Skip to main content

mTORC1: A Signaling Integration Node Involved in Cell Growth

  • Chapter
  • First Online:
mTOR Pathway and mTOR Inhibitors in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1080 Accesses

Abstract

The mammalian target of rapamycin (mTOR) is an atypical serine/threonine kinase that plays an indispensable role in the control of cell growth. When localized with the interacting proteins raptor and mLST8 in the mammalian target of rapamycin complex 1 (mTORC1), mTOR serves as an integrator of cellular signals to control the balance between cellular anabolism and cellular catabolism. Under conditions that promote cell growth, or in the presence of common genetic lesions associated with cancer, mTORC1 signals to the effectors 4E-BP1 and S6K1 resulting in ribosomal biogenesis and enhanced mRNA translation. The positive effects of mTORC1 on mRNA translation involve a dynamic molecular process that results in an increase in bulk protein synthesis, including more dramatic effects on a subset of mRNA species encoding pro-growth, anti-apoptotic proteins. Recent data also suggest a role of mTORC1 in the “pioneer” round of mRNA translation, in addition to the more established effects on “steady-state” protein biosynthesis. Growth control by mTORC1 is required in physiological and developmental settings for proper maintenance of cellular homeostasis, cell survival, and embryonic development, while inappropriate regulation of mTORC1 signaling is observed in the overwhelming majority of human cancers. This review will discuss the current view of the signaling network upstream of mTORC1 and the regulation of protein biosynthesis by this evolutionarily conserved, clinically relevant cell signaling node.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown EJ, Albers MW, Shin TB et al (1994) A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369:756–758

    Article  PubMed  CAS  Google Scholar 

  2. Chen Y, Chen H, Rhoad AE et al (1994) A putative sirolimus (rapamycin) effector protein. Biochem Biophys Res Commun 203:1–7

    Article  PubMed  CAS  Google Scholar 

  3. Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH (1994) RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78:35–43

    Article  PubMed  CAS  Google Scholar 

  4. Chiu MI, Katz H, Berlin V (1994) RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci USA 91:12574–12578

    Article  PubMed  CAS  Google Scholar 

  5. Sabers CJ, Martin MM, Brunn GJ et al (1995) Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem 270:815–822

    Article  PubMed  CAS  Google Scholar 

  6. Keith CT, Schreiber SL (1995) PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science 270:50–51

    Article  PubMed  CAS  Google Scholar 

  7. Abraham RTPI (2004) 3-kinase related kinases: ‘big’ players in stress-induced signaling pathways. DNA Repair (Amst) 3:883–887

    Article  CAS  Google Scholar 

  8. Fingar DC, Blenis J (2004) Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23:3151–3171

    Article  PubMed  CAS  Google Scholar 

  9. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945

    Article  PubMed  CAS  Google Scholar 

  10. Bosotti R, Isacchi A, Sonnhammer ELFAT (2000) a novel domain in PIK-related kinases. Trends Biochem Sci 25:225–227

    Article  PubMed  CAS  Google Scholar 

  11. Sekulic A, Hudson CC, Homme JL et al (2000) A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res 60:3504–3513

    PubMed  CAS  Google Scholar 

  12. Heitman J, Movva NR, Hall MN (1991) Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253:905–909

    Article  PubMed  CAS  Google Scholar 

  13. Cafferkey R, Young PR, McLaughlin MM et al (1993) Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity. Mol Cell Biol 13:6012–6023

    PubMed  CAS  Google Scholar 

  14. Stan R, McLaughlin MM, Cafferkey R, Johnson RK, Rosenberg M, Livi GP (1994) Interaction between FKBP12-rapamycin and TOR involves a conserved serine residue. J Biol Chem 269:32027–32030

    PubMed  CAS  Google Scholar 

  15. Chen J, Zheng XF, Brown EJ, Schreiber SL (1995) Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proc Natl Acad Sci USA 92:4947–4951

    Article  PubMed  CAS  Google Scholar 

  16. Choi J, Chen J, Schreiber SL, Clardy J (1996) Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 273:239–242

    Article  PubMed  CAS  Google Scholar 

  17. Peterson RT, Beal PA, Comb MJ, Schreiber SL (2000) FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J Biol Chem 275:7416–7423

    Article  PubMed  CAS  Google Scholar 

  18. Takahashi T, Hara K, Inoue H et al (2000) Carboxyl-terminal region conserved among phosphoinositide-kinase-related kinases is indispensable for mTOR function in vivo and in vitro. Genes Cells 5:765–775

    Article  PubMed  CAS  Google Scholar 

  19. Loewith R, Jacinto E, Wullschleger S et al (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10: 457–468

    Article  PubMed  CAS  Google Scholar 

  20. Hara K, Maruki Y, Long X et al (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110:177–189

    Article  PubMed  CAS  Google Scholar 

  21. Kim DH, Sarbassov DD, Ali SM et al (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163–175

    Article  PubMed  CAS  Google Scholar 

  22. Kim DH, Sarbassov DD, Ali SM et al (2003) GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 11:895–904

    Article  PubMed  CAS  Google Scholar 

  23. Guertin DA, Sabatini DM (2005) An expanding role for mTOR in cancer. Trends Mol Med 11:353–361

    Article  PubMed  CAS  Google Scholar 

  24. Sarbassov DD, Ali SM, Sabatini DM (2005) Growing roles for the mTOR pathway. Curr Opin Cell Biol 17:596–603

    Article  PubMed  CAS  Google Scholar 

  25. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484

    Article  PubMed  CAS  Google Scholar 

  26. Schalm SS, Blenis J (2002) Identification of a conserved motif required for mTOR signaling. Curr Biol 12:632–639

    Article  PubMed  CAS  Google Scholar 

  27. Choi KM, McMahon LP, Lawrence JC Jr (2003) Two motifs in the translational repressor PHAS-I required for efficient phosphorylation by mammalian target of rapamycin and for recognition by raptor. J Biol Chem 278:19667–19673

    Article  PubMed  CAS  Google Scholar 

  28. Nojima H, Tokunaga C, Eguchi S et al (2003) The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J Biol Chem 278:15461–15464

    Article  PubMed  CAS  Google Scholar 

  29. Schalm SS, Fingar DC, Sabatini DM, Blenis J (2003) TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr Biol 13:797–806

    Article  PubMed  CAS  Google Scholar 

  30. Guertin DA, Stevens DM, Thoreen CC et al (2006) Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 11:859–871

    Article  PubMed  CAS  Google Scholar 

  31. Gangloff YG, Mueller M, Dann SG et al (2004) Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Mol Cell Biol 24:9508–9516

    Article  PubMed  CAS  Google Scholar 

  32. Murakami M, Ichisaka T, Maeda M et al (2004) mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol 24:6710–6718

    Article  PubMed  CAS  Google Scholar 

  33. Chen EJ, Kaiser CA (2003) LST8 negatively regulates amino acid biosynthesis as a component of the TOR pathway. J Cell Biol 161:333–347

    Article  PubMed  CAS  Google Scholar 

  34. Yang Q, Guan KL (2007) Expanding mTOR signaling. Cell Res 17:666–681

    Article  PubMed  CAS  Google Scholar 

  35. Shiota C, Woo JT, Lindner J, Shelton KD, Magnuson MA (2006) Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability. Dev Cell 11:583–589

    Article  PubMed  CAS  Google Scholar 

  36. Bayascas JR, Wullschleger S, Sakamoto K et al (yr) Mutation of PDK1 PH domain inhibits PKB/Akt leading to small size and insulin-resistance. Mol Cell Biol 28:3258–3272

    Google Scholar 

  37. Scott PH, Brunn GJ, Kohn AD, Roth RA, Lawrence JC Jr (1998) Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc Natl Acad Sci USA 95:7772–7777

    Article  PubMed  CAS  Google Scholar 

  38. Nave BT, Ouwens M, Withers DJ, Alessi DR, Shepherd PR (yr) Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J 344(Pt 2):427–431

    Google Scholar 

  39. Reynolds TH, Bodine SC, Lawrence JC Jr (2002) Control of Ser2448 phosphorylation in the mammalian target of rapamycin by insulin and skeletal muscle load. J Biol Chem 277:17657–17662

    Article  PubMed  CAS  Google Scholar 

  40. Crino PB, Nathanson KL, Henske EP (2006) The tuberous sclerosis complex. N Engl J Med 355:1345–1356

    Article  PubMed  CAS  Google Scholar 

  41. Kandt RS, Haines JL, Smith M et al (1992) Linkage of an important gene locus for tuberous sclerosis to a chromosome 16 marker for polycystic kidney disease. Nat Genet 2:37–41

    Article  PubMed  CAS  Google Scholar 

  42. The European Chromosome 16 Tuberous Sclerosis Consortium (1993) Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75:1305–1315

    Article  Google Scholar 

  43. van Slegtenhorst M, de Hoogt R, Hermans C et al (1997) Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277:805–808

    Article  PubMed  Google Scholar 

  44. Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R, Hafen E (2001) An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol 11:213–221

    Article  PubMed  CAS  Google Scholar 

  45. Bohni R, Riesgo-Escovar J, Oldham S et al (1999) Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1–4. Cell 97:865–875

    Article  PubMed  CAS  Google Scholar 

  46. Leevers SJ, Weinkove D, MacDougall LK, Hafen E, Waterfield MD (1996) The Drosophila phosphoinositide 3-kinase Dp110 promotes cell growth. EMBO J 15:6584–6594

    PubMed  CAS  Google Scholar 

  47. Scanga SE, Ruel L, Binari RC et al (2000) The conserved PI3’K/PTEN/Akt signaling pathway regulates both cell size and survival in Drosophila. Oncogene 19:3971–3977

    Article  PubMed  CAS  Google Scholar 

  48. Verdu J, Buratovich MA, Wilder EL, Birnbaum MJ (1999) Cell-autonomous regulation of cell and organ growth in Drosophila by Akt/PKB. Nat Cell Biol 1:500–506

    Article  PubMed  CAS  Google Scholar 

  49. Zhang H, Stallock JP, Ng JC, Reinhard C, Neufeld TP (2000) Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev 14:2712–2724

    Article  PubMed  CAS  Google Scholar 

  50. Montagne J, Stewart MJ, Stocker H, Hafen E, Kozma SC, Thomas G (1999) Drosophila S6 kinase: a regulator of cell size. Science 285:2126–2129

    Article  PubMed  CAS  Google Scholar 

  51. Goberdhan DC, Paricio N, Goodman EC, Mlodzik M, Wilson C (1999) Drosophila tumor suppressor PTEN controls cell size and number by antagonizing the Chico/PI3-kinase signaling pathway. Genes Dev 13:3244–3258

    Article  PubMed  CAS  Google Scholar 

  52. Gao X, Pan D (2001) TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth. Genes Dev 15:1383–1392

    Article  PubMed  CAS  Google Scholar 

  53. Potter CJ, Huang H, Xu T (2001) Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size. Cell 105:357–368

    Article  PubMed  CAS  Google Scholar 

  54. Tapon N, Ito N, Dickson BJ, Treisman JE, Hariharan IK (2001) The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation. Cell 105:345–355

    Article  PubMed  CAS  Google Scholar 

  55. Kenerson HL, Aicher LD, True LD, Yeung RS (2002) Activated mammalian target of rapamycin pathway in the pathogenesis of tuberous sclerosis complex renal tumors. Cancer Res 62:5645–5650

    PubMed  CAS  Google Scholar 

  56. Goncharova EA, Goncharov DA, Eszterhas A et al (2002) Tuberin regulates p70 S6 kinase activation and ribosomal protein S6 phosphorylation. A role for the TSC2 tumor suppressor gene in pulmonary lymphangioleiomyomatosis (LAM). J Biol Chem 277:30958–30967

    Article  PubMed  CAS  Google Scholar 

  57. Kwiatkowski DJ, Zhang H, Bandura JL et al (2002) A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum Mol Genet 11:525–534

    Article  PubMed  CAS  Google Scholar 

  58. Inoki K, Li Y, Zhu T, Wu J, Guan KL (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4:648–657

    Article  PubMed  CAS  Google Scholar 

  59. Tee AR, Fingar DC, Manning BD, Kwiatkowski DJ, Cantley LC, Blenis J (2002) Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci USA 99:13571–13576

    Article  PubMed  CAS  Google Scholar 

  60. Saucedo LJ, Gao X, Chiarelli DA, Li L, Pan D, Edgar BA (2003) Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat Cell Biol 5:566–571

    Article  PubMed  CAS  Google Scholar 

  61. Stocker H, Radimerski T, Schindelholz B et al (2003) Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat Cell Biol 5:559–565

    Article  PubMed  CAS  Google Scholar 

  62. Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D (2003) Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 5:578–581

    Article  PubMed  CAS  Google Scholar 

  63. Castro AF, Rebhun JF, Clark GJ, Quilliam LA (2003) Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner. J Biol Chem 278:32493–32496

    Article  PubMed  CAS  Google Scholar 

  64. Garami A, Zwartkruis FJ, Nobukuni T et al (2003) Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 11:1457–1466

    Article  PubMed  CAS  Google Scholar 

  65. Inoki K, Li Y, Xu T, Guan KL (2003) Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17:1829–1834

    Article  PubMed  CAS  Google Scholar 

  66. Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J (2003) Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 13:1259–1268

    Article  PubMed  CAS  Google Scholar 

  67. Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC (2002) Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10:151–162

    Article  PubMed  CAS  Google Scholar 

  68. Potter CJ, Pedraza LG, Xu T (2002) Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol 4:658–665

    Article  PubMed  CAS  Google Scholar 

  69. Dan HC, Sun M, Yang L et al (2002) Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin. J Biol Chem 277:35364–35370

    Article  PubMed  CAS  Google Scholar 

  70. Liu MY, Cai S, Espejo A, Bedford MT, Walker CL (2002) 14-3-3 interacts with the tumor suppressor tuberin at Akt phosphorylation site(s). Cancer Res 62:6475–6480

    PubMed  CAS  Google Scholar 

  71. Nellist M, Goedbloed MA, de Winter C et al (2002) Identification and characterization of the interaction between tuberin and 14-3-3zeta. J Biol Chem 277:39417–39424

    Article  PubMed  CAS  Google Scholar 

  72. Li Y, Inoki K, Yeung R, Guan KL (2002) Regulation of TSC2 by 14-3-3 binding. J Biol Chem 277:44593–44596

    Article  PubMed  CAS  Google Scholar 

  73. Shumway SD, Li Y, Xiong Y (2003) 14-3-3beta binds to and negatively regulates the tuberous sclerosis complex 2 (TSC2) tumor suppressor gene product, tuberin. J Biol Chem 278:2089–2092

    Article  PubMed  CAS  Google Scholar 

  74. Hsu YC, Chern JJ, Cai Y, Liu M, Choi KW (2007) Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature 445:785–788

    Article  PubMed  CAS  Google Scholar 

  75. Rehmann H, Bruning M, Berghaus C et al (2008) Biochemical characterisation of TCTP questions its function as a guanine nucleotide exchange factor for Rheb. FEBS Lett 582:3005–3010

    Article  PubMed  CAS  Google Scholar 

  76. Wang X, Fonseca BD, Tang H et al (2008) Re-evaluating the roles of proposed modulators of mammalian target of rapamycin complex 1 (mTORC1) signaling. J Biol Chem 283:30482–30492

    Article  PubMed  CAS  Google Scholar 

  77. Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J (2005) Rheb binds and regulates the mTOR kinase. Curr Biol 15:702–713

    Article  PubMed  CAS  Google Scholar 

  78. Long X, Ortiz-Vega S, Lin Y, Avruch J (2005) Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. J Biol Chem 280:23433–23436

    Article  PubMed  CAS  Google Scholar 

  79. Urano J, Comiso MJ, Guo L et al (2005) Identification of novel single amino acid changes that result in hyperactivation of the unique GTPase, Rheb, in fission yeast. Mol Microbiol 58:1074–1086

    Article  PubMed  CAS  Google Scholar 

  80. Bai X, Ma D, Liu A et al (2007) Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38. Science 318:977–980

    Article  PubMed  CAS  Google Scholar 

  81. Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J (2001) Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294:1942–1945

    Article  PubMed  CAS  Google Scholar 

  82. Veverka V, Crabbe T, Bird I et al (2008) Structural characterization of the interaction of mTOR with phosphatidic acid and a novel class of inhibitor: compelling evidence for a central role of the FRB domain in small molecule-mediated regulation of mTOR. Oncogene 27:585–595

    Article  PubMed  CAS  Google Scholar 

  83. Toschi A, Lee E, Xu L, Garcia A, Gadir N, Foster DA (2008) Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid – a competition with rapamycin. Mol Cell Biol 29(6):1411–1420 (MCB.00782–08)

    Article  PubMed  CAS  Google Scholar 

  84. Dong J, Everitt JI, Lau SS, Monks TJ (2004) Induction of ERK1/2 and histone H3 phosphorylation within the outer stripe of the outer medulla of the Eker rat by 2,3,5-tris-(glutathion-S-yl)hydroquinone. Toxicol Sci 80:350–357

    Article  PubMed  CAS  Google Scholar 

  85. Peng XD, Xu PZ, Chen ML et al (2003) Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev 17:1352–1365

    Article  PubMed  CAS  Google Scholar 

  86. Sancak Y, Thoreen CC, Peterson TR et al (2007) PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25:903–915

    Article  PubMed  CAS  Google Scholar 

  87. Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH (2007) Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9:316–323

    Article  PubMed  CAS  Google Scholar 

  88. Oshiro N, Takahashi R, Yoshino K et al (2007) The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J Biol Chem 282:20329–20339

    Article  PubMed  CAS  Google Scholar 

  89. Wang L, Harris TE, Roth RA, Lawrence JC Jr (2007) PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J Biol Chem 282:20036–20044

    Article  PubMed  CAS  Google Scholar 

  90. Rodriguez-Viciana P, Warne PH, Dhand R et al (1994) Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370:527–532

    Article  PubMed  CAS  Google Scholar 

  91. Gupta S, Ramjaun AR, Haiko P et al (2007) Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell 129:957–968

    Article  PubMed  CAS  Google Scholar 

  92. Roux PP, Blenis JERK (2004) p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68:320–344

    Article  PubMed  CAS  Google Scholar 

  93. Tee AR, Anjum R, Blenis J (2003) Inactivation of the tuberous sclerosis complex-1 and -2 gene products occurs by phosphoinositide 3-kinase/Akt-dependent and -independent phosphorylation of tuberin. J Biol Chem 278:37288–37296

    Article  PubMed  CAS  Google Scholar 

  94. Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP (2005) Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121:179–193

    Article  PubMed  CAS  Google Scholar 

  95. Ma L, Teruya-Feldstein J, Bonner P et al (2007) Identification of S664 TSC2 phosphorylation as a marker for extracellular signal-regulated kinase mediated mTOR activation in tuberous sclerosis and human cancer. Cancer Res 67:7106–7112

    Article  PubMed  CAS  Google Scholar 

  96. Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J (2004) Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci USA 101:13489–13494

    Article  PubMed  CAS  Google Scholar 

  97. Ballif BA, Roux PP, Gerber SA, MacKeigan JP, Blenis J, Gygi SP (2005) Quantitative phosphorylation profiling of the ERK/p90 ribosomal S6 kinase-signaling cassette and its targets, the tuberous sclerosis tumor suppressors. Proc Natl Acad Sci USA 102:667–672

    Article  PubMed  CAS  Google Scholar 

  98. Johannessen CM, Reczek EE, James MF, Brems H, Legius E, Cichowski K (2005) The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc Natl Acad Sci USA 102:8573–8578

    Article  PubMed  CAS  Google Scholar 

  99. Carriere A, Cargnello M, Julien LA et al (2008) Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated Raptor phosphorylation. Curr Biol 18:1269–1277

    Article  PubMed  CAS  Google Scholar 

  100. Holz MK, Blenis J (2005) Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase. J Biol Chem 280:26089–26093

    Article  PubMed  CAS  Google Scholar 

  101. Chiang GG, Abraham RT (2005) Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase. J Biol Chem 280:25485–25490

    Article  PubMed  CAS  Google Scholar 

  102. Haruta T, Uno T, Kawahara J et al (2000) A rapamycin-sensitive pathway down-regulates insulin signaling via phosphorylation and proteasomal degradation of insulin receptor substrate-1. Mol Endocrinol 14:783–794

    Article  PubMed  CAS  Google Scholar 

  103. Tremblay F, Krebs M, Dombrowski L et al (2005) Overactivation of S6 kinase 1 as a cause of human insulin resistance during increased amino acid availability. Diabetes 54: 2674–2684

    Article  PubMed  CAS  Google Scholar 

  104. Radimerski T, Mini T, Schneider U, Wettenhall RE, Thomas G, Jeno P (2000) Identification of insulin-induced sites of ribosomal protein S6 phosphorylation in Drosophila melanogaster. Biochemistry 39:5766–5774

    Article  PubMed  CAS  Google Scholar 

  105. Jaeschke A, Hartkamp J, Saitoh M et al (2002) Tuberous sclerosis complex tumor suppressor-mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent. J Cell Biol 159:217–224

    Article  PubMed  CAS  Google Scholar 

  106. Greene MW, Sakaue H, Wang L, Alessi DR, Roth RA (2003) Modulation of insulin-stimulated degradation of human insulin receptor substrate-1 by Serine 312 phosphorylation. J Biol Chem 278:8199–8211

    Article  PubMed  CAS  Google Scholar 

  107. Harrington LS, Findlay GM, Gray A et al (2004) The TSC1–2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol 166:213–223

    Article  PubMed  CAS  Google Scholar 

  108. Shah OJ, Wang Z, Hunter T (2004) Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 14:1650–1656

    Article  PubMed  CAS  Google Scholar 

  109. Um SH, Frigerio F, Watanabe M et al (2004) Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431:200–205

    Article  PubMed  CAS  Google Scholar 

  110. Um SH, D’Alessio D, Thomas G (2006) Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab 3:393–402

    Article  PubMed  CAS  Google Scholar 

  111. Ma L, Teruya-Feldstein J, Behrendt N et al (2005) Genetic analysis of Pten and Tsc2 functional interactions in the mouse reveals asymmetrical haploinsufficiency in tumor suppression. Genes Dev 19:1779–1786

    Article  PubMed  CAS  Google Scholar 

  112. Manning BD, Logsdon MN, Lipovsky AI, Abbott D, Kwiatkowski DJ, Cantley LC (2005) Feedback inhibition of Akt signaling limits the growth of tumors lacking Tsc2. Genes Dev 19:1773–1778

    Article  PubMed  CAS  Google Scholar 

  113. Ruvinsky I, Sharon N, Lerer T et al (2005) Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis. Genes Dev 19:2199–2211

    Article  PubMed  CAS  Google Scholar 

  114. Zhang H, Bajraszewski N, Wu E et al (2007) PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J Clin Invest 117:730–738

    Article  PubMed  CAS  Google Scholar 

  115. Ozcan U, Ozcan L, Yilmaz E et al (2008) Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis. Mol Cell 29:541–551

    Article  PubMed  CAS  Google Scholar 

  116. Crespo JL, Powers T, Fowler B, Hall MN (2002) The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. Proc Natl Acad Sci USA 99:6784–6789

    Article  PubMed  CAS  Google Scholar 

  117. Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J (1998) Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 273:14484–14494

    Article  PubMed  CAS  Google Scholar 

  118. Fox HL, Pham PT, Kimball SR, Jefferson LS, Lynch CJ (1998) Amino acid effects on translational repressor 4E-BP1 are mediated primarily by L-leucine in isolated adipocytes. Am J Physiol 275:C1232–C1238

    PubMed  CAS  Google Scholar 

  119. Wang X, Campbell LE, Miller CM, Proud CG (yr) Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem J 334(Pt 1):261–267

    Google Scholar 

  120. Patti ME, Brambilla E, Luzi L, Landaker EJ, Kahn CR (1998) Bidirectional modulation of insulin action by amino acids. J Clin Invest 101:1519–1529

    Article  PubMed  CAS  Google Scholar 

  121. Kimball SR, Horetsky RL, Jefferson LS (1998) Implication of eIF2B rather than eIF4E in the regulation of global protein synthesis by amino acids in L6 myoblasts. J Biol Chem 273:30945–30953

    Article  PubMed  CAS  Google Scholar 

  122. Xu G, Marshall CA, Lin TA et al (1998) Insulin mediates glucose-stimulated phosphorylation of PHAS-I by pancreatic beta cells. An insulin-receptor mechanism for autoregulation of protein synthesis by translation. J Biol Chem 273:4485–4491

    Article  PubMed  CAS  Google Scholar 

  123. Krause U, Bertrand L, Maisin L, Rosa M, Hue L (2002) Signalling pathways and combinatory effects of insulin and amino acids in isolated rat hepatocytes. Eur J Biochem 269:3742–3750

    Article  PubMed  CAS  Google Scholar 

  124. Shigemitsu K, Tsujishita Y, Miyake H et al (1999) Structural requirement of leucine for activation of p70 S6 kinase. FEBS Lett 447:303–306

    Article  PubMed  CAS  Google Scholar 

  125. Anthony JC, Yoshizawa F, Anthony TG, Vary TC, Jefferson LS, Kimball SR (2000) Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J Nutr 130:2413–2419

    PubMed  CAS  Google Scholar 

  126. Lynch CJ, Fox HL, Vary TC, Jefferson LS, Kimball SR (2000) Regulation of amino acid-sensitive TOR signaling by leucine analogues in adipocytes. J Cell Biochem 77:234–251

    Article  PubMed  CAS  Google Scholar 

  127. Lynch CJ, Hutson SM, Patson BJ, Vaval A, Vary TC (2002) Tissue-specific effects of chronic dietary leucine and norleucine supplementation on protein synthesis in rats. Am J Physiol Endocrinol Metab 283:E824–E835

    PubMed  CAS  Google Scholar 

  128. Lynch CJ, Patson BJ, Anthony J, Vaval A, Jefferson LS, Vary TC (2002) Leucine is a direct-acting nutrient signal that regulates protein synthesis in adipose tissue. Am J Physiol Endocrinol Metab 283:E503–E513

    PubMed  CAS  Google Scholar 

  129. Reiter AK, Crozier SJ, Kimball SR, Jefferson LS (2005) Meal feeding alters translational control of gene expression in rat liver. J Nutr 135:367–375

    PubMed  CAS  Google Scholar 

  130. Gao X, Zhang Y, Arrazola P et al (2002) Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nat Cell Biol 4:699–704

    Article  PubMed  CAS  Google Scholar 

  131. Smith EM, Finn SG, Tee AR, Browne GJ, Proud CG (2005) The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses. J Biol Chem 280:18717–18727

    Article  PubMed  CAS  Google Scholar 

  132. Nobukuni T, Joaquin M, Roccio M et al (2005) Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci USA 102:14238–14243

    Article  PubMed  CAS  Google Scholar 

  133. Byfield MP, Murray JT, Backer JM (2005) hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J Biol Chem 280:33076–33082

    Article  PubMed  CAS  Google Scholar 

  134. Gulati P, Gaspers LD, Dann SG et al (2008) Amino acids activate mTOR complex 1 via Ca2+/CaM signaling to hVps34. Cell Metab 7:456–465

    Article  PubMed  CAS  Google Scholar 

  135. De Virgilio C, Loewith R (2006) The TOR signalling network from yeast to man. Int J Biochem Cell Biol 38:1476–1481

    Article  PubMed  CAS  Google Scholar 

  136. Dubouloz F, Deloche O, Wanke V, Cameroni E, De Virgilio C (2005) The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol Cell 19:15–26

    Article  PubMed  CAS  Google Scholar 

  137. Huang J, Zhu H, Haggarty SJ et al (2004) Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proc Natl Acad Sci USA 101:16594–16599

    Article  PubMed  CAS  Google Scholar 

  138. Zurita-Martinez SA, Puria R, Pan X, Boeke JD, Cardenas ME (2007) Efficient Tor signaling requires a functional class C Vps protein complex in Saccharomyces cerevisiae. Genetics 176:2139–2150

    Article  PubMed  CAS  Google Scholar 

  139. Stack JH, DeWald DB, Takegawa K, Emr SD (1995) Vesicle-mediated protein transport: regulatory interactions between the Vps15 protein kinase and the Vps34 PtdIns 3-kinase essential for protein sorting to the vacuole in yeast. J Cell Biol 129:321–334

    Article  PubMed  CAS  Google Scholar 

  140. Kihara A, Noda T, Ishihara N, Ohsumi Y (2001) Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 152:519–530

    Article  PubMed  CAS  Google Scholar 

  141. Sancak Y, Peterson TR, Shaul YD et al (2008) The Rag GTPases Bind Raptor and Mediate Amino Acid Signaling to mTORC1. Science 320:1496–1501

    Article  PubMed  CAS  Google Scholar 

  142. Findlay GM, Yan L, Procter J, Mieulet V, Lamb RFA (2007) MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling. Biochem J 403:13–20

    Article  PubMed  CAS  Google Scholar 

  143. Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G, Mammalian TOR (2001) a homeostatic ATP sensor. Science 294:1102–1105

    Article  PubMed  CAS  Google Scholar 

  144. Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67:821–855

    Article  PubMed  CAS  Google Scholar 

  145. Kemp BE, Mitchelhill KI, Stapleton D, Michell BJ, Chen ZP, Witters LA (1999) Dealing with energy demand: the AMP-activated protein kinase. Trends Biochem Sci 24:22–25

    Article  PubMed  CAS  Google Scholar 

  146. Bolster DR, Crozier SJ, Kimball SR, Jefferson LS (2002) AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem 277:23977–23980

    Article  PubMed  CAS  Google Scholar 

  147. Krause U, Bertrand L, Hue L (2002) Control of p70 ribosomal protein S6 kinase and acetyl-CoA carboxylase by AMP-activated protein kinase and protein phosphatases in isolated hepatocytes. Eur J Biochem 269:3751–3759

    Article  PubMed  CAS  Google Scholar 

  148. Kimura N, Tokunaga C, Dalal S et al (2003) A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway. Genes Cells 8:65–79

    Article  PubMed  CAS  Google Scholar 

  149. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590

    Article  PubMed  CAS  Google Scholar 

  150. Gwinn DM, Shackelford DB, Egan DF et al (2008) AMPK phosphorylation of Raptor mediates a metabolic checkpoint. Mol Cell 30:214–226

    Article  PubMed  CAS  Google Scholar 

  151. Baas AF, Boudeau J, Sapkota GP et al (2003) Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. EMBO J 22:3062–3072

    Article  PubMed  CAS  Google Scholar 

  152. Boudeau J, Baas AF, Deak M et al (2003) MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J 22:5102–5114

    Article  PubMed  CAS  Google Scholar 

  153. Corradetti MN, Inoki K, Bardeesy N, DePinho RA, Guan KL (2004) Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev 18:1533–1538

    Article  PubMed  CAS  Google Scholar 

  154. Lizcano JM, Goransson O, Toth R et al (2004) LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J 23:833–843

    Article  PubMed  CAS  Google Scholar 

  155. Shaw RJ, Kosmatka M, Bardeesy N et al (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 101:3329–3335

    Article  PubMed  CAS  Google Scholar 

  156. Shaw RJ, Bardeesy N, Manning BD et al (2004) The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6:91–99

    Article  PubMed  CAS  Google Scholar 

  157. Shaw RJ, Lamia KA, Vasquez D et al (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310:1642–1646

    Article  PubMed  CAS  Google Scholar 

  158. Zhou G, Myers R, Li Y et al (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174

    PubMed  CAS  Google Scholar 

  159. Feng Z, Zhang H, Levine AJ, Jin S (2005) The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA 102:8204–8209

    Article  PubMed  CAS  Google Scholar 

  160. Lee CH, Inoki K, Karbowniczek M et al (2007) Constitutive mTOR activation in TSC mutants sensitizes cells to energy starvation and genomic damage via p53. EMBO J 26:4812–4823

    Article  PubMed  CAS  Google Scholar 

  161. Choo AY, Roux PP, Blenis J (2006) Mind the GAP: Wnt steps onto the mTORC1 train. Cell 126:834–836

    Article  PubMed  CAS  Google Scholar 

  162. Rubin LL, de Sauvage FJ (2006) Targeting the Hedgehog pathway in cancer. Nat Rev Drug Discov 5:1026–1033

    Article  PubMed  CAS  Google Scholar 

  163. Barker N, Clevers H (2006) Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov 5:997–1014

    Article  PubMed  CAS  Google Scholar 

  164. Molenaar M, van de Wetering M, Oosterwegel M et al (1996) XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 86:391–399

    Article  PubMed  CAS  Google Scholar 

  165. Chen S, Guttridge DC, You Z et al (2001) Wnt-1 signaling inhibits apoptosis by activating beta-catenin/T cell factor-mediated transcription. J Cell Biol 152:87–96

    Article  PubMed  CAS  Google Scholar 

  166. Zhang Y, Qiu WJ, Liu DX, Neo SY, He X, Lin SC (2001) Differential molecular assemblies underlie the dual function of Axin in modulating the WNT and JNK pathways. J Biol Chem 276:32152–32159

    Article  PubMed  CAS  Google Scholar 

  167. Easwaran V, Lee SH, Inge L et al (2003) beta-Catenin regulates vascular endothelial growth factor expression in colon cancer. Cancer Res 63:3145–3153

    PubMed  CAS  Google Scholar 

  168. Inoki K, Ouyang H, Zhu T et al (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126:955–968

    Article  PubMed  CAS  Google Scholar 

  169. Hahn-Windgassen A, Nogueira V, Chen CC, Skeen JE, Sonenberg N, Hay N (2005) Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem 280:32081–32089

    Article  PubMed  CAS  Google Scholar 

  170. Edinger AL, Thompson CB (2002) Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell 13:2276–2288

    Article  PubMed  CAS  Google Scholar 

  171. Cong LN, Chen H, Li Y et al (1997) Physiological role of Akt in insulin-stimulated translocation of GLUT4 in transfected rat adipose cells. Mol Endocrinol 11:1881–1890

    Article  PubMed  CAS  Google Scholar 

  172. Lund S, Pryor PR, Ostergaard S, Schmitz O, Pedersen O, Holman GD (1998) Evidence against protein kinase B as a mediator of contraction-induced glucose transport and GLUT4 translocation in rat skeletal muscle. FEBS Lett 425:472–474

    Article  PubMed  CAS  Google Scholar 

  173. Summers SA, Garza LA, Zhou H, Birnbaum MJ (1998) Regulation of insulin-stimulated glucose transporter GLUT4 translocation and Akt kinase activity by ceramide. Mol Cell Biol 18:5457–5464

    PubMed  CAS  Google Scholar 

  174. Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, Hung MC (2001) HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 3:973–982

    Article  PubMed  CAS  Google Scholar 

  175. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789

    Article  PubMed  CAS  Google Scholar 

  176. Brugarolas J, Lei K, Hurley RL et al (2004) Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 18:2893–2904

    Article  PubMed  CAS  Google Scholar 

  177. Reiling JH, Hafen E (2004) The hypoxia-induced paralogs Scylla and Charybdis inhibit growth by down-regulating S6K activity upstream of TSC in Drosophila. Genes Dev 18:2879–2892

    Article  PubMed  CAS  Google Scholar 

  178. Corradetti MN, Inoki K, Guan KL (2005) The stress-inducted proteins RTP801 and RTP801L are negative regulators of the mammalian target of rapamycin pathway. J Biol Chem 280:9769–9772

    Article  PubMed  CAS  Google Scholar 

  179. Shoshani T, Faerman A, Mett I et al (2002) Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis. Mol Cell Biol 22:2283–2293

    Article  PubMed  CAS  Google Scholar 

  180. Sofer A, Lei K, Johannessen CM, Ellisen LW (2005) Regulation of mTOR and cell growth in response to energy stress by REDD1. Mol Cell Biol 25:5834–5845

    Article  PubMed  CAS  Google Scholar 

  181. Wang H, Kubica N, Ellisen LW, Jefferson LS, Kimball SR (2006) Dexamethasone represses signaling through the mammalian target of rapamycin in muscle cells by enhancing expression of REDD1. J Biol Chem 281:39128–39134

    Article  PubMed  CAS  Google Scholar 

  182. Ellisen LW, Ramsayer KD, Johannessen CM et al (2002) REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol Cell 10:995–1005

    Article  PubMed  CAS  Google Scholar 

  183. Lin L, Stringfield TM, Shi X, Chen Y (2005) Arsenite induces a cell stress-response gene, RTP801, through reactive oxygen species and transcription factors Elk-1 and CCAAT/enhancer-binding protein. Biochem J 392:93–102

    Article  PubMed  CAS  Google Scholar 

  184. Lang CH, Frost RA, Vary TC (2008) Acute Alcohol Intoxication Increases REDD1 in Skeletal Muscle. Alcohol Clin Exp Res 32:796–805

    Article  PubMed  CAS  Google Scholar 

  185. Kimball SR, Do AN, Kutzler L, Cavener DR, Jefferson LS (2008) Rapid turnover of the mTOR complex 1 (mTORC1) repressor REDD1 and activation of mTORC1 signaling following inhibition of protein synthesis. J Biol Chem 283:3465–3475

    Article  PubMed  CAS  Google Scholar 

  186. Pan DA, Hardie DG (2002) A homologue of AMP-activated protein kinase in Drosophila melanogaster is sensitive to AMP and is activated by ATP depletion. Biochem J 367:179–186

    Article  PubMed  CAS  Google Scholar 

  187. DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW (2008) Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev 22:239–251

    Article  PubMed  CAS  Google Scholar 

  188. Li Y, Wang Y, Kim E et al (2007) Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb. J Biol Chem 282:35803–35813

    Article  PubMed  CAS  Google Scholar 

  189. Lee DF, Kuo HP, Chen CT et al (2007) IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 130:440–455

    Article  PubMed  CAS  Google Scholar 

  190. Wang X, Li W, Williams M, Terada N, Alessi DR, Proud CG (2001) Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J 20:4370–4379

    Article  PubMed  CAS  Google Scholar 

  191. Horman S, Browne G, Krause U et al (2002) Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Curr Biol 12:1419–1423

    Article  PubMed  CAS  Google Scholar 

  192. Browne GJ, Proud CG (2004) A novel mTOR-regulated phosphorylation site in elongation factor 2 kinase modulates the activity of the kinase and its binding to calmodulin. Mol Cell Biol 24:2986–2997

    Article  PubMed  CAS  Google Scholar 

  193. Haghighat A, Mader S, Pause A, Sonenberg N (1995) Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E. EMBO J 14:5701–5709

    PubMed  CAS  Google Scholar 

  194. Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK (1999) Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol Cell 3:707–716

    Article  PubMed  CAS  Google Scholar 

  195. Gingras AC, Raught B, Gygi SP et al (2001) Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev 15:2852–2864

    Article  PubMed  CAS  Google Scholar 

  196. Gross JD, Moerke NJ, von der Haar T et al (2003) Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E. Cell 115:739–750

    Article  PubMed  CAS  Google Scholar 

  197. Brunn GJ, Hudson CC, Sekulic A et al (1997) Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 277:99–101

    Article  PubMed  CAS  Google Scholar 

  198. Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM (1998) RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci USA 95:1432–1437

    Article  PubMed  CAS  Google Scholar 

  199. Choo AY, Yoon S-O, Kim SG, Roux PP, Blenis J (2008) Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc Natl Acad Sci USA 105:17414–17419

    Article  PubMed  CAS  Google Scholar 

  200. Blenis J, Kuo CJ, Erikson RL (1987) Identification of a ribosomal protein S6 kinase regulated by transformation and growth-promoting stimuli. J Biol Chem 262:14373–14376

    PubMed  CAS  Google Scholar 

  201. Shima H, Pende M, Chen Y, Fumagalli S, Thomas G, Kozma SC (1998) Disruption of the p70(s6k)/p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J 17:6649–6659

    Article  PubMed  CAS  Google Scholar 

  202. Lee-Fruman KK, Kuo CJ, Lippincott J, Terada N, Blenis J (1999) Characterization of S6K2, a novel kinase homologous to S6K1. Oncogene 18:5108–5114

    Article  PubMed  CAS  Google Scholar 

  203. Pende M, Um SH, Mieulet V et al (2004) S6K1(–/–)/S6K2(–/–) mice exhibit perinatal lethality and rapamycin-sensitive 5-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol Cell Biol 24:3112–3124

    Article  PubMed  CAS  Google Scholar 

  204. Yang HS, Jansen AP, Komar AA et al (2003) The transformation suppressor Pdcd4 is a novel eukaryotic translation initiation factor 4A binding protein that inhibits translation. Mol Cell Biol 23:26–37

    Article  PubMed  CAS  Google Scholar 

  205. LaRonde-LeBlanc N, Santhanam AN, Baker AR, Wlodawer A, Colburn NH (2007) Structural basis for inhibition of translation by the tumor suppressor Pdcd4. Mol Cell Biol 27:147–156

    Article  PubMed  CAS  Google Scholar 

  206. Waters LC, Veverka V, Bohm M et al (2007) Structure of the C-terminal MA-3 domain of the tumour suppressor protein Pdcd4 and characterization of its interaction with eIF4A. Oncogene 26:4941–4950

    Article  PubMed  CAS  Google Scholar 

  207. Suzuki C, Garces RG, Edmonds KA et al (2008) PDCD4 inhibits translation initiation by binding to eIF4A using both its MA3 domains. Proc Natl Acad Sci USA 105:3274–3279

    Article  PubMed  CAS  Google Scholar 

  208. Dorrello NV, Peschiaroli A, Guardavaccaro D, Colburn NH, Sherman NE, Pagano M (2006) S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 314:467–471

    Article  PubMed  CAS  Google Scholar 

  209. Carayol N, Katsoulidis E, Sassano A, Altman JK, Druker BJ, Platanias LC (2008) Suppression of Programmed Cell Death 4 (PDCD4) Protein Expression by BCR-ABL-regulated Engagement of the mTOR/p70 S6 Kinase Pathway. J Biol Chem 283:8601–8610

    Article  PubMed  CAS  Google Scholar 

  210. Raught B, Peiretti F, Gingras AC et al (2004) Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J 23:1761–1769

    Article  PubMed  CAS  Google Scholar 

  211. Shahbazian D, Roux PP, Mieulet V et al (2006) The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBO J 25:2781–2791

    Article  PubMed  CAS  Google Scholar 

  212. Rogers GW Jr, Komar AA, Merrick WC (2002) eIF4A: the godfather of the DEAD box helicases. Prog Nucleic Acid Res Mol Biol 72:307–331

    Article  PubMed  CAS  Google Scholar 

  213. Dmitriev SE, Terenin IM, Dunaevsky YE, Merrick WC, Shatsky IN (2003) Assembly of 48S translation initiation complexes from purified components with mRNAs that have some base pairing within their 5 untranslated regions. Mol Cell Biol 23:8925–8933

    Article  PubMed  CAS  Google Scholar 

  214. Manzella JM, Rychlik W, Rhoads RE, Hershey JW, Blackshear PJ (1991) Insulin induction of ornithine decarboxylase. Importance of mRNA secondary structure and phosphorylation of eucaryotic initiation factors eIF-4B and eIF-4E. J Biol Chem 266:2383–2389

    PubMed  CAS  Google Scholar 

  215. Ma XM, Yoon SO, Richardson CJ, Julich K, Blenis J (2008) SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs. Cell 133:303–313

    Article  PubMed  CAS  Google Scholar 

  216. Izaurralde E, Lewis J, McGuigan C, Jankowska M, Darzynkiewicz E, Mattaj IW (1994) A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell 78:657–668

    Article  PubMed  CAS  Google Scholar 

  217. Le Hir H, Moore MJ, Maquat LE (2000) Pre-mRNA splicing alters mRNP composition: evidence for stable association of proteins at exon-exon junctions. Genes Dev 14:1098–1108

    PubMed  Google Scholar 

  218. Ishigaki Y, Li X, Serin G, Maquat LE (2001) Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell 106:607–617

    Article  PubMed  CAS  Google Scholar 

  219. Wang W, Czaplinski K, Rao Y, Peltz SW (2001) The role of Upf proteins in modulating the translation read-through of nonsense-containing transcripts. EMBO J 20:880–890

    Article  PubMed  CAS  Google Scholar 

  220. Dostie J, Dreyfuss G (2002) Translation is required to remove Y14 from mRNAs in the cytoplasm. Curr Biol 12:1060–1067

    Article  PubMed  CAS  Google Scholar 

  221. Lejeune F, Ranganathan AC, Maquat LE (2004) eIF4G is required for the pioneer round of translation in mammalian cells. Nat Struct Mol Biol 11:992–1000

    Article  PubMed  CAS  Google Scholar 

  222. Wiegand HL, Lu S, Cullen BR (2003) Exon junction complexes mediate the enhancing effect of splicing on mRNA expression. Proc Natl Acad Sci USA 100:11327–11332

    Article  PubMed  CAS  Google Scholar 

  223. Nott A, Le Hir H, Moore MJ (2004) Splicing enhances translation in mammalian cells: an additional function of the exon junction complex. Genes Dev 18:210–222

    Article  PubMed  CAS  Google Scholar 

  224. Gudikote JP, Imam JS, Garcia RF, Wilkinson MF (2005) RNA splicing promotes translation and RNA surveillance. Nat Struct Mol Biol 12:801–809

    Article  PubMed  CAS  Google Scholar 

  225. Callis J, Fromm M, Walbot V (1987) Introns increase gene expression in cultured maize cells. Genes Dev 1:1183–1200

    Article  PubMed  CAS  Google Scholar 

  226. Palmiter RD, Sandgren EP, Avarbock MR, Allen DD, Brinster RL (1991) Heterologous introns can enhance expression of transgenes in mice. Proc Natl Acad Sci USA 88:478–482

    Article  PubMed  CAS  Google Scholar 

  227. Braddock M, Muckenthaler M, White MR et al (1994) Intron-less RNA injected into the nucleus of Xenopus oocytes accesses a regulated translation control pathway. Nucleic Acids Res 22:5255–5264

    Article  PubMed  CAS  Google Scholar 

  228. Matsumoto K, Wassarman KM, Wolffe AP (1998) Nuclear history of a pre-mRNA determines the translational activity of cytoplasmic mRNA. EMBO J 17:2107–2121

    Article  PubMed  CAS  Google Scholar 

  229. Lu S, Cullen BR (2003) Analysis of the stimulatory effect of splicing on mRNA production and utilization in mammalian cells. RNA 9:618–630

    Article  PubMed  CAS  Google Scholar 

  230. Richardson CJ, Broenstrup M, Fingar DC et al (2004) SKAR is a specific target of S6 kinase 1 in cell growth control. Curr Biol 14:1540–1549

    Article  PubMed  CAS  Google Scholar 

  231. Jefferies HB, Fumagalli S, Dennis PB, Reinhard C, Pearson RB, Thomas G (1997) Rapamycin suppresses 5TOP mRNA translation through inhibition of p70s6k. EMBO J 16:3693–3704

    Article  PubMed  CAS  Google Scholar 

  232. Schwab MS, Kim SH, Terada N et al (1999) p70(S6K) controls selective mRNA translation during oocyte maturation and early embryogenesis in Xenopus laevis. Mol Cell Biol 19:2485–2494

    PubMed  CAS  Google Scholar 

  233. Tang H, Hornstein E, Stolovich M et al (2001) Amino acid-induced translation of TOP mRNAs is fully dependent on phosphatidylinositol 3-kinase-mediated signaling, is partially inhibited by rapamycin, and is independent of S6K1 and rpS6 phosphorylation. Mol Cell Biol 21:8671–8683

    Article  PubMed  CAS  Google Scholar 

  234. Stolovich M, Tang H, Hornstein E et al (2002) Transduction of growth or mitogenic signals into translational activation of TOP mRNAs is fully reliant on the phosphatidylinositol 3-kinase-mediated pathway but requires neither S6K1 nor rpS6 phosphorylation. Mol Cell Biol 22:8101–8113

    Article  PubMed  CAS  Google Scholar 

  235. Koromilas AE, Lazaris-Karatzas A, Sonenberg N (1992) mRNAs containing extensive secondary structure in their 5 non-coding region translate efficiently in cells overexpressing initiation factor eIF-4E. EMBO J 11:4153–4158

    PubMed  CAS  Google Scholar 

  236. Graff JR, Zimmer SG (2003) Translational control and metastatic progression: enhanced activity of the mRNA cap-binding protein eIF-4E selectively enhances translation of metastasis-related mRNAs. Clin Exp Metastasis 20:265–273

    Article  PubMed  CAS  Google Scholar 

  237. Fagan RJ, Lazaris-Karatzas A, Sonenberg N, Rozen R (1991) Translational control of ornithine aminotransferase. Modulation by initiation factor eIF-4E. J Biol Chem 266:16518–16523

    PubMed  CAS  Google Scholar 

  238. Shantz LM, Hu RH, Pegg AE (1996) Regulation of ornithine decarboxylase in a transformed cell line that overexpresses translation initiation factor eIF-4E. Cancer Res 56:3265–3269

    PubMed  CAS  Google Scholar 

  239. Graff JR, De Benedetti A, Olson JW, Tamez P, Casero RA Jr, Zimmer SG (1997) Translation of ODC mRNA and polyamine transport are suppressed in ras-transformed CREF cells by depleting translation initiation factor 4E. Biochem Biophys Res Commun 240:15–20

    Article  PubMed  CAS  Google Scholar 

  240. Rosenwald IB, Lazaris-Karatzas A, Sonenberg N, Schmidt EV (1993) Elevated levels of cyclin D1 protein in response to increased expression of eukaryotic initiation factor 4E. Mol Cell Biol 13:7358–7363

    PubMed  CAS  Google Scholar 

  241. De Benedetti A, Graff JR (2004) eIF-4E expression and its role in malignancies and metastases. Oncogene 23:3189–3199

    Article  PubMed  CAS  Google Scholar 

  242. Kevil C, Carter P, Hu B, DeBenedetti A (1995) Translational enhancement of FGF-2 by eIF-4 factors, and alternate utilization of CUG and AUG codons for translation initiation. Oncogene 11:2339–2348

    PubMed  CAS  Google Scholar 

  243. Kevil CG, De Benedetti A, Payne DK, Coe LL, Laroux FS, Alexander JS (1996) Translational regulation of vascular permeability factor by eukaryotic initiation factor 4E: implications for tumor angiogenesis. Int J Cancer 65:785–790

    Article  PubMed  CAS  Google Scholar 

  244. Pardo OE, Arcaro A, Salerno G, Raguz S, Downward J, Seckl MJ (2002) Fibroblast growth factor-2 induces translational regulation of Bcl-XL and Bcl-2 via a MEK-dependent pathway: correlation with resistance to etoposide-induced apoptosis. J Biol Chem 277:12040–12046

    Article  PubMed  CAS  Google Scholar 

  245. Hoover DS, Wingett DG, Zhang J, Reeves R, Magnuson NS (1997) Pim-1 protein expression is regulated by its 5-untranslated region and translation initiation factor elF-4E. Cell Growth Differ 8:1371–1380

    PubMed  CAS  Google Scholar 

  246. Abid MR, Li Y, Anthony C, De Benedetti A (1999) Translational regulation of ribonucleotide reductase by eukaryotic initiation factor 4E links protein synthesis to the control of DNA replication. J Biol Chem 274:35991–35998

    Article  PubMed  CAS  Google Scholar 

  247. Kubica N, Bolster DR, Farrell PA, Kimball SR, Jefferson LS (2005) Resistance exercise increases muscle protein synthesis and translation of eukaryotic initiation factor 2Bepsilon mRNA in a mammalian target of rapamycin-dependent manner. J Biol Chem 280:7570–7580

    Article  PubMed  CAS  Google Scholar 

  248. Holz MK, Ballif BA, Gygi SP, Blenis J (2005) mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123:569–580

    Article  PubMed  CAS  Google Scholar 

  249. Hinnebusch AG (2006) eIF3: a versatile scaffold for translation initiation complexes. Trends Biochem Sci 31:553–562

    Article  PubMed  CAS  Google Scholar 

  250. Mayer C, Grummt I (2006) Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene 25:6384–6391

    Article  PubMed  CAS  Google Scholar 

  251. Warner JR (1999) The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24:437–440

    Article  PubMed  CAS  Google Scholar 

  252. Grummt I, Smith VA, Grummt F (1976) Amino acid starvation affects the initiation frequency of nucleolar RNA polymerase. Cell 7:439–445

    Article  PubMed  CAS  Google Scholar 

  253. Mahajan PB (1994) Modulation of transcription of rRNA genes by rapamycin. Int J Immunopharmacol 16:711–721

    Article  PubMed  CAS  Google Scholar 

  254. Zaragoza D, Ghavidel A, Heitman J, Schultz MC (1998) Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway. Mol Cell Biol 18:4463–4470

    PubMed  CAS  Google Scholar 

  255. Powers T, Walter P (1999) Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol Biol Cell 10:987–1000

    PubMed  CAS  Google Scholar 

  256. Hannan KM, Brandenburger Y, Jenkins A et al (2003) mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF. Mol Cell Biol 23:8862–8877

    Article  PubMed  CAS  Google Scholar 

  257. Mayer C, Zhao J, Yuan X, Grummt I (2004) mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev 18:423–434

    Article  PubMed  CAS  Google Scholar 

  258. Claypool JA, French SL, Johzuka K et al (2004) Tor pathway regulates Rrn3p-dependent recruitment of yeast RNA polymerase I to the promoter but does not participate in alteration of the number of active genes. Mol Biol Cell 15:946–956

    Article  PubMed  CAS  Google Scholar 

  259. Nader GA, McLoughlin TJ, Esser KA (2005) mTOR function in skeletal muscle hypertrophy: increased ribosomal RNA via cell cycle regulators. Am J Physiol Cell Physiol 289:C1457–C1465

    Article  PubMed  CAS  Google Scholar 

  260. Albig AR, Decker CJ (2001) The target of rapamycin signaling pathway regulates mRNA turnover in the yeast Saccharomyces cerevisiae. Mol Biol Cell 12:3428–3438

    PubMed  CAS  Google Scholar 

  261. Banholzer R, Nair AP, Hirsch HH, Ming XF, Moroni C (1997) Rapamycin destabilizes interleukin-3 mRNA in autocrine tumor cells by a mechanism requiring an intact 3 untranslated region. Mol Cell Biol 17:3254–3260

    PubMed  CAS  Google Scholar 

  262. Hashemolhosseini S, Nagamine Y, Morley SJ, Desrivieres S, Mercep L, Ferrari S (1998) Rapamycin inhibition of the G1 to S transition is mediated by effects on cyclin D1 mRNA and protein stability. J Biol Chem 273:14424–14429

    Article  PubMed  CAS  Google Scholar 

  263. Cardenas ME, Cutler NS, Lorenz MC, Di Como CJ, Heitman J (1999) The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev 13:3271–3279

    Article  PubMed  CAS  Google Scholar 

  264. Preiss T, Baron-Benhamou J, Ansorge W, Hentze MW (2003) Homodirectional changes in transcriptome composition and mRNA translation induced by rapamycin and heat shock. Nat Struct Biol 10:1039–1047

    Article  PubMed  CAS  Google Scholar 

  265. Jorgensen P, Rupes I, Sharom JR, Schneper L, Broach JR, Tyers M (2004) A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev 18:2491–2505

    Article  PubMed  CAS  Google Scholar 

  266. Marion RM, Regev A, Segal E et al (2004) Sfp1 is a stress- and nutrient-sensitive regulator of ribosomal protein gene expression. Proc Natl Acad Sci USA 101:14315–14322

    Article  PubMed  CAS  Google Scholar 

  267. Martin DE, Soulard A, Hall MN (2004) TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1. Cell 119:969–979

    Article  PubMed  CAS  Google Scholar 

  268. Schawalder SB, Kabani M, Howald I, Choudhury U, Werner M, Shore D (2004) Growth-regulated recruitment of the essential yeast ribosomal protein gene activator Ifh1. Nature 432:1058–1061

    Article  PubMed  CAS  Google Scholar 

  269. Wade JT, Hall DB, Struhl K (2004) The transcription factor Ifh1 is a key regulator of yeast ribosomal protein genes. Nature 432:1054–1058

    Article  PubMed  CAS  Google Scholar 

  270. Rudra D, Zhao Y, Warner JR (2005) Central role of Ifh1p-Fhl1p interaction in the synthesis of yeast ribosomal proteins. EMBO J 24:533–542

    Article  PubMed  CAS  Google Scholar 

  271. Damelin M, Simon I, Moy TI et al (2002) The genome-wide localization of Rsc9, a component of the RSC chromatin-remodeling complex, changes in response to stress. Mol Cell 9:563–573

    Article  PubMed  CAS  Google Scholar 

  272. Rohde JR, Cardenas ME (2003) The tor pathway regulates gene expression by linking nutrient sensing to histone acetylation. Mol Cell Biol 23:629–635

    Article  PubMed  CAS  Google Scholar 

  273. Humphrey EL, Shamji AF, Bernstein BE, Schreiber SL (2004) Rpd3p relocation mediates a transcriptional response to rapamycin in yeast. Chem Biol 11:295–299

    Article  PubMed  CAS  Google Scholar 

  274. White RJ (2005) RNA polymerases I and III, growth control and cancer. Nat Rev Mol Cell Biol 6:69–78

    Article  PubMed  CAS  Google Scholar 

  275. Gstaiger M, Luke B, Hess D et al (2003) Control of nutrient-sensitive transcription programs by the unconventional prefoldin URI. Science 302:1208–1212

    Article  PubMed  CAS  Google Scholar 

  276. Djouder N, Metzler SC, Schmidt A et al (2007) S6K1-mediated disassembly of mitochondrial URI/PP1gamma complexes activates a negative feedback program that counters S6K1 survival signaling. Mol Cell 28:28–40

    Article  PubMed  CAS  Google Scholar 

  277. Jorgensen P, Tyers M (2004) How cells coordinate growth and division. Curr Biol 14:R1014–R1027

    Article  PubMed  CAS  Google Scholar 

  278. Ruggero D, Pandolfi PP (2003) Does the ribosome translate cancer? Nat Rev Cancer 3:179–192

    Article  PubMed  CAS  Google Scholar 

  279. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  280. Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P (2007) mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 450:736–740

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Blenis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kubica, N., Blenis, J. (2009). mTORC1: A Signaling Integration Node Involved in Cell Growth. In: Polunovsky, V., Houghton, P. (eds) mTOR Pathway and mTOR Inhibitors in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-271-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-271-1_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-270-4

  • Online ISBN: 978-1-60327-271-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics