubMed  CAS  Google Scholar 

  13. Blackman, M. J., Fujioka, H., Stafford, W. L., Sajid, M., Clough, B., Fleck, S. L., Aikawa, M., Grainger, M., and Hackett, F. (1998) A subtilisin-like protein in secretory organelles of Plasmodium falciparum merozoites, J. Biol. Chem., 273, 23398–23409.

    CAS  Google Scholar 

  14. Barale, J. C., Blisnick, T., Fujioka, H., Alzari, H., Aikawa, M., Braun-Breton, C., and Langsley, G. (1999) Plasmodium falciparum subtilisin-like protease 2, a merozoite candidate for the merozoite surface protein 1–42 maturase, Proc. Natl. Acad. Sci. U.S.A., 96, 6445–6450.

    Article  PubMed  CAS  Google Scholar 

  15. Reed, M. B., Caruana, S. R., Batchelor, A. H., Thompson, J. K., Crabb, B. S., and Cowman, A. F. (2000) Targeted disruption of an erythrocyte binding antigen in Plasmodium falciparum is associated with a switch toward a sialic acid-independent pathway of invasion, Proc. Natl. Acad. Sci. U.S.A., 97, 7509–7514.

    CAS  Google Scholar 

  16. Tomley, F. M. and Soldati, D. S. (2001) Mix and match modules: structure and function of microneme proteins in apicomplexan parasites, Trends Parasitol., 17, 81–88.

    Article  PubMed  CAS  Google Scholar 

  17. Braun-Breton, C. and Pereira da Silva, L. H. (1993) Malaria proteases and red blood cells, Parasitol. Today, 9, 92–96.

    Article  PubMed  CAS  Google Scholar 

  18. Sibley, L. D., Hakansson, S., and Carruthers, V. B. (1998) Gliding motility: an efficient mechanism for cell penetration, Curr. Biol., 8, R12–R14.

    Article  PubMed  CAS  Google Scholar 

  19. Sultan, A., Thathy, V., Frevert, U., Robson, K., Crisanti, A., Nussenzweig, V., Nussenzweig, R., and Menard, R. (1997) TRAP is necessary for gliding motility and infectivity of Plasmodium falciparum, Cell, 90, 511–522.

    CAS  Google Scholar 

  20. Wengelnik, K., Spaccapelo, R., Naitza, S., Robson, K. J. H., Janse, C. J., Bisoni, F., Waters, A. P., and Crisanti, A. (1999) The A-domain and the thrombospondin-related motif of Plasmodium falciparum TRAP are implicated in the invasion process of mosquito salivary glands, EMBO J., 18, 5195–5204.

    Article  PubMed  CAS  Google Scholar 

  21. Yuda, M., Sakaida, H., and Chinzei, Y. (1999) Targeted disruption of the Plasmodium bergheiCTRP gene reveals its essential role in malaria infection of the vector mosquito, J. Exp. Med., 190, 1711–1716.

    CAS  Google Scholar 

  22. Dessens, J. T., Beetsma, A. L., Dimopoulos, G., Wengelnik, K., Crisanti, A., Kafatos, F. C., and Sinden, R. E. (1999) CTRP is essential for mosquito infection by malaria ookinetes, EMBO J., 18, 6221–6227.

    Google Scholar 

  23. Deitsch, K. W. and Wellems, T. E. (1996) Membrane modifications in erythrocytes parasitized by Plasmodium falciparum, Mol. Biochem. Parasitol., 76, 1–10.

    Article  CAS  Google Scholar 

  24. Crabb. B. S. and Cowman, A. F. (2002) Plasmodium falciparum virulence determinants unveiled, Genome Biol., 3(11), 1031.1–1031.4.

    Article  Google Scholar 

  25. Waterkeyn, J. G., Wickham, M. E., Davern, K. M., Cooke, B. M., Coppel, R. L., Reeder, J. C., Culvenor, J. G., Waller, R. F., and Cowman, A. F. (2000) Targeted mutagenesis of Plasmodium falciparum erythrocyte membrane protein 3 (PfEMP3) disrupts cytoadherence of malaria-infected red blood cells, EMBO J., 19, 2813–2823.

    Article  PubMed  CAS  Google Scholar 

  26. Sherman, I. W., Crandall, I. E., Guthrie, N., and Land, K. M. (1995) The sticky secrets of sequestration, Parasitol. Today, 11, 378–384.

    Article  PubMed  CAS  Google Scholar 

  27. Craig, A. and Scherf, A. (2001) Molecules on the surface of the Plasmodium falciparum-infected erythrocyte and their role in malaria pathogenesis and immune evasion, Mol. Biochem. Parasitol., 115, 129–143.

    Article  PubMed  CAS  Google Scholar 

  28. Beeson, J. G. and Brown, G. V. (2002) Pathogenesis of Plasmodium falciparum malaria: the roles of parasite adhesion and antigenic variation, Cell. Mol. Life Sci., 59, 258–271.

    CAS  Google Scholar 

  29. Turner, G. D. H., Morrison, H., Jones, M., Davis, T. M.E., Looareesuwan, S., Buley, I. D., Gatter, K. C., Newbold, C. I., Pukritayakamee, S., Nagachinta, B., White, N. J., and Berendt, A. R. (1994) An immunohistochemical study of the pathology of fatal malaria – evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration, Am. J. Pathol., 145, 1057–1069.

    PubMed  CAS  Google Scholar 

  30. Smith, J. D., Gamain, B., Baruch, D. I., and Kyes, S. (2001) Decoding the language of var genes and Plasmodium falciparum sequestration, Trends Parasitol., 17, 538–545.

    CAS  Google Scholar 

  31. Biggs, B. A., Anders, R. F., Dillon, H. E., Davern, K. M., Martin, M., Petersen, C., and Brown, G. V. (1992) Adherence of infected erythrocytes to venular endothelium selects for antigenic variants of Plasmodium falciparum, J. Immunol., 149, 2047–2054.

    CAS  Google Scholar 

  32. Deitsch, K. W., del Pinal, A., and Wellems, T. E. (1999) Intra-cluster recombination and var transcription switches in the antigenic variation of Plasmodium falciparum, Mol. Biochem. Parasitol., 101, 107–116.

    Article  CAS  Google Scholar 

  33. Gissot, M., Briquet, S., Refour, P., Boschet, C., and Vaquero, C. (2005) PfMyb1, Plasmodium falciparum transcription factor, is required for intra-erythrocytic growth and controls key genes for cell cycle regulation, J. Mol. Biol., 346, 29–42.

    CAS  Google Scholar 

  34. Lipsick, J. S. (1996) One billion years of Myb, Oncology, 13, 223–235.

    CAS  Google Scholar 

  35. Boschet, C., Gissot, M., Briquet, S., Hamid, Z., Claudel-Renard, C., and Vaquero, C. (2004) Characterization of PfMyb1 transcription factor during erythrocyte development of 3D7 and F12 Plasmodium falciparum clones, Mol. Biochem. Parasitol., 138, 159–163.

    Article  CAS  Google Scholar 

  36. Ness, S. A., Marknell, A., and Graf, T. (1989) The v-myb oncogene product binds to and activates the promyelocyte-specific mim-1 gene, Cell, 59, 1115–1125.

    Article  PubMed  CAS  Google Scholar 

  37. Reichard, P. (2002) Ribonucleotide reductase: the evolution of allosteric regulation, Arch. Biochem., 397, 149–155.

    Article  PubMed  CAS  Google Scholar 

  38. Chabes, A. and Stillman, B. (2007) Constitutively high dNTP concentration inhibits cell cycle progression and the DNA damage checkpoint in yeast Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U.S.A., 104, 1183–1188.

    Article  CAS  Google Scholar 

  39. Jordan, A. and Reichard, P. (1998) Ribonucleotide reductases, Annu. Rev. Biochem., 67, 71–98.

    Article  PubMed  CAS  Google Scholar 

  40. Eklund, H., Uhlin, U., Farnegardh, M., Logan, D. T., and Nordlund, P. (2000) Structure and function of the radical enzyme ribonucleotide reductase, Prog. Biophys. Mol. Biol., 77, 177–268.

    Article  Google Scholar 

  41. Bracchi-Ricard, V., Moe, D., and Chakrabarti, D. (2005) Two Plasmodium falciparum ribonucleotide reductase small subunits, RfR2 and RfR4, interact with each other and are components of the in vivo enzyme complex, J. Mol. Biol., 347, 749–758.

    CAS  Google Scholar 

  42. Naik, R. S., Branch, O. H., Woods, A. S., Vijaykumar, M., Perkins, D. J., Nahlen, B. L., Lal, A. A., Cotter, R. J., Costello, B. L., Ockenhouse, C. F., Davidson, E. A., and Gowda, D. C. (2000) Glycosylphosphatidylinositol anchors of Plasmodium falciparum: molecular characterization and naturally elicited antibody response that may provide immunity to malaria pathogenesis, J. Exp. Med., 192(11), 1563–1575.

    CAS  Google Scholar 

  43. McConville, M. J. and Ferguson, M. A. J. (1993) The structure, biosynthesis, and functions of glycosylated phosphatidylinositols in the parasite protozoa and higher eukaryotes, Biochem. J., 294, 305–324.

    PubMed  CAS  Google Scholar 

  44. Englund, P. T. (1993) The structure and biosynthesis of glycosylphosphatidylinositol protein anchors, Annu. Rev. Biochem., 62, 121–138.

    Article  PubMed  CAS  Google Scholar 

  45. Ferguson, M. A. J., Brimacombe, J. S., Brown, J. R., Crossman, A., Dix, A., Field, R. A., Guther, M. L., Milne, K. G., Sharma, D. K., and Smith, T. K. (1999) The GPI biosynthetic pathway as a therapeutic target for African sleeping sickness, Biochim. Biophys. Acta, 1455, 327–340.

    PubMed  CAS  Google Scholar 

  46. Schofield, L. and Hackett, F. (1993) Signal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites, J. Exp. Med., 177, 145–153.

    Article  PubMed  CAS  Google Scholar 

  47. Schofield, L., Vivas, L., Hackett, F., Gerold, P., Schwartz, R. T., and Tachado, S. (1993) Neutralizing monoclonal antibodies to glycosylphosphatidylinositol, the dominant TNF-a-inducing toxin of Plasmodium falciparum: prospects for the immunotherapy of severe malaria, Ann. Trop. Med. Parasitol., 87, 617–626.

    CAS  Google Scholar 

  48. Schofield, L., Novakovic, S., Gerold, P., Schwartz, R. T., McConville, M. J., and Tachado, S. D. (1996) Glycosylphosphatidylinositol toxin of Plasmodium up-regulates intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin expression in vascular endothelial cells and increases leukocyte and parasite cytoadherence via tyrosine kinase-dependent signal transduction, J. Immunol., 156, 1886–1896.

    PubMed  CAS  Google Scholar 

  49. Tachado, S. D., Gerold, P., Schwartz, R., Novakovic, S., McConville, M., and Schofield, L. (1997) Signal transduction in macrophages by glycosylphosphatidylinositols of Plasmodium, Trypanosoma, and Leishmania: activation of protein tyrosine kinases and protein kinase C by inositolglycan and diacylglycerol moieties, Proc. Natl. Acad. Sci. U.S.A., 94, 4022–4027.

    Article  PubMed  CAS  Google Scholar 

  50. Miller, L. H., Roberts, T., Shahabuddin, M., and McCutchan, T. F. (1993) Analysis of sequence diversity in the Plasmodium falciparummerozoite surface protein-1 (MSP-1), Mol. Biochem. Parasitol., 59, 1–14.

    CAS  Google Scholar 

  51. Marshall, V. M., Silva, A., Foley, M., Cranmer, S., Wang, L., McColl, D. J., Kemp, D. J., and Coppel, R. L. (1997) A second merozoite surface protein (MSP-4) of Plasmodium falciparum that contains an epidermal growth factor-like domain, Infect. Immun., 65, 4460–4467.

    Google Scholar 

  52. Braun-Breton, C., Rosenberry, T. L., and Pereira da Silva, L. H. (1990) Glycolipid anchorage of Plasmodium falciparum surface antigens, Res. Immunol., 141, 743–755.

    CAS  Google Scholar 

  53. Gardner, M. J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R. W., Carlton, J. M., Pain, A., Nelson, K. E., Bowman, S., Paulsen, I. T., James, K., Eisen, J. A., Rutherford, K., Salzberg, S. L., Craig, A., Kyes, S., Chan, M.-S., Nene, V., Shallom, S. J., Suh, B., Peterson, J., Angiouli, S., Pertea, M., Allen, J., Selengut, J., Haft, D., Mather, M. W., Vaidya, A. B., Martin, D. M. A., Fairlamb, A. H., Fraunholz, M. J., Roos, D. S., Ralph, S. A., McFadden, G. I., Cummings, L. M., Subramanian, G. M., Mungall, C., Venter, J. C., Carucci, D. J., Hoffman, S. L., Newbold, C., Davis, R. W., Fraser, C. M., and Barrell, B. (2002) Genome sequence of the human malaria parasite Plasmodium falciparum, Nature, 419, 498–511.

    Article  CAS  Google Scholar 

  54. Berry, A. E., Gardner, M. J., Caspers, G.-J., Roos, D. S., and Berriman, M. (2004) Curation of the Plasmodium falciparum genome, Trends Parasitol., 20(12), 548–552.

    CAS  Google Scholar 

  55. Chotivanich, K., Udomsangpetch, R., Pattanapanyasat, K., Chierakul, W., Simpson, J., Looaraasuwan, S., and White, N. (2002) Hemoglobin E: a balanced polymorphism protective against high parasitemias and thus severe P. falciparum malaria, Blood, 100(4), 1172–1176.

    CAS  Google Scholar 

  56. Haldan, J. B. S. (1949) The rate of mutation of human genes, Hereditas, 35, 267–272.

    Google Scholar 

  57. Wellems, T. E. and Fairhurst, R. M. (2005) Malaria-protective traits at odds in Africa? Nature, 37(11), 1160–1162.

    CAS  Google Scholar 

  58. Aidoo, M., Terlouw, D. J., Kolczak, M. S., McElroy, P., ter Kuile, F., Kariuki, S., Nahlen, B., Lal, A., and Udhayakumar, V. (2002) Protective effects of the sickle cell gene against malaria morbidity and mortality, Lancet, 359, 1311–1312.

    Article  PubMed  CAS  Google Scholar 

  59. Mockenhaupt, F. P., Ehrhardt, S., Cramer, J. P., Otchwemah, R. N., Anemana, S. D., Goltz, K., Mylius, F., Dietz, E., Eggelte, T. A., and Bienzle, U. (2004) Hemoglobin C and resistance to severe malaria in Ghanaian children, J. Infect. Dis., 190, 1006–1009.

    Article  PubMed  CAS  Google Scholar 

  60. Flint, J., Harding, R. M., Boyce, A. J., and Clegg, J. B. (1998) The population genetics of the haemoglobinopathies, Baillieres Clin. Haematol., 11, 1–51.

    Article  PubMed  CAS  Google Scholar 

  61. Looareesuwan, S., Tokunaga, K., Ohashi, J., Clark, A. G., Naka, I., Patarapotikul, J., Hananatachai, H., and Brittenham, G. (2004) Extended linkage disequilibrium surrounding the hemoglobin E variant due to malarial selection, Am. J. Hum. Genet., 74(6), 1198–1208.

    Article  PubMed  Google Scholar 

  62. Flatz, G., Sanguansermsri, T., Sengchanh, S., Horst, D., and Horst, J. (2004) The “hot spot” of Hb E [b26(B8)Glu→Lys] in Southeast Asia: b-globin anomalies in the Lao Theung population of Southern Laos, Hemoglobin, 28(3), 197–204.

    Article  PubMed  CAS  Google Scholar 

  63. Win, N, Lwin, A. A., Oo, M. M., Aye, K. S., Soe-Soe, and Okada, S. (2005) Hemoglobin E prevalence in malaria-endemic villages in Myanmar, Acta Med. Okayama, 59(2), 63–66.

    Google Scholar 

  64. Lachant, N. A. and Tanaka, K. R. (2006) Impaired antioxidant defense in hemoglobin E-containing eruthrocytes: a mechanism protective against malaria? Am. J. Hematol., 26(3), 211–219.

    Article  Google Scholar 

  65. Ohashi, J., Naka, I., Patarapotikul, J., Hananantachai, H., Brittenham, G., Looareesuwan, S., Clark, A. G., and Tokunaga, K. (2004) Extended linkage disequilibrium surrounding the hemoglobin E variant due to malarial selection, Am. J. Hum. Genet., 74, 1198–1208.

    Article  PubMed  CAS  Google Scholar 

  66. Nagel, R. L., Raventos-Suarez, C., Febby, M. E., Tonowitz, H., Sicard, D., and Labie, D. ((1981) Impairment of the growth of P. falciparum in HbEE erythrocytes, J. Clin. Invest., 68, 303–305.

    Article  PubMed  CAS  Google Scholar 

  67. Santiyanont, R. and Wilairat, P. (1981) Red cells containing hemoglobin E do not inhibit malaria parasite development in vitro, Am. J. Trop. Med. Hyg., 30, 541–543.

    CAS  Google Scholar 

  68. Kruatrachue, M., Bhaibulaya, M., Klongkamnaunkam, K., and Harinasula, C. (1969) Haemoglobinopathies and malaria in Thailand, Bull. World Health Organ., 40, 459–463.

    PubMed  CAS  Google Scholar 

  69. Flatz, G., Pik, C. and Sundharagiati, B. (1964) Malaria and haemoglobin E in Thailand, Lancet, ii, 385–387.

    Google Scholar 

  70. Hutagalung, R., Wilairatana, P., Looareesuwan, S., Brittenham, G. M., Aikawa, M., and Gordeuk, V. R. (1999) Influence of hemoglobin E trait on the severity of falciparum malaria, J. Infect. Dis., 179, 283–286.

    Article  PubMed  CAS  Google Scholar 

  71. Williams, T. N., Maitland, K., Bennett, S., Ganczakowski, M., Peto, T. E. A., Newbold, C. I., Bowden, D. K., Weatherall, D. J., and Clegg, J. B. (1996) High incidence of malaria in α+-thalassaemic children, Nature, 383, 522–525.

    Article  PubMed  CAS  Google Scholar 

  72. Williams, T. N., Mwangi, T. W., Wambua, S., Peto, T. E. A., Weatherall, D. J., Gupta, S., Recker, M., Penman, B. S., Uyoga, S., Macharia, A., Mwacharo, J. K., Snow, R. W., and Marsh, K. (2005) Negative epistasis between the malaria-protective effects of a+-thalassemia and the sickle cell trait, Nat. Genet., 37(11), 1253–1257.

    Article  PubMed  CAS  Google Scholar 

  73. Friedman, M. J. (1978) Erythrocytic mechanism of sickle cell resistance to malaria, Proc. Natl. Acad. Sci. U.S.A., 75, 1994–1997.

    Article  PubMed  CAS  Google Scholar 

  74. Friedman, M. J., Roth, E. F., Nagel, R. L., and Trager, W. (1979) The role of hemoglobin C, S and NBatl in the inhibition of malaria parasite development in vitro, Am. J. Trop. Med. Hyg., 28, 777–780.

    PubMed  CAS  Google Scholar 

  75. Pasvol, G. (1980) The interaction between sickle haemoglobin and the malaria parasite Plasmodium falciparum, Trans. R. Soc. Trop. Med. Hyg., 74, 701–705.

    Article  CAS  Google Scholar 

  76. Vernes, A. J.-M., Heynes, J. D., Tang, D. B., Dutoit, E., and Diggs, C. L. (1986) Decreased growth of Plasmodium falciparum in red cells contain haemoglobin E, a role for oxidative stress, and a sero-epidemiological correlation, Trans. R. Soc. Trop. Med. Hyg., 80, 642–648.

    CAS  Google Scholar 

  77. Bunyaratvej, A., Butthep, P., Kaewkettong, P., and Yuthavong, Y. (1997) Malaria protection in hereditary ovalocytosis: relation to red cell deformability, red cell parameters and degree of ovalocytosis, Southeast Asia, Southeast Asian J. Trop. Med. Publ. Health, 28, 38–42.

    Google Scholar 

  78. Pasvol, G., Weatherall, D. J., Wilson, R. J., Smith, D. H., and Giles, H. M. (1976) Fetal hemoglobin and malaria, Nature, 1(7972), 1269–1270.

    CAS  Google Scholar 

  79. Pasvol, G., Weatherall, D. J., and Wilson, R. J. (1977) Effects of fetal hemoglobin on susceptibility of red cell to Plasmodium falciparum, Nature, 270, 171–173.

    Article  CAS  Google Scholar 

  80. Bunyaratvej, A., Butthep, P., Sae-Ung, N., Fuchareon, S., and Yuthavong, Y. (1992) Reduced deformability of thalassemic erythrocytes and erythrocytes with abnormal hemoglobins and relation with susceptibility to Plasmodium falciparum invasion, Blood, 79, 2460–2463.

    CAS  Google Scholar 

  81. Udomsangpetch, R., Sueblinvong, T., Pattanapanyasat, K., Dharmkrong-al, A., and Webster, H. K. (1993) Alteration in cytoadherance and resetting of Plasmodium falciparum-infected thalassemic red blood cells, Blood, 82, 3752–3759.

    CAS  Google Scholar 

  82. Carlson, J., Nash, G. B., Gabutti, V., Al Yaman, F., and Wahlgren, M. (1994) Natural protection against severe Plasmodium falciparum malaria due to impaired rosette formation, Blood, 84, 3909–3914.

    CAS  Google Scholar 

  83. Luzzi, G. A. and Pasvol, G. (1990) Cytoadherence of Plasmodium falciparum-infected a-thalassemic red cells, Ann. Trop. Med. Parasitol., 84, 413–414.

    CAS  Google Scholar 

  84. Bayoumi, R. A., Abu-Zeid, Y. A., Abdulhadi, N. H., Saeed, B. O., Theander, T. G., Hviid, L., Ghalib, H. V., Nugud, A. H., Jepsen, S., and Jensen, J. B. (1990) Cell-mediated immune responses to Plasmodium falciparum purified soluble antigens in sickle-cell trait subjects, Immunol. Lett., 25, 243–249.

    CAS  Google Scholar 

  85. Luzzi, G. A., Merry, A. H., Newbold, C. I., Marsh, K., Pasvol, G., and Weatherall, D. J. (1991) Surface antigen expression on Plasmodium falciparum-infected erythrocytes is modified in a- and b-thalassemia, J. Exp. Med., 173, 785–791.

    CAS  Google Scholar 

  86. Abu-Zeid, Y. A., Theander, T. G., Abdulhadi, N.H., Hviid, L., Saeed, B. O., Jepsen, S., Jepsen, J. B., and Bayoumi, R. A. (1992) Modulation of the cellular immune response during Plasmodium falciparum infections in sickle cell trait individuals, Clin. Exp. Immunol., 88, 112–118.

    CAS  Google Scholar 

  87. Allison, A. C. (1964) Polymorphism and natural selection in human populations, Cold Spring Harb. Symp. Quant. Biol., 29, 137–149.

    PubMed  CAS  Google Scholar 

  88. Nagel, R. L. and Fleming, A. F. (1992) Genetic epidemiology of the beta S gene, Baillieres Clin. Haematol., 5, 331–365.

    PubMed  CAS  Google Scholar 

  89. Williams, T. N., Wambua, S., Uyoga, S., Macharia, A., Mwacharo, J. K., Newton, C. R. J. C., and Maitland, K. (2005) Both heterozygous and homozygous alpha+ thalassemias protect against severe and fatal Plasmodium falciparum malaria on the coast of Kenya, Blood, 106, 368–371.

    CAS  Google Scholar 

  90. Mockenhaupt, F. P., Ehrhardt, S., Gellet, S., Otchwemah, R., N., Dietz, E., Anemana, S. D., and Bienzle, U. (2004) a+ Thalasemia protects African children from malaria, Blood, 104, 2003–2006.

    Article  PubMed  CAS  Google Scholar 

  91. Allen, S. J., O’Donnell, A., Alexander, N. D. E., Alpers, M. P., Peto, T. E. A., Clegg, J. B., and Weatherall, D. G. (1997) α+-Thalasemia protects children caused by other infections as well as malaria, Proc. Natl. Acad. Sci. U.S.A., 94, 14736–14741.

    Article  PubMed  CAS  Google Scholar 

  92. Weatherall, D. J. and Clegg, J. B. (2001) Inherited haemoglobin disorders: an increasing global health problem, Bull. World Health Organ., 79, 704–712.

    PubMed  CAS  Google Scholar 

  93. Rihet, P., Flori, L., Tall, F., Traore, A. S., and Fumoux, F. (2004) Hemoglobin C is associated with reduced Plasmodium falciparum parasitemia and low risk of mild malaria attack, Hum. Mol. Genet., 13(1), 1–6.

    CAS  Google Scholar 

  94. Fairhurst, R. M., Fujioka, H., Hayton, K., Collins, K. F., and Wellems, T. E. (2003) Aberrant development of Plasmodium falciparum in hemoglobin CC red cells: implications for the malaria protective effect of the homozygous state, Blood, 101(8), 3309–3315.

    Article  PubMed  CAS  Google Scholar 

  95. Conway, D. J. (2007) Molecular epidemiology of malaria, Clin. Microbiol. Rev., 20(1), 188–204.

    Article  PubMed  CAS  Google Scholar 

  96. Nielsen, M. A., Staalsoe, T., Kurtzhals, J. A. L., Goka, B. Q., Dodoo, D., Alifrangis, M., Theander, T. G., Akanmori, B. D., and Hviid, L. (2002) Plasmodium falciparum variant surface antigen expression varies between isolates causing severe and nonsevere malaria and is modified by host immunity, J. Immunol., 168, 3444–3450.

    PubMed  CAS  Google Scholar 

  97. Bull, P. C., Berriman, M., Kyes, S., Quail, M. A., Hall, N., Kortok, M. M., Marsh, K., and Newbold, C. I. (2005) Plasmodium falciparum variant surface antigen expression patterns during malaria, PLoS Pathol., 1, e26.

    Article  CAS  Google Scholar 

  98. Bull, P. C., Pain, A., Ndungu, F. M., Kinyanjui, S. M., Roberts, D. J., Newbold, C. I., and Marsh, K. (2005) Plasmodium falciparum antigenic variation: relationships between in vivo selection, acquired antibody response, and disease severity, J. Infect. Dis., 192, 1119–1126.

    Article  PubMed  CAS  Google Scholar 

  99. Gardner, M. J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R. W., Carlton, J. M., and Pain, A. (2002) Genome sequence of the human malaria parasite Plasmodium falciparum, Nature, 419, 498–511.

    Article  CAS  Google Scholar 

  100. Lavstsen, T., Salanti, A., Jensen, A. T. R., Arnot, D. E., and Theander, T. G. (2003) Sub-grouping of Plasmodium falciparum 3D7 var genes based on sequence analysis of coding and non-coding regions, Malar. J., 2, 27.

    Google Scholar 

  101. Simpson, J. A., Aarons, L., Collins, W. E., Jeffery, G. M., and White, N. J. (2002) Population dynamics of untreated Plasmodium falciparum malaria within the adult human host during the expansion phase of the infection, Parasitology, 124, 247–263.

    CAS  Google Scholar 

  102. Baum, J., Pinder, M., and Conway, D. J. (2003) Erythrocyte invasion phenotypes of Plasmodium falciparum in The Gambia, Infect. Immun., 71, 1856–1863.

    Article  CAS  Google Scholar 

  103. Lobo, C. A., de Frazao, K., Rodriguez, M., Reid, M., Zalis, M., and Lustigman, S. (2004) Invasion profiles of Brasilian field isolates of Plasmodium falciparum: phenotypic and genotypic analyses, Infect. Immun., 72, 5886–5891.

    CAS  Google Scholar 

  104. Okoyeh, J. N., Pillai, C. R., and Chitnis, C. E. (1999) Plasmodium falciparum field isolates commonly use erythrocyte invasion pathways that are independent of sialic acid residues of glycophorin A, Infect. Immun., 67, 5784–5791.

    PubMed  CAS  Google Scholar 

  105. Daily, J. P., Le Roch, K. G., Sarr, O., Fang, X., Zhou, Y., Ndir, O., Mboup, S., Sultan, A., Winzeler, E. A., and Wirth, D. F. (2004) In vivo transcriptional profiling of Plasmodium falciparum, Malar. J., 3, 30.

    Google Scholar 

  106. Daily, J. P., Le Roch, K. G., Sarr, O., Ndiaye, D., Lukens, A., Zhou, Y., Ndir, O., Mboup, S., Sultan, A., Winzeler, E. A., and Wirth, D. F. (2005) In vivo transcriptome of Plasmodium falciparum reveals overexpression of transcripts that encode surface proteins, J. Infect. Dis., 191, 1196–1203.

    Article  PubMed  CAS  Google Scholar 

  107. Hviid, L. (2004) The immuno-epidemiology of pregnancy-associated Plasmodium falciparum malaria: a variant surface antigen-specific perspective, Parasite Immunol., 26, 477–486.

    CAS  Google Scholar 

  108. Beeson, J. G. and Brown, G. V. (2004) Plasmodium falciparum-infected erythrocyte demonstrate dual specificity for adhesion to hyaluronic acid and chondroitin sulfate A and have distinct adhesive properties, J. Infect. Dis., 189, 169–179.

    Article  PubMed  CAS  Google Scholar 

  109. Salanti, A., Dahlback, M., Turner, L., Nielsen, M. A., Barfod, L., Magistrado, P., Jensen, A. T., Lavstsen, T., Ofori, M. F., Marsh, K., Hviid, L., and Theander, T. G. (2004) Evidence for the involvement of VAR2CSA in pregnancy-associated malaria, J. Exp. Med., 200, 1197–1203.

    Article  PubMed  CAS  Google Scholar 

  110. Viebig, N. K., Gamain, B., Scheidig, C., Lepolard, C., Przyborski, J., Lanzer, M., Gysin, J., and Scherf, A. (2005) A single member of the Plasmodium falciparum var multigene family determines cytoadhesion to the placental receptor chondroitin sulphate A, EMBO J., 6, 775–781.

    Article  CAS  Google Scholar 

  111. Duffy, M. F., Caragounis, A., Noviyanti, R., Kyriacou, H. M., Choong, E. K., Boysen, K., Healer, J., Rowe, J. A., Molyneux, M. E., Brown, G. V., and Rogerson, S. J. (2006) Transcribed var genes associated with placental malaria in Malawian women, Infect. Immun., 74, 4875–4883.

    CAS  Google Scholar 

  112. Tuikue Ndam, N. G., Salanti, A., Bertin, G., Dahlback, Fievet, N., Turner, L., Gaye, A., Theander, T., and Deloron, P. (2005) High level of var2csa transcription by Plasmodium falciparum isolated from the placenta, J. Infect. Dis., 102, 331–335.

    Article  Google Scholar 

  113. Staalsoe, T., Shulman, C. E., Bulmer, J. N., Kawuondo, K., Marsh, K., and Hviid, L. (2004) Variant surface antigen-specific IgG and protection against clinical consequences of pregnancy-associated Plasmodium falciparum malaria, Lancet, 363, 283–289.

    CAS  Google Scholar 

  114. Moody, A. H. and Chiodini, P. L. (2000) Methods for the detection of blood parasites, Clin. Lab. Haematol., 22, 189–201.

    Article  PubMed  CAS  Google Scholar 

  115. Lee, S. H., Kara, U. A., Koay, E., Lee, M. A., Lam, S., and Teo, D. (2002) New strategies for the diagnosis and screening of malaria, Int. J. Hematol., 76(Suppl. 1), 291–293.

    Article  PubMed  Google Scholar 

  116. Nacher, M., Singhasivanon, P., Silachamroon, U., Treeprasertsuk, S., Tosukhowong, T., Vannaphan, S., Gay, F., Mazier, D., and Looareesuwan, S. (2002) Decreased hemoglobin concentrations, hyperparasitemia, and severe malaria are associated with increased Plasmodium falciparum gametocyte carriage, J. Parasitol., 88(1), 97–101.

    Google Scholar 

  117. Samaja, M., Rovida, E., Motterlini, R., Tarantola, M., Rubinacci, A., and di Prampero, P. E. (1990) Human red cell age, oxygen affinity and oxygen transport, Respir. Physiol., 79, 69–79.

    Article  PubMed  CAS  Google Scholar 

  118. Hoffman, R. E., Benz, J., Shattil, S. J., Furie, B., and Cohen, H. (1991) Hematology: Basic Principles and Practice, Churchill Livingstone, Edinburgh, Scotland, pp.458–468.

    Google Scholar 

  119. Robert, V., Tchuinkam, T., Mulder, B., Bodo, J. M., Verhave, J. P., Carnevale, P., and Nagel, R. L. (1996) Effect of the sickle cell trait status of gametocyte carriers of Plasmodium falcipare on infectivity to anophelines, Am. J. Trop. Med. Hyg., 54, 111–113.

    PubMed  CAS  Google Scholar 

  120. Silamut, K. and White, N. J. (1993) Relation of the stage of parasite development in the peripheral blood to prognosis in severe falciparum malaria, Trans. R. Soc. Trop. Med. Hyg., 87, 436–443.

    Article  PubMed  CAS  Google Scholar 

  121. Hsia, C. C. (1998) Respiratory function of hemoglobin, N. Engl. J. Med., 338, 239–247.

    Article  PubMed  CAS  Google Scholar 

  122. Taylor-Robinson, A. (2000) The sequestration hypothesis: an explanation for the sensitivity of malaria parasites to nitric oxide-mediated immune effector function in vivo, Med. Hypothesis, 54, 638–641.

    Article  CAS  Google Scholar 

  123. Jarra, W. and Brown, K. N. (1989) Invasion of mature and immature erythrocytes of CBA/Ca mice by a cloned line of Plasmodium chabaudi, Parasitology, 99, 157–163.

    Google Scholar 

  124. Gautret, P., Miltgen, F., Gantier, J. C., Chabaud, A. G., and Landau, I. (1996) Enhanced gametocyte formation by Plasmodium chabaudi in immature erythrocytes: pattern of production, sequestration, and infectivity to mosquitoes, J. Parasitol., 82, 900–906.

    CAS  Google Scholar 

  125. Trager, W. and Gill, G. S. (1992) Enhanced gametocyte formation in young erythrocytes by Plasmodium falciparum in vitro, J. Protozool., 39, 429–432.

    CAS  Google Scholar 

  126. Trager, W., Gill, G. S., Lawrence, C., and Nagel, R. L. (1999) Plasmodium falciparum: enhanced gametocyte formation in vitro in reticulocyte-rich blood, Exp. Parasitol., 91, 115–118.

    Article  PubMed  CAS  Google Scholar 

  127. White, N. J. (2003) Malaria. In: Manson’s Tropical Diseases (Cook, G. C., Zumla, A. I., and Weir, J., eds.), W. B. Saunders, Philadelphia, pp. 1205–1295.

    Google Scholar 

  128. Genton, B. and D’Acremont, V. (2001) Clinical features of malaria in returning travelers and migrants. In: Travelers’ Malaria (Schlagenhauf, P., ed.), Hamilton, Ontario, Canada, B. C. Decker, pp. 371–392.

    Google Scholar 

  129. Swenson, J. E., MacLean, J. D., Gyorkos, T. W., and Keystone, J. (1995) Imported malaria. Clinical presentation and examination of symptomatic travelers, Arch. Intern. Med., 155, 861–868.

    Article  Google Scholar 

  130. World Health Organization (1990) Severe and complicated malaria, Trans. R. Soc. Trop. Hyg., 84(Suppl. 2), S1–S65.

    Google Scholar 

  131. Brewster, D. R., Kwiatkowski, D., and White, N. J. (1990) Neurological sequelae of cerebral malaria in children, Lancet, 336, 1039–1043.

    Article  PubMed  CAS  Google Scholar 

  132. Mehta, K. S., Halankar, A. R., Makwana, P. D., Torane, P. P., Satija, P. S., and Shah, V. B. (2001) Severe acute renal failure in malaria, J. Postgrad. Med., 47, 24–26.

    Google Scholar 

  133. Griffith, K. S., Lewis, L. S., Mali, S., and Parise, M. E. (2007) Treatment of malaria in the United States. A systematic review, J. Am. Med. Assoc., 297(20), 2264–2277.

    Article  CAS  Google Scholar 

  134. Lalloo, D. G., Shingadia, D., Pasvol, G., Chiodini, P. L., Whitty, C. J., Beeching, N. J., Hill, D. R., Warrell, D. A., and Bannister, B. A., for the HPA Advisory Committee on Malaria Prevention in UK Travelers (2007) UK malaria treatment guidelines, J. Infect., Dis., 54, 111–121.

    Google Scholar 

  135. Centers for Disease Control (2000) Availability and use of parenteral quinidine gluconate for severe or complicated malaria, Morb. Mortal. Wkly Rep., 49, 1138–1140.

    Google Scholar 

  136. White, N. J. (1996) The treatment of malaria, N. Engl. J. Med., 335, 800–806.

    Article  PubMed  CAS  Google Scholar 

  137. Bonington, A., Davidson, R. N., Winstanley, P. A., and Pasvol, G. (1996) Fatal quinine cardiotoxicity in the treatment of falciparum malaria, Trans. R. Soc. Trop. Med. Hyg., 90, 305–307.

    Article  PubMed  CAS  Google Scholar 

  138. Pittler, M. H. and Ernest, E. (1999) Artemether for severe malaria: a meta-analysis of randomized clinical trials, Clin. Infect. Dis., 28, 597–601.

    Article  PubMed  CAS  Google Scholar 

  139. Tran, T. H., Day, N. P., Nguyen, H. P., Nguyen, T. H., Tran, T. H., Pham, P. L., Dinh, X. S., Ly, V. C., Ha, V., Waller, D., Peto, T. E., and White, N. J. (1996) A controlled trial of artemether or quinine in Vietnamese adults with severe falciparum malaria, N. Engl. J. Med., 335, 76–83.

    Article  PubMed  CAS  Google Scholar 

  140. Murphy, S., English, M., Waruiru, C., Mwangi, I., Amukoye, E., Crawley, J., Newton, C., Winstanley, P., Peshu, N., and Marsh, K. (1996) An open randomized trial of artemether versus quinine in the treatment of cerebral malaria in African children, Trans. R. Soc. Trop. Med. Hyg., 90, 298–301.

    Article  PubMed  CAS  Google Scholar 

  141. World Health Organization (WHO) (2006) Guidelines for Treatment of Malaria, NLM classification: WC 770, ISBN 978 92 4 154694 2.

    Google Scholar 

  142. Hatz, C. F. (2001) Clinical treatment of malaria in returned travelers. In: Traveler’s Malaria(Schlagenhauf, P., ed.), Hamilton, Ontario, Canada, B. C. Decker, pp. 431–445.

    Google Scholar 

  143. Gold, H. S. and Moellering, R. C. (1996) Antimalarial-drug resistance, N. Engl. J. Med., 335, 1445–1453.

    Article  PubMed  CAS  Google Scholar 

  144. Barat, L. M. and Bloland, P. B. (1997) Drug resistance among malaria and other parasites, Infect. Dis. Clin. North Am., 11, 969–987.

    Article  PubMed  CAS  Google Scholar 

  145. Krogstad, D. J. (1996) Malaria as a reemerging disease, Epidemiol. Rev., 18, 77–89.

    PubMed  CAS  Google Scholar 

  146. White, N. J. (1992) Antimalarial drug resistance: the pace quickens, J. Antimicrob. Chemother., 30, 571–585.

    Article  PubMed  CAS  Google Scholar 

  147. Centers for Disease Control (2000) Availability and use of parenteral quinidine gluconate for severe or complicated malaria, Morb. Mortal. Wkly Rep., 49(50), 1138–1140.

    Google Scholar 

  148. Miller, K. D., Greenberg, A. E., and Campbell, C. C. (1989) Treatment of severe malaria in the United States with a continuous infusion of quinidine gluconate and exchange transfusion, N. Engl. J. Med., 321(2), 65–70.

    Article  PubMed  CAS  Google Scholar 

  149. Powell, V. I. and Grima, K. (2002) Exchange transfusion for malaria and Babesia infection, Transfus. Med. Rev., 16(3), 239–250.

    Article  Google Scholar 

  150. Kwiatkowski, D., Molyneux, M. E., Stephens, S., Curtis, N., Klein, N., Pointaire, P., Smit, M., Allan, R., Brewster, D. R., and Grau, G. E. (1993) Anti-TNF therapy inhibits fever in cerebral malaria, Q. J. Med., 86, 91–98.

    PubMed  CAS  Google Scholar 

  151. Warrell, D. A., Looareesuwan, S., Warrell, M. J., Kasemsarn, P., Intaraprasert, R., Bunnag, D., and Harinasuta, T. (1982) Dexamethazone proves deleterious in cerebral malaria. A double-blind trial in 100 comatose patients, N. Engl. J. Med., 306, 313–319.

    PubMed  CAS  Google Scholar 

  152. Clyde, D. F., Most, H., McCarthy, V. C., and Vanderberg, J. P. (1973) Immunization of man against sporozoite-induced falciparum malaria, Am. J. Med. Sci., 266, 169–177.

    Article  PubMed  CAS  Google Scholar 

  153. Hoffman, S. L., Goh, L. M., Luke, T. C., Schneider, I., Le, T. P., Doolan, D. L., Sacci, J., de la Vega, P., Dowler, M., Paul, C., Gordon, D. M., Stoute, J. A., Church, L. W. P., Sedegah, M., Heppner, D. G., Ballou, W. R., and Richie, T. L. (2002) Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites, J. Infect. Dis., 185, 1155–1164.

    Google Scholar 

  154. Kwiatkowski D. and Marsh, K. (1997) Vaccine series: development of a malaria vaccine, Lancet, 350, 1696–1701.

    Google Scholar 

  155. Patarrouo, G., Franco, L., Amador, R., Murillo, L. A., Rocha, C. L., Rojas, M., and Patarroyo, M. E. (1992) Study of the safety and immunogenicity of the synthetic malaria SPf66 vaccine in children aged 1–14 years, Vaccine, 10, 175–178.

    Article  Google Scholar 

  156. Alonso, P. L., Smith, T., Schellenberg, J. R., et al. (1994) Randomized trial of efficacy of SPf66 vaccine against Plasmodium falciparum malaria in children in Tanzania, Lancet, 344, 1175–1181.

    CAS  Google Scholar 

  157. D’Allesandro, U., Leach, A., Drakely, C. J., et al. (1995) Efficacy trial of malaria vaccine SPf66 in Gambian infants, Lancet, 346, 462–467.

    Article  Google Scholar 

  158. Nosten, F., Luxemburger, C., Kyle, D. E., et al. (1996) Randomized double-blind placebo-controlled trial of SPf66 malaria vaccine in children in northwestern Thailand. Shoklo SPf66 Malaria Vaccine Trial Group, Lancet, 348, 701–707.

    Article  PubMed  CAS  Google Scholar 

  159. Acosta, C. J., Galindo, C. M., Schellenberg, D., et al. (1999) Evaluation of the SPf66 vaccine for malaria control when delivered through the EPI scheme in Tanzania, Trop. Med. Int. Health, 4, 368–376.

    Article  PubMed  CAS  Google Scholar 

  160. Moorthy, V. S., Good, M. F., and Hill, A. V. S. (2004) Malaria vaccine developments, Lancet, 363, 150–156.

    Article  PubMed  Google Scholar 

  161. Moorthy, V. and Hill, A. V. (2002) Malaria vaccines, Br. Med. Bull., 62, 59–72.

    Article  PubMed  Google Scholar 

  162. Shi, Y. P., Hasnain, S. E., Sacci, J. B., Holloway, B. P., Fujioka, H., Kumar, N., Wohlhueter, R., Hoffman, S. L., Collins, W. L., and Lal, A. A. (1999) Immunogenicity and in vitro protective efficacy of a recombinant multistage Plasmodium falciparum candidate vaccine, Proc. Natl. Acad. Sci. U.S.A., 96, 1615–1620.

    Article  PubMed  CAS  Google Scholar 

  163. Okie, S. (2005) Betting on a malaria vaccine, N. Engl. J. Med., 353, 1877–1881.

    Article  PubMed  CAS  Google Scholar 

  164. Prudhomme O’Meara, W., Hall, B. F., and McKenzie, F. E. (2007) Malaria vaccine efficacy: the difficulty of detecting and diagnosing malaria, Malar. J., 6, 36.

    Article  Google Scholar 

  165. Lachenbruch, P. A. (1998) Sensitivity, specificity, and vaccine efficacy, Control Clin. Trials, 19(6), 569–574.

    Article  PubMed  CAS  Google Scholar 

  166. Prudhomme O’Meara, W., Barkus, M., Wongsrichamalai, et al. (2006) Reader technique as a source of variability in determining malaria parasite density by microscopy, Malaria J., 5, 118.

    Article  Google Scholar 

  167. McKenzie, F. E., Sirichaisinthrop, J., Miller, R. S., Gasser, R. A., and Wongsrichanalai, C. (2003) Dependence of malaria detection and species diagnosis by microscopy on parasite density, Am. J. Trop. Med. Hyg., 69(4), 372–376.

    PubMed  Google Scholar 

  168. Ohrt, C., Purnomo, Sutamihardja, M. A., Tang, D., and Kain, K. C. (2002) Impact of microscopy error on estimates of protective efficacy in malaria-prevention trials, J. Infect. Dis., 186(4), 540–546.

    Article  PubMed  Google Scholar 

  169. Prudhomme O’Meara, W., McKenzie, F. E., Magill, A. J., Forney, J. R., Permpanich, B., Lucas, C., Gasser, R. A., and Wongsrichanai, C. (2005) Sources of variability in determining malaria parasite density by microscopy, Am. J. Trop. Med. Hyg., 73(3), 593–598.

    Google Scholar 

  170. Deley, V., Bouvier, P., Breslow, N., Doumbo, O., Sagara, I., Diakite, M., Mauris, A., Dolo, A., and Rougemont, A. (2000) What does a single determination of malaria parasite density mean? A longitudinal survey in Mali, Trop. Med. Int. Health, 5(6), 404–412.

    Article  Google Scholar 

  171. Alonso, P. L., Sacarlal, J., Aponte, J. J., Leach, A., Macete, E., Milman, J., Mandomando, I., Spiessens, B., Guinovart, C., Espasa, M., Bassat, Q., Aide, P., Ofori-Anyinam, O., Navia, M. M., Corachan, S., Ceuppens, M., Dubois, M. C., Demoitie, M. A., Dubovsky, F., Menendez, C., Tornieporth, N., Ballou, W. R., Thompson, R., and Cohen, J. (2004) Efficacy of the RTS,S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children: randomized controlled trial, Lancet, 364(9443), 1411–1420.

    Article  PubMed  CAS  Google Scholar 

  172. Nussenzweigg, R., Vanderberg, J., Most, H., and Orton, C. (1967) Protective immunity produced by the injection of X-irradiated sporozoites of Plasmodium berghei, Nature, 216, 160–162.

    Article  Google Scholar 

  173. Srivastava, K., Singh, S., Singh, P., and Puri, S. K. (2007) In vitro cultivation of Plasmodium falciparum: studies with modified medium supplemental with ALBUMAX II and various animal sera, Exp. Parasitol., 116(2), 171–174.

    Article  PubMed  CAS  Google Scholar 

  174. Balu, B. and Adams, J. H. (2007) Advancement in transfection technologies for plasmodium, Int. J. Parasitol., 37, 1–10.

    Article  PubMed  CAS  Google Scholar 

  175. Kanoi, B. N. and Egwang, T. G. (2007) New concepts in vaccine development in malaria, Curr. Opin. Infect. Dis., 20, 311–316.

    Article  PubMed  Google Scholar 

  176. Mueller, A.-K., Labaied, M., Kappe, S. H. I., and Matuschewski, K. (2005) Genetically modified Plasmodium parasites as a protective experimental malaria vaccine, Nature, 433, 164–167.

    Article  PubMed  CAS  Google Scholar 

  177. Mueller, A.-K., Camargo, N., Kaiser, K., Andorfer, C., Frevert, U., Matuschewski, K., and Kappe, S. H. I. (2005) Plasmodium liver stage developmental arrest by depletion of a protein at the parasite-host interface, Proc. Natl. Acad. Sci. U.S.A., 102, 3022–3027.

    Article  PubMed  CAS  Google Scholar 

  178. Van Dijk, M. R., Douradinha, B., Franke-Fayard, B., Heussler, V., van Dooren, M. W., van Schaijk, B., van Gemert, G.-J., Sauerwein, R. W., Mota, M. M., Waters, A. P., and Janse, C. J. (2005) Genetically attenuated, P36p-deficient malarial sporozoites induce protective immunity and apoptosis of infected liver cells, Proc. Natl. Acad. Sci. U.S.A., 102, 12194–12199.

    Article  PubMed  CAS  Google Scholar 

  179. Enea, V., Ellis, J., Zavala, F., (1984) DNA cloning of Plasmodium falciparum circumsporozoite gene: amino acid sequence of repetitive epitope, Science, 225, 628–630.

    Article  PubMed  CAS  Google Scholar 

  180. Girard, M. P., Reed, Z. H., Friede, M., and Kieny, M. P. (2007) A review of human vaccine research and development: malaria, Vaccine, 25, 1567–1580.

    Article  PubMed  CAS  Google Scholar 

  181. Ulmer, J. B., Donnelly, J. J., Parker, S. E., Rhodes, G. H., Felgner, P. L., Dwarki, V. J., Gromkowski, S. H., Deck, R. R., DeWitt, C. M., Friedman, A., et al. (1993) Heterologous protection against influenza by injection of DNA encoding a viral protein, Science, 259, 1745–1749.

    Article  PubMed  CAS  Google Scholar 

  182. Li, S., Rodrigues, M., Rodriguez, D., Esteban, M., Palese, P., Nussenzweig, R. S., and Zavala, F. (1993) Priming with recombinant influenza virus followed by administration of recombinant vaccinia virus induces CD8+ T-cell-mediated protective immunity against malaria, Proc. Natl. Acad. Sci. U.S.A., 90, 5214–5218.

    Article  PubMed  CAS  Google Scholar 

  183. Wang, R., Doolan, D. L., Le, T. P., et al. (1998) Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine, Science, 282, 476–480.

    Article  PubMed  CAS  Google Scholar 

  184. Schneider, J., Gilbert, S. C., Blanchard, T. J., et al. (1998) Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara, Nat. Med., 4, 397–402.

    Article  PubMed  CAS  Google Scholar 

  185. Gurunathan, S., Klinman, D. M., and Seder, R. A. (2000) DNA vaccines: immunology, application, and optimization, Annu. Rev. Immunol., 18, 927–974.

    Article  PubMed  CAS  Google Scholar 

  186. Miyahira, Y., Garcia-Sastre, A., Rodriguez, D., et al. (1998) Recombinant viruses expressing a human malaria antigen can elicit potentially protective immune CD8(+) responses in mice, Proc. Natl. Acad. Sci. U.S.A., 95, 3954–3959.

    Article  PubMed  CAS  Google Scholar 

  187. Paoletti, E. (1996) Application of pox virus vectors to vaccination: an update, Proc. Natl. Acad. Sci. U.S.A., 93, 11349–11353.

    Article  PubMed  CAS  Google Scholar 

  188. Stoute, J. A., Slaoui, M., Heppner, D. G., et al. (1997) A preliminary evaluation of a recombinant circumsporozoite protein vaccine against Plasmodium falciparum malaria. RTS,S Malaria Vaccine Evaluation Group, N. Engl. J. Med., 336, 86–91.

    Article  PubMed  CAS  Google Scholar 

  189. Potocnjak, P., Yoshida, N., Nussenzweig, R. S., and Nussenzweig, V. (1980) Monovalent fragments (Fab) of monoclonal antibodies to a sporozoite surface antigen (Pb44) protect mice against malarial infection, J. Exp. Med., 151, 1504–1513.

    Article  PubMed  CAS  Google Scholar 

  190. Nardin, E. H., Nussenzweig, V., Nussenzweig, R. S., et al. (1982) Circumsporozoite proteins of human malaria parasites Plasmodium falciparum and Plasmodium vivax, J. Exp. Med., 156, 20–30.

    Article  PubMed  CAS  Google Scholar 

  191. Bojang, K. A., Milligan, P. J., Pinder, M., et al. (2001) Efficacy of RTS,S/AS02 malaria vaccine against Plasmodium falciparum infection in semi-immune adult men in The Gambia: a randomized trial, Lancet, 358, 1927–1934.

    Article  PubMed  CAS  Google Scholar 

  192. Schneider, J., Gilbert, S. C., Hannan, C. M., et al. (1999) Induction of CD8+ T cells using heterologous prime-boost immunization strategies, Immunol. Rev., 170, 29–38.

    Article  PubMed  CAS  Google Scholar 

  193. Moorthy, V. S., McConkey, S., Roberts, M., et al. (2003) Safety of DNA and modified vaccinia virus Ankara vaccines against liver-stage P. falciparum malaria in non-immune volunteers, Vaccine, 21, 2004–2011.

    Article  CAS  Google Scholar 

  194. Moorthy, V. S., Pinder, M., Reece, W. H. H., et al. (2003) Safety and immunogenicity of DNA/modified vaccinia virus Ankara malaria vaccination in African adults, J. Infect. Dis., 188, 1239–1244.

    Article  PubMed  Google Scholar 

  195. McConkey, S., Reece, W. H. H., Moorthy, V. S., et al. (2003) Enhanced T-cell immunogenicity in humans of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara, Nat. Med., 9, 729–735.

    Article  PubMed  CAS  Google Scholar 

  196. Moorthy, V. S., Imoukhuede, E. B., Milligan, P., et al. (2004) A randomized, double-blind, controlled vaccine efficacy trial of DNA/MVA ME-TRAP against malaria infection in Gambian adults, PLoS Med., 1(2), e33.

    Article  PubMed  CAS  Google Scholar 

  197. Holder, A. A., Guevara Patino, J. A., Uthaipibull, C., et al. (1999) Merozoite surface protein 1, immune evasion, and vaccines against asexual blood stage malaria, Parasitologia, 41, 409–414.

    CAS  Google Scholar 

  198. Genton, B., Betuela, I., Felger, I., et al. (2002) A recombinant blood-stage malaria vaccine reduces Plasmodium falciparum density and exerts selective pressure on parasite populations in a phase 1–2b trial in Papua New Guinea, J. Infect. Dis., 185, 820–827.

    Article  PubMed  Google Scholar 

  199. Ockenhouse, C. F., Sun, P. F., Lanar, D. E., et al. (1998) Phase I/II safety, immunogenicity, and efficacy trial of NYVAC-Pf7, a pox-vectored, multiantigen, multistage vaccine candidate for Plasmodium falciparum malaria, J. Infect. Dis., 177, 1664–1673.

    Article  PubMed  CAS  Google Scholar 

  200. Oeuvray, C., Theisen, M., Rogier, C., Trape, J. F., Jepsen, S., and Druilhe, P. (2000) Cytophilic immunoglobulin responses to Plasmodium falciparum glutamate-rich protein are correlated with protection against clinical malaria in Dielmo, Senegal, Infect. Immun., 68, 2617–2620.

    Article  PubMed  CAS  Google Scholar 

  201. Oeuvray, C., Bouharoun-Tayoun, H., Gras-Masse, H., et al. (1994) Merozoite surface protein-3: a malaria protein inducing antibodies that promote Plasmodium falciparumkilling by cooperation with blood monocytes, Blood, 84, 1594–1602.

    PubMed  CAS  Google Scholar 

  202. Fried, M., Domingo, G. J., and Gowda, C. D., et al. (2006) Plasmodium falciparum: chondroitin sulfate A is the major receptor for adhesion of parasitized erythrocytes in the placenta, Exp. Parasitol., 113, 36–42.

    Article  PubMed  CAS  Google Scholar 

  203. Moll, K., Pettersson, F., Vogt, A. M., et al. (2007) Generation of cross-protective antibodies against Plasmodium falciparum sequestration by immunization with an erythrocyte membrane protein 1-Duffy binding-like1a domain, Infect. Immun., 75, 211–219.

    Article  PubMed  CAS  Google Scholar 

  204. Hall, N., Karras, M., Raine, J. D., et al. (2005) A comprehensive survey of the Plasmodiumlife cycle by genomic, transcriptomic, and proteomic analyses, Science, 307, 82–86.

    Article  PubMed  CAS  Google Scholar 

  205. Daily, J. P., Le Roch, K. G., Sarr, O., et al. (2005) In vivo transcriptome of Plasmodium falciparum reveals overexpression of transcripts that encode surface proteins, J. Infect. Dis., 191, 1196–1203.

    Article  PubMed  CAS  Google Scholar 

  206. Mu, J., Awadalla, P., Duan, J., McGee, K. M., Keebler, J., Seydel, K., McVean, G. A. T., and Su, X.-Z. (2007) Genome-wide variation and identification of vaccine targets in Plasmodium falciparumgenome, Nat. Med., 39, 126–130.

    Article  CAS  Google Scholar 

  207. Hall, B. F. (Lee) and Fauci, A. S. (2007) Africa Malaria Day and Malaria Awareness Day, April 25, 2007 (http://www3.niaid.nih.gov/about/directors/news/malaria_07.htm).

  208. Lopansri, B. K., Anstey, N. M., Stoddard, G. J., Mwaikambo, E. D., Bouitlis, C. S., Tjitra, E., Maniboey, H., Hobbs, M. R., Levesque, M. C., Weinberg, J. B., and Granger, D. L. (2006) Elevated plasma phenylalanine in severe malaria and implications for pathophysiology of neurological complications, Infect. Immun., 74(6), 3355–3359.

    Article  PubMed  CAS  Google Scholar 

  209. Laufer, M. K., van Oosterhout, J. J. G., Thesing, P. C., Thumba, F., Zijlstra, E. E., Graham, S. M., Taylor, T. E., and Plowe, C. V. (2006) Impact of HIV-associated immunosuppression on malaria infection and disease in Malawi, J. Infect. Dis., 193, 872–878.

    Article  PubMed  CAS  Google Scholar 

  210. McDevitt, M. A., Xie, J., Shanmugasundaram, G., Griffith, J., Liu, A., McDonald, C., Thuma, P., Gordeuk, V. R., Metz, C. N., Mitchell, R., Keefer, J., David, J., and Bucala, R. (2006) A critical role for the host mediator macrophage migration inhibitory factor in the pathogenesis of malarial anemia, J. Exp. Med., 203(5), 1185–1196.

    Article  PubMed  CAS  Google Scholar 

  211. Korochkina, S., Barreau, C., Pradel, G., Jeffery, E., Li, J., Natarajan, R., Shabanowitz, J., Hunt, D., Frevert, U., and Vernick K. D. (2006) A mosquito-specific protein family includes candidate receptor for malaria sporozoite invasion of salivary glands, Cell. Microbiol., 8, 163–175.

    Article  PubMed  CAS  Google Scholar 

  212. Wang, S. X., Oandey, K. C., Somoza, J. R., Sijwali, P. S., Korteme, T., Brinen, L. S., Fletterick, R. J., Rosenthal, P. J., and McKerrow, J. H. (2006) Structural basis for unique mechanisms of folding and hemoglobin binding by a malarial protease, Proc. Natl. Acad. Sci. U.S.A., 103(31), 11503–11508.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassil St. Georgiev PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Georgiev, V.S. (2009). Malaria. In: Georgiev, V.S. (eds) National Institute of Allergy and Infectious Diseases, NIH. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-60327-297-1_20

Download citation

Publish with us

Policies and ethics