Skip to main content

CXC Chemokines in Cancer Angiogenesis

  • Chapter
  • First Online:
Chemokine Receptors in Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 783 Accesses

Abstract

Chemokines were first described for their ability to recruit leukocytes, but their biological role has now been recognized in many other biological processes. Angiogenesis, or the process of new blood vessel growth, is critical to many physiologic and pathologic processes, including tumorigenesis. In this chapter, we review the role of chemokines in cancer angiogenesis and angiostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auerbach, W. and R. Auerbach. Angiogenesis inhibition: a review. Pharmacol Ther 63: 265–311, 1994.

    PubMed  CAS  Google Scholar 

  2. Auerbach, R., W. Auerbach, and I. Polakowski. Assays for angiogenesis: a review. Pharmacol Ther 51: 1–11, 1991.

    PubMed  Google Scholar 

  3. Ziche, M., L. Morbidelli, and S. Donnini. Angiogenesis. Exp Nephrol 4: 1–14, 1996.

    PubMed  CAS  Google Scholar 

  4. Pluda, J.M. Tumor-associated angiogenesis: mechanisms, clinical implications, and therapeutic strategies. Semin Oncol 24: 203–18, 1997.

    PubMed  CAS  Google Scholar 

  5. Pluda, J.M. and D.R. Parkinson. Clinical implications of tumor-associated neovascularization and current antiangiogenic strategies for the treatment of malignancies of pancreas. Cancer 78: 680–7, 1996.

    PubMed  CAS  Google Scholar 

  6. Gastl, G., T. Hermann, M. Steurer, J. Zmija, E. Gunsilius, C. Unger, and A. Kraft. Angiogenesis as a target for tumor treatment. Oncology 54: 177–84, 1997.

    PubMed  CAS  Google Scholar 

  7. Risau, W. Angiogenesis is coming of age. Circ Res 82: 926–8, 1998.

    PubMed  CAS  Google Scholar 

  8. Risau, W. Mechanisms of angiogenesis. Nature 386: 671–4, 1997.

    PubMed  CAS  Google Scholar 

  9. Hotfilder, M., U. Nowak-Gottl, and J.E. Wolff. Tumorangiogenesis: a network of cytokines. Klin Padiatr 209: 265–70, 1997.

    PubMed  CAS  Google Scholar 

  10. Hui, Y.F. and R.J. Ignoffo. Angiogenesis inhibitors. A promising role in cancer therapy. Cancer Pract 6: 60–2, 1998.

    CAS  Google Scholar 

  11. Kumar, R. and I.J. Fidler. Angiogenic molecules and cancer metastasis. In Vivo 12: 27–34, 1998.

    PubMed  CAS  Google Scholar 

  12. Zetter, B.R. Angiogenesis. State of the art. Chest 93: 159S–166S, 1988.

    CAS  Google Scholar 

  13. Zetter, B.R. Angiogenesis and tumor metastasis. Annu Rev Med 49: 407–24, 1998.

    PubMed  CAS  Google Scholar 

  14. Lund, E.L., M. Spang-Thomsen, H. Skovgaard-Poulsen, and P.E. Kristjansen. Tumor angiogenesis--a new therapeutic target in gliomas. Acta Neurol Scand 97: 52–62, 1998.

    PubMed  CAS  Google Scholar 

  15. Luster, A.D. Chemokines--chemotactic cytokines that mediate inflammation. N Engl J Med 338: 436–45, 1998.

    PubMed  CAS  Google Scholar 

  16. Belperio, J.A., M.P. Keane, D.A. Arenberg, C.L. Addison, J.E. Ehlert, M.D. Burdick, and R.M. Strieter. CXC chemokines in angiogenesis. J Leukoc Biol 68: 1–8., 2000.

    PubMed  CAS  Google Scholar 

  17. Strieter, R.M., P.J. Polverini, S.L. Kunkel, D.A. Arenberg, M.D. Burdick, J. Kasper, J. Dzuiba, J.V. Damme, A. Walz, D. Marriott, S.Y. Chan, S. Roczniak, and A.B. Shanafelt. The functional role of the 'ELR' motif in CXC chemokine-mediated angiogenesis. J Biol Chem 270: 27348–57, 1995.

    PubMed  CAS  Google Scholar 

  18. Heidemann, J., H. Ogawa, M.B. Dwinell, P. Rafiee, C. Maaser, H.R. Gockel, M.F. Otterson, D.M. Ota, N. Lugering, W. Domschke, and D.G. Binion. Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2. J Biol Chem 278: 8508–15, 2003.

    PubMed  CAS  Google Scholar 

  19. Nor, J.E., J. Christensen, J. Liu, M. Peters, D.J. Mooney, R.M. Strieter, and P.J. Polverini. Up-Regulation of Bcl-2 in microvascular endothelial cells enhances intratumoral angiogenesis and accelerates tumor growth. Cancer Res 61: 2183–8., 2001.

    PubMed  CAS  Google Scholar 

  20. Schruefer, R., N. Lutze, J. Schymeinsky, and B. Walzog. Human neutrophils promote angiogenesis by a paracrine feedforward mechanism involving endothelial interleukin-8. Am J Physiol Heart Circ Physiol 288: H1186–92, 2005.

    Google Scholar 

  21. Dong, G., Z. Chen, Z.Y. Li, N.T. Yeh, C.C. Bancroft, and C. Van Waes. Hepatocyte growth factor/scatter factor-induced activation of MEK and PI3K signal pathways contributes to expression of proangiogenic cytokines interleukin-8 and vascular endothelial growth factor in head and neck squamous cell carcinoma. Cancer Res 61: 5911–8, 2001.

    PubMed  CAS  Google Scholar 

  22. Hirata, A., S. Ogawa, T. Kometani, T. Kuwano, S. Naito, M. Kuwano, and M. Ono. ZD1839 (Iressa) induces antiangiogenic effects through inhibition of epidermal growth factor receptor tyrosine kinase. Cancer Res 62: 2554–60, 2002.

    PubMed  CAS  Google Scholar 

  23. Levine, L., J.A. Lucci, 3rd, B. Pazdrak, J.Z. Cheng, Y.S. Guo, C.M. Townsend, Jr., and M.R. Hellmich. Bombesin stimulates nuclear factor kappa B activation and expression of proangiogenic factors in prostate cancer cells. Cancer Res 63: 3495–502, 2003.

    PubMed  CAS  Google Scholar 

  24. Richmond, A. Nf-kappa B, chemokine gene transcription and tumour growth. Nat Rev Immunol 2: 664–74, 2002.

    PubMed  CAS  Google Scholar 

  25. Addison, C.L., T.O. Daniel, M.D. Burdick, H. Liu, J.E. Ehlert, Y.Y. Xue, L. Buechi, A. Walz, A. Richmond, and R.M. Strieter. The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR(+) CXC chemokine-induced angiogenic activity J Immunol 165: 5269–77, 2000.

    PubMed  CAS  Google Scholar 

  26. Murdoch, C., P.N. Monk, and A. Finn. CXC Chemokine receptor expression on human endothelial cells. Cytokine 11: 704–712, 1999.

    PubMed  CAS  Google Scholar 

  27. Salcedo, R., J.H. Resau, D. Halverson, E.A. Hudson, M. Dambach, D. Powell, K. Wasserman, and J.J. Oppenheim. Differential expression and responsiveness of chemokine receptors (CXCR1–3) by human microvascular endothelial cells and umbilical vein endothelial cells. Faseb J 14: 2055–64, 2000.

    PubMed  CAS  Google Scholar 

  28. Devalaraja, R.M., L.B. Nanney, J. Du, Q. Qian, Y. Yu, M.N. Devalaraja, and A. Richmond. Delayed wound healing in CXCR2 knockout mice. J Invest Dermatol 115: 234–44, 2000.

    PubMed  CAS  Google Scholar 

  29. Keane, M.P., J.A. Belperio, Y.Y. Xue, M.D. Burdick, and R.M. Strieter. Depletion of CXCR2 inhibits tumor growth and angiogenesis in a murine model of lung cancer. J Immunol 172: 2853–60, 2004.

    PubMed  CAS  Google Scholar 

  30. Richmond, A., G.H. Fan, P. Dhawan, and J. Yang. How do chemokine/chemokine receptor activations affect tumorigenesis? Novartis Found Symp 256: 74–89; discussion 89–91, 106–11, 266–9, 2004.

    PubMed  CAS  Google Scholar 

  31. Burger, M., J.A. Burger, R.C. Hoch, Z. Oades, H. Takamori, and I.U. Schraufstatter. Point mutation causing constitutive signaling of CXCR2 leads to transforming activity similar to Kaposi's sarcoma herpesvirus-G protein- coupled receptor. J Immunol 163: 2017–22, 1999.

    PubMed  CAS  Google Scholar 

  32. Gershengorn, M.C., E. Geras-Raaka, A. Varma, and I. Clark-Lewis. Chemokines activate Kaposi's sarcoma-associated herpesvirus G protein- coupled receptor in mammalian cells in culture. J Clin Invest 102: 1469–72, 1998.

    PubMed  CAS  Google Scholar 

  33. Sugden, P.H. and A. Clerk. Regulation of the ERK subgroup of MAP kinase cascades through G protein- coupled receptors. Cell Signal 9: 337–51, 1997.

    PubMed  CAS  Google Scholar 

  34. Pawson, T. and J.D. Scott. Signaling through scaffold, anchoring, and adaptor proteins. Science 278: 2075–80, 1997.

    PubMed  CAS  Google Scholar 

  35. Shyamala, V. and H. Khoja. Interleukin-8 receptors R1 and R2 activate mitogen-activated protein kinases and induce c-fos, independent of Ras and Raf-1 in Chinese hamster ovary cells. Biochemistry 37: 15918–24, 1998.

    PubMed  CAS  Google Scholar 

  36. Couty, J.P. and M.C. Gershengorn. Insights into the viral G protein-coupled receptor encoded by human herpesvirus type 8 (HHV-8). Biol Cell 96: 349–54, 2004.

    PubMed  CAS  Google Scholar 

  37. Arvanitakis, L., E. Geras-Raaka, A. Varma, M.C. Gershengorn, and E. Cesarman. Human herpesvirus KSHV encodes a constitutively active G-protein- coupled receptor linked to cell proliferation. Nature 385: 347–50, 1997.

    PubMed  CAS  Google Scholar 

  38. Bais, C., B. Santomasso, O. Coso, L. Arvanitakis, E.G. Raaka, J.S. Gutkind, A.S. Asch, E. Cesarman, M.C. Gershengorn, E.A. Mesri, and M.C. Gerhengorn. G-protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 391: 86–9, 1998.

    PubMed  CAS  Google Scholar 

  39. Geras-Raaka, E., L. Arvanitakis, C. Bais, E. Cesarman, E.A. Mesri, and M.C. Gershengorn. Inhibition of constitutive signaling of Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor by protein kinases in mammalian cells in culture. J Exp Med 187: 801–6, 1998.

    PubMed  CAS  Google Scholar 

  40. Geras-Raaka, E., A. Varma, H. Ho, I. Clark-Lewis, and M.C. Gershengorn. Human interferon-gamma-inducible protein 10 (IP-10) inhibits constitutive signaling of Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor. J Exp Med 188: 405–8, 1998.

    PubMed  CAS  Google Scholar 

  41. Yang, T.Y., S.C. Chen, M.W. Leach, D. Manfra, B. Homey, M. Wiekowski, L. Sullivan, C.H. Jenh, S.K. Narula, S.W. Chensue, and S.A. Lira. Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi's sarcoma. J Exp Med 191: 445–54, 2000.

    PubMed  CAS  Google Scholar 

  42. Guo, H.G., M. Sadowska, W. Reid, E. Tschachler, G. Hayward, and M. Reitz. Kaposi's sarcoma-like tumors in a human herpesvirus 8 ORF74 transgenic mouse. J Virol 77: 2631–9, 2003.

    PubMed  CAS  Google Scholar 

  43. Jensen, K.K., D.J. Manfra, M.G. Grisotto, A.P. Martin, G. Vassileva, K. Kelley, T.W. Schwartz, and S.A. Lira. The human herpes virus 8-encoded chemokine receptor is required for angioproliferation in a murine model of Kaposi's sarcoma. J Immunol 174: 3686–94, 2005.

    PubMed  CAS  Google Scholar 

  44. Grisotto, M.G., A. Garin, A.P. Martin, K.K. Jensen, P. Chan, S.C. Sealfon, and S.A. Lira. The human herpesvirus 8 chemokine receptor vGPCR triggers autonomous proliferation of endothelial cells. J Clin Invest 116: 1264–73, 2006.

    PubMed  CAS  Google Scholar 

  45. Luan, J., R. Shattuck-Brandt, H. Haghnegahdar, J.D. Owen, R. Strieter, M. Burdick, C. Nirodi, D. Beauchamp, K.N. Johnson, and A. Richmond. Mechanism and biological significance of constitutive expression of MGSA/GRO chemokines in malignant melanoma tumor progression. J Leukoc Biol 62: 588–97, 1997.

    PubMed  CAS  Google Scholar 

  46. Owen, J.D., R. Strieter, M. Burdick, H. Haghnegahdar, L. Nanney, R. Shattuck-Brandt, and A. Richmond. Enhanced tumor-forming capacity for immortalized melanocytes expressing melanoma growth stimulatory activity/growth-regulated cytokine beta and gamma proteins. Int J Cancer 73: 94–103, 1997.

    PubMed  CAS  Google Scholar 

  47. Addison, C.L., J.A. Belperio, M.D. Burdick, and R.M. Strieter. Overexpression of the duffy antigen receptor for chemokines (DARC) by NSCLC tumor cells results in increased tumor necrosis. BMC Cancer 4: 28, 2004.

    PubMed  Google Scholar 

  48. Arenberg, D.A., S.L. Kunkel, P.J. Polverini, M. Glass, M.D. Burdick, and R.M. Strieter. Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice. J Clin Invest 97: 2792–802, 1996.

    PubMed  CAS  Google Scholar 

  49. Arenberg, D.A., M.P. Keane, B. DiGiovine, S.L. Kunkel, S.B. Morris, Y.Y. Xue, M.D. Burdick, M.C. Glass, M.D. Iannettoni, and R.M. Strieter. Epithelial-neutrophil activating peptide (ENA-78) is an important angiogenic factor in non-small cell lung cancer. J Clin Invest 102: 465–72, 1998.

    PubMed  CAS  Google Scholar 

  50. Moore, B.B., D.A. Arenberg, K. Stoy, T. Morgan, C.L. Addison, S.B. Morris, M. Glass, C. Wilke, Y.Y. Xue, S. Sitterding, S.L. Kunkel, M.D. Burdick, and R.M. Strieter. Distinct CXC chemokines mediate tumorigenicity of prostate cancer cells. Am J Pathol 154: 1503–12, 1999.

    PubMed  CAS  Google Scholar 

  51. Luca, M., S. Huang, J.E. Gershenwald, R.K. Singh, R. Reich, and M. Bar-Eli. Expression of interleukin-8 by human melanoma cells up-regulates MMP-2 activity and increases tumor growth and metastasis. Am J Pathol 151: 1105–13, 1997.

    PubMed  CAS  Google Scholar 

  52. Inoue, K., J.W. Slaton, B.Y. Eve, S.J. Kim, P. Perrotte, M.D. Balbay, S. Yano, M. Bar-Eli, R. Radinsky, C.A. Pettaway, and C.P. Dinney. Interleukin 8 expression regulates tumorigenicity and metastases in androgen-independent prostate cancer. Clin Cancer Res 6: 2104–19, 2000.

    PubMed  CAS  Google Scholar 

  53. Kim, S.J., H. Uehara, T. Karashima, M. McCarty, N. Shih, and I.J. Fidler. Expression of interleukin-8 correlates with angiogenesis, tumorigenicity, and metastasis of human prostate cancer cells implanted orthotopically in nude mice. Neoplasia 3: 33–42, 2001.

    PubMed  CAS  Google Scholar 

  54. Strieter, R.M., J.A. Belperio, D.A. Arenberg, M.I. Smith, M.D. Burdick, and M.P. Keane. “CXC chemokine in angiogenesis,” in Chemokines and the Nervous System, ed. Ransohoff, R.M., K. Suzuki, A.E.I. Proudfoot and W.F. Hickey (Amsterdam, The Netherlands: Elsevier Science B.V., 2002).

    Google Scholar 

  55. Ghosh, S., M.J. May, and E.B. Kopp. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16: 225–60, 1998.

    PubMed  CAS  Google Scholar 

  56. Garkavtsev, I., S.V. Kozin, O. Chernova, L. Xu, F. Winkler, E. Brown, G.H. Barnett, and R.K. Jain. The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogenesis. Nature 428: 328–32, 2004.

    PubMed  CAS  Google Scholar 

  57. Wu, J.L., T. Abe, R. Inoue, M. Fujiki, and H. Kobayashi. IkappaBalphaM suppresses angiogenesis and tumorigenesis promoted by a constitutively active mutant EGFR in human glioma cells. Neurol Res 26: 785–91, 2004.

    PubMed  CAS  Google Scholar 

  58. Takamori, H., Z.G. Oades, O.C. Hoch, M. Burger, and I.U. Schraufstatter. Autocrine growth effect of IL-8 and GROalpha on a human pancreatic cancer cell line, Capan-1. Pancreas 21: 52–6, 2000.

    PubMed  CAS  Google Scholar 

  59. Wente, M.N., M.P. Keane, M.D. Burdick, H. Friess, M.W. Buchler, G.O. Ceyhan, H.A. Reber, R.M. Strieter, and O.J. Hines. Blockade of the chemokine receptor CXCR2 inhibits pancreatic cancer cell-induced angiogenesis. Cancer Lett 241: 221–7, 2006.

    PubMed  CAS  Google Scholar 

  60. Xiong, H.Q., J.L. Abbruzzese, E. Lin, L. Wang, L. Zheng, and K. Xie. NF-kappaB activity blockade impairs the angiogenic potential of human pancreatic cancer cells. Int J Cancer 108: 181–8, 2004.

    PubMed  CAS  Google Scholar 

  61. Smith, D.R., P.J. Polverini, S.L. Kunkel, M.B. Orringer, R.I. Whyte, M.D. Burdick, C.A. Wilke, and R.M. Strieter. IL-8 mediated angiogenesis in human bronchogenic carcinoma. J. Exp. Med. 179: 1409–1415, 1994.

    PubMed  CAS  Google Scholar 

  62. Yatsunami, J., N. Tsuruta, K. Ogata, K. Wakamatsu, K. Takayama, M. Kawasaki, Y. Nakanishi, N. Hara, and S. Hayashi. Interleukin-8 participates in angiogenesis in non-small cell, but not small cell carcinoma of the lung. Cancer Lett 120: 101–8, 1997.

    PubMed  CAS  Google Scholar 

  63. Arenberg, D.A., S.L. Kunkel, M.D. Burdick, P.J. Polverini, and R.M. Strieter. Treatment with anti-IL-8 inhibits non-small cell lung cancer tumor growth (Meeting abstract). J Invest Med 43: 479A 1995, 1995.

    Google Scholar 

  64. White, E.S., K.R. Flaherty, S. Carskadon, A. Brant, M.D. Iannettoni, J. Yee, M.B. Orringer, and D.A. Arenberg. Macrophage migration inhibitory factor and CXC chemokine expression in non-small cell lung cancer: role in angiogenesis and prognosis. Clin Cancer Res 9: 853–60, 2003.

    PubMed  CAS  Google Scholar 

  65. Chen, J.J., P.L. Yao, A. Yuan, T.M. Hong, C.T. Shun, M.L. Kuo, Y.C. Lee, and P.C. Yang. Up-regulation of tumor interleukin-8 expression by infiltrating macrophages: its correlation with tumor angiogenesis and patient survival in non-small cell lung cancer. Clin Cancer Res 9: 729–37, 2003.

    PubMed  CAS  Google Scholar 

  66. Wislez, M., N. Fujimoto, J.G. Izzo, A.E. Hanna, D.D. Cody, R.R. Langley, H. Tang, M.D. Burdick, M. Sato, J.D. Minna, L. Mao, I. Wistuba, R.M. Strieter, and J.M. Kurie. High expression of ligands for chemokine receptor CXCR2 in alveolar epithelial neoplasia induced by oncogenic kras. Cancer Res 66: 4198–207, 2006.

    PubMed  CAS  Google Scholar 

  67. Pold, M., L.X. Zhu, S. Sharma, M.D. Burdick, Y. Lin, P.P. Lee, A. Pold, J. Luo, K. Krysan, M. Dohadwala, J.T. Mao, R.K. Batra, R.M. Strieter, and S.M. Dubinett. Cyclooxygenase-2-dependent expression of angiogenic CXC chemokines ENA-78/CXC Ligand (CXCL) 5 and interleukin-8/CXCL8 in human non-small cell lung cancer. Cancer Res 64: 1853–60, 2004.

    PubMed  CAS  Google Scholar 

  68. Bostwick, D.G. and K.A. Iczkowski. Microvessel density in prostate cancer: prognostic and therapeutic utility. Semin Urol Oncol 16: 118–23, 1998.

    PubMed  CAS  Google Scholar 

  69. Fregene, T.A., P.S. Khanuja, A.C. Noto, S.K. Gehani, E.M. Van Egmont, D.A. Luz, and K.J. Pienta. Tumor-associated angiogenesis in prostate cancer. Anticancer Res 13: 2377–81, 1993.

    PubMed  CAS  Google Scholar 

  70. Yoneda, J., H. Kuniyasu, M.A. Crispens, J.E. Price, C.D. Bucana, and I.J. Fidler. Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. J Natl Cancer Inst 90: 447–54, 1998.

    PubMed  CAS  Google Scholar 

  71. Gawrychowski, K., E. Skopinska-Rozewska, E. Barcz, E. Sommer, B. Szaniawska, K. Roszkowska-Purska, P. Janik, and J. Zielinski Angiogenic activity and interleukin-8 content of human ovarian cancer ascites. Eur J Gynaecol Oncol 19: 262–4, 1998.

    PubMed  CAS  Google Scholar 

  72. Mestas, J., M.D. Burdick, K. Reckamp, A. Pantuck, R.A. Figlin, and R.M. Strieter. The role of CXCR2/CXCR2 ligand biological axis in renal cell carcinoma. J Immunol 175: 5351–7, 2005.

    PubMed  CAS  Google Scholar 

  73. Miller, L.J., S.H. Kurtzman, Y. Wang, K.H. Anderson, R.R. Lindquist, and D.L. Kreutzer. Expression of interleukin-8 receptors on tumor cells and vascular endothelial cells in human breast cancer tissue. Anticancer Res 18: 77–81, 1998.

    PubMed  CAS  Google Scholar 

  74. Richards, B.L., R.J. Eisma, J.D. Spiro, R.L. Lindquist, and D.L. Kreutzer. Coexpression of interleukin-8 receptors in head and neck squamous cell carcinoma. Am J Surg 174: 507–12, 1997.

    PubMed  CAS  Google Scholar 

  75. Singh, R.K., M. Gutman, R. Radinsky, C.D. Bucana, and I.J. Fidler. Expression of interleukin 8 correlates with the metastatic potential of human melanoma cells in nude mice. Cancer Res 54: 3242–7, 1994.

    PubMed  CAS  Google Scholar 

  76. Cohen, R.F., J. Contrino, J.D. Spiro, E.A. Mann, L.L. Chen, and D.L. Kreutzer. Interleukin-8 expression by head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 121: 202–9, 1995.

    PubMed  CAS  Google Scholar 

  77. Chen, Z., P.S. Malhotra, G.R. Thomas, F.G. Ondrey, D.C. Duffey, C.W. Smith, I. Enamorado, N.T. Yeh, G.S. Kroog, S. Rudy, L. McCullagh, S. Mousa, M. Quezado, L.L. Herscher, and C. Van Waes. Expression of proinflammatory and proangiogenic cytokines in patients with head and neck cancer. Clin Cancer Res 5: 1369–79, 1999.

    PubMed  CAS  Google Scholar 

  78. Shellenberger, T.D., M. Wang, M. Gujrati, A. Jayakumar, R.M. Strieter, C. Ioannides, C.L. Efferson, A.K. El-Naggar, G.L. Clayman, and M.J. Frederick. BRAK/CXCL14 is a potent inhibitor of angiogenesis and is a chemotactic factor for immature dendritic cells. Cancer Res. 64: 8262–8270, 2004.

    PubMed  CAS  Google Scholar 

  79. Struyf, S., M.D. Burdick, P. Proost, J. Van Damme, and R.M. Strieter. Platelets release CXCL4L1, a nonallelic variant of the chemokine platelet factor-4/CXCL4 and potent inhibitor of angiogenesis. Circ Res 95: 855–7, 2004.

    PubMed  CAS  Google Scholar 

  80. Maione, T.E., G.S. Gray, J. Petro, A.J. Hunt, A.L. Donner, S.I. Bauer, H.F. Carson, and R.J. Sharpe. Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science 247: 77–9, 1990.

    PubMed  CAS  Google Scholar 

  81. Struyf, S., M.D. Burdick, E. Peeters, K. Van den Broeck, C. Dillen, P. Proost, J. Van Damme, and R.M. Strieter. Platelet factor-4 variant chemokine CXCL4L1 inhibits melanoma and lung carcinoma growth and metastasis by preventing angiogenesis. Cancer Res 67: 5940–8, 2007.

    PubMed  CAS  Google Scholar 

  82. Rollins, B.J. Chemokines. Blood 90: 909–28, 1997.

    PubMed  CAS  Google Scholar 

  83. Balkwill, F. The molecular and cellular biology of the chemokines. J Viral Hepat 5: 1–14, 1998.

    PubMed  CAS  Google Scholar 

  84. Strieter, R.M., J.A. Belperio, R.J. Phillips, and M.P. Keane. Chemokines: angiogenesis and metastases in lung cancer. Novartis Found Symp 256: 173–84; discussion 184–8, 259–69, 2004.

    PubMed  CAS  Google Scholar 

  85. Strieter, R.M., J.A. Belperio, R.J. Phillips, and M.P. Keane. CXC chemokines in angiogenesis of cancer. Semin Cancer Biol 14: 195–200, 2004.

    PubMed  CAS  Google Scholar 

  86. Frederick, M.J., Y. Henderson, X. Xu, M.T. Deavers, A.A. Sahin, H. Wu, D.E. Lewis, A.K. El-Naggar, and G.L. Clayman. In vivo expression of the novel CXC chemokine BRAK in normal and cancerous human tissue. Am J Pathol 156: 1937–50, 2000.

    PubMed  CAS  Google Scholar 

  87. Schwarze, S.R., J. Luo, W.B. Isaacs, and D.F. Jarrard. Modulation of CXCL14 (BRAK) expression in prostate cancer. Prostate 13: 13, 2005.

    Google Scholar 

  88. Bachelder, R.E., M.A. Wendt, and A.M. Mercurio. Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res 62: 7203–6, 2002.

    PubMed  CAS  Google Scholar 

  89. Salcedo, R. and J.J. Oppenheim. Role of chemokines in angiogenesis: CXCL12/SDF-1 and CXCR4 interaction, a key regulator of endothelial cell responses. Microcirculation 10: 359–70, 2003.

    PubMed  CAS  Google Scholar 

  90. Kijowski, J., M. Baj-Krzyworzeka, M. Majka, R. Reca, L.A. Marquez, M. Christofidou-Solomidou, A. Janowska-Wieczorek, and M.Z. Ratajczak. The SDF-1-CXCR4 axis stimulates VEGF secretion and activates integrins but does not affect proliferation and survival in lymphohematopoietic cells. Stem Cells 19: 453–66, 2001.

    PubMed  CAS  Google Scholar 

  91. Salcedo, R., K. Wasserman, H.A. Young, M.C. Grimm, O.M. Howard, M.R. Anver, H.K. Kleinman, W.J. Murphy, and J.J. Oppenheim. Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: In vivo neovascularization induced by stromal-derived factor-1alpha. Am J Pathol 154: 1125–35, 1999.

    PubMed  CAS  Google Scholar 

  92. Phillips, R.J., M.D. Burdick, M. Lutz, J.A. Belperio, M.P. Keane, and R.M. Strieter. The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases. Am J Respir Crit Care Med 167: 1676–86, 2003.

    PubMed  Google Scholar 

  93. Muller, A., B. Homey, H. Soto, N. Ge, D. Catron, M.E. Buchanan, T. McClanahan, E. Murphy, W. Yuan, S.N. Wagner, J.L. Barrera, A. Mohar, E. Verastegui, and A. Zlotnik. Involvement of chemokine receptors in breast cancer metastasis. Nature 410: 50–6, 2001.

    PubMed  CAS  Google Scholar 

  94. Schrader, A.J., O. Lechner, M. Templin, K.E. Dittmar, S. Machtens, M. Mengel, M. Probst-Kepper, A. Franzke, T. Wollensak, P. Gatzlaff, J. Atzpodien, J. Buer, and J. Lauber. CXCR4/CXCL12 expression and signalling in kidney cancer. Br J Cancer 86: 1250–6, 2002.

    PubMed  CAS  Google Scholar 

  95. Loetscher, M., P. Loetscher, N. Brass, E. Meese, and B. Moser. Lymphocyte-specific chemokine receptor CXCR3: regulation, chemokine binding and gene localization. Eur J Immunol 28: 3696–705, 1998.

    PubMed  CAS  Google Scholar 

  96. Ehlert, J.E., C.A. Addison, M.D. Burdick, S.L. Kunkel, and R.M. Strieter. identification and partial characterization of a variant of human CXCR3 generated by posttranscriptional exon skipping. J Immunol 173: 6234–6240, 2004.

    PubMed  CAS  Google Scholar 

  97. Moser, B. and P. Loetscher. Lymphocyte traffic control by chemokines. Nat Immunol 2: 123–8, 2001.

    PubMed  CAS  Google Scholar 

  98. Loetscher, M., B. Gerber, P. Loetscher, S.A. Jones, L. Piali, I. Clark-Lewis, M. Baggiolini, and B. Moser. Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes. J Exp Med 184: 963–9, 1996.

    PubMed  CAS  Google Scholar 

  99. Rabin, R.L., M.K. Park, F. Liao, R. Swofford, D. Stephany, and J.M. Farber. Chemokine receptor responses on T cells are achieved through regulation of both receptor expression and signaling. J Immunol 162: 3840–50, 1999.

    PubMed  CAS  Google Scholar 

  100. Qin, S., J.B. Rottman, P. Myers, N. Kassam, M. Weinblatt, M. Loetscher, A.E. Koch, B. Moser, and C.R. Mackay. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J Clin Invest 101: 746–54, 1998.

    PubMed  CAS  Google Scholar 

  101. Beider, K., A. Nagler, O. Wald, S. Franitza, M. Dagan-Berger, H. Wald, H. Giladi, S. Brocke, J. Hanna, O. Mandelboim, M. Darash-Yahana, E. Galun, and A. Peled. Involvement of CXCR4 and IL-2 in the homing and retention of human NK and NK T cells to the bone marrow and spleen of NOD/SCID mice. Blood 102: 1951–8, 2003.

    PubMed  CAS  Google Scholar 

  102. Romagnani, P., F. Annunziato, L. Lasagni, E. Lazzeri, C. Beltrame, M. Francalanci, M. Uguccioni, G. Galli, L. Cosmi, L. Maurenzig, M. Baggiolini, E. Maggi, S. Romagnani, and M. Serio. Cell cycle-dependent expression of CXC chemokine receptor 3 by endothelial cells mediates angiostatic activity. J Clin Invest 107: 53–63., 2001.

    PubMed  CAS  Google Scholar 

  103. Lasagni, L., M. Francalanci, F. Annunziato, E. Lazzeri, S. Giannini, L. Cosmi, C. Sagrinati, B. Mazzinghi, C. Orlando, E. Maggi, F. Marra, S. Romagnani, M. Serio, and P. Romagnani. An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med 197: 1537–49, 2003.

    PubMed  CAS  Google Scholar 

  104. Luster, A.D., S.M. Greenberg, and P. Leder. The IP-10 chemokine binds to a specific cell surface heparan sulfate site shared with platelet factor 4 and inhibits endothelial cell proliferation. J Exp Med 182: 219–31, 1995.

    PubMed  CAS  Google Scholar 

  105. Yang, J. and A. Richmond. The angiostatic activity of interferon-inducible protein-10/CXCL10 in human melanoma depends on binding to CXCR3 but not to glycosaminoglycan. Mol Ther 9: 846–55, 2004.

    PubMed  CAS  Google Scholar 

  106. Gupta, S.K. and J.P. Singh. Inhibition of endothelial cell proliferation by platelet factor-4 involves a unique action on S phase progression. J Cell Biol 127: 1121–7, 1994.

    PubMed  CAS  Google Scholar 

  107. Hansell, P., T.E. Maione, and P. Borgstrom. Selective binding of platelet factor 4 to regions of active angiogenesis in vivo. Am J Physiol 269: H829–36, 1995.

    PubMed  CAS  Google Scholar 

  108. Borgstrom, P., R. Discipio, and T.E. Maione. Recombinant platelet factor 4, an angiogenic marker for human breast carcinoma. Anticancer Res 18: 4035–41, 1998.

    PubMed  CAS  Google Scholar 

  109. Sato, Y., M. Abe, and R. Takaki. Platelet factor 4 blocks the binding of basic fibroblast growth factor to the receptor and inhibits the spontaneous migration of vascular endothelial cells. Biochem Biophys Res Commun 172: 595–600, 1990.

    PubMed  CAS  Google Scholar 

  110. Gengrinovitch, S., S.M. Greenberg, T. Cohen, H. Gitay-Goren, P. Rockwell, T.E. Maione, B.Z. Levi, and G. Neufeld. Platelet factor-4 inhibits the mitogenic activity of VEGF121 and VEGF165 using several concurrent mechanisms. J Biol Chem 270: 15059–65, 1995.

    PubMed  CAS  Google Scholar 

  111. Perollet, C., Z.C. Han, C. Savona, J.P. Caen, and A. Bikfalvi. Platelet factor 4 modulates fibroblast growth factor 2 (FGF-2) activity and inhibits FGF-2 dimerization. Blood 91: 3289–99, 1998.

    PubMed  CAS  Google Scholar 

  112. Jouan, V., X. Canron, M. Alemany, J.P. Caen, G. Quentin, J. Plouet, and A. Bikfalvi Inhibition of in vitro angiogenesis by platelet factor-4-derived peptides and mechanism of action. Blood 94: 984–93, 1999.

    PubMed  CAS  Google Scholar 

  113. Houck, K.A., D.W. Leung, A.M. Rowland, J. Winer, and N. Ferrara. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem 267: 26031–7, 1992.

    PubMed  CAS  Google Scholar 

  114. Houck, K.A., N. Ferrara, J. Winer, G. Cachianes, B. Li, and D.W. Leung. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol 5: 1806–14, 1991.

    PubMed  CAS  Google Scholar 

  115. Gentilini, G., N.E. Kirschbaum, J.A. Augustine, R.H. Aster, and G.P. Visentin. Inhibition of human umbilical vein endothelial cell proliferation by the CXC chemokine, platelet factor 4 (PF4), is associated with impaired downregulation of p21(Cip1/WAF1). Blood 93: 25–33, 1999.

    PubMed  CAS  Google Scholar 

  116. Balabanian, K., B. Lagane, S. Infantino, K.Y. Chow, J. Harriague, B. Moepps, F. Arenzana-Seisdedos, M. Thelen, and F. Bachelerie. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem 280: 35760–6, 2005.

    PubMed  CAS  Google Scholar 

  117. Burns, J.M., B.C. Summers, Y. Wang, A. Melikian, R. Berahovich, Z. Miao, M.E. Penfold, M.J. Sunshine, D.R. Littman, C.J. Kuo, K. Wei, B.E. McMaster, K. Wright, M.C. Howard, and T.J. Schall. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med 203: 2201–13, 2006.

    PubMed  CAS  Google Scholar 

  118. Miao, Z., K.E. Luker, B.C. Summers, R. Berahovich, M.S. Bhojani, A. Rehemtulla, C.G. Kleer, J.J. Essner, A. Nasevicius, G.D. Luker, M.C. Howard, and T.J. Schall. CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature. Proc Natl Acad Sci U S A 104: 15735–40, 2007.

    PubMed  CAS  Google Scholar 

  119. Wang, J., Y. Shiozawa, Y. Wang, Y. Jung, K.J. Pienta, R. Mehra, R. Loberg, and R.S. Taichman. The Role of CXCR7/RDC1 as a Chemokine Receptor for CXCL12/SDF-1 in Prostate Cancer. J Biol Chem 283: 4283–94, 2008.

    PubMed  CAS  Google Scholar 

  120. Dambly-Chaudiere, C., N. Cubedo, and A. Ghysen. Control of cell migration in the development of the posterior lateral line: antagonistic interactions between the chemokine receptors CXCR4 and CXCR7/RDC1. BMC Dev Biol 7: 23, 2007.

    PubMed  Google Scholar 

  121. Arenberg, D.A., S.L. Kunkel, P.J. Polverini, S.B. Morris, M.D. Burdick, M.C. Glass, D.T. Taub, M.D. Iannettoni, R.I. Whyte, and R.M. Strieter. Interferon-gamma-inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastases. J Exp Med 184: 981–92, 1996.

    PubMed  CAS  Google Scholar 

  122. Minna, J.D. “Neoplasms if the lung,” in Principles of Internal Medicine, ed. Isselbacher, K.J. (New York: McGraew-Hill, 1991).

    Google Scholar 

  123. Carney, D.N. “Cancers of the lungs,” in Pulmonary Diseases and Disorders, ed. Fishman, A.P. (New York: McGraw-Hill, 1988).

    Google Scholar 

  124. Yuan, A., Y. Pan-Chyr, Y. Chong-Jen, Y. Lee, Y. Yu-Tuang, C. Chi-Long, L. Lee, K. Sow-Hsong, and L. Kwen-Tay. Tumor angiogenesis correlates with histologic type and metastasis in non-small cell lung cancer. Am J Resp Crit Care Med 152: 2157–62, 1995.

    PubMed  CAS  Google Scholar 

  125. Feldman, A.L., J. Friedl, T.E. Lans, S.K. Libutti, D. Lorang, M.S. Miller, E.M. Turner, S.M. Hewitt, and H.R. Alexander. Retroviral gene transfer of interferon-inducible protein 10 inhibits growth of human melanoma xenografts. Int J Cancer 99: 149–53, 2002.

    PubMed  CAS  Google Scholar 

  126. Addison, C.L., D.A. Arenberg, S.B. Morris, Y.Y. Xue, M.D. Burdick, M.S. Mulligan, M.D. Iannettoni, and R.M. Strieter. The CXC chemokine, monokine induced by interferon-gamma, inhibits non-small cell lung carcinoma tumor growth and metastasis. Hum Gene Ther 11: 247–61, 2000.

    PubMed  CAS  Google Scholar 

  127. Gurtsevitch, V.E., G.T. O'Conor, and G.M. Lenoir. Burkitt's lymphoma cell lines reveal different degrees of tumorigenicity in nude mice. Int J Cancer 41: 87–95, 1988.

    PubMed  CAS  Google Scholar 

  128. Sgadari, C., A.L. Angiolillo, B.W. Cherney, S.E. Pike, J.M. Farber, L.G. Koniaris, P. Vanguri, P.R. Burd, N. Sheikh, G. Gupta, J. Teruya-Feldstein, and G. Tosato. Interferon-inducible protein-10 identified as a mediator of tumor necrosis in vivo. Proc. Natl. Acad. Sci. U S A 93: 13791–6, 1996.

    PubMed  CAS  Google Scholar 

  129. Sgadari, C., J.M. Farber, A.L. Angiolillo, F. Liao, J. Teruya-Feldstein, P.R. Burd, L. Yao, G. Gupta, C. Kanegane, and G. Tosato. Mig, the monokine induced by interferon-gamma, promotes tumor necrosis in vivo. Blood 89: 2635–43, 1997.

    PubMed  CAS  Google Scholar 

  130. Sgadari, C., A.L. Angiolillo, and G. Tosato. Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood 87: 3877–82, 1996.

    PubMed  CAS  Google Scholar 

  131. Teruya-Feldstein, J., E.S. Jaffe, P.R. Burd, H. Kanegane, D.W. Kingma, W.H. Wilson, D.L. Longo, and G. Tosato. The role of Mig, the monokine induced by interferon-gamma, and IP-10, the interferon-gamma-inducible protein-10, in tissue necrosis and vascular damage associated with Epstein-Barr virus-positive lymphoproliferative disease. Blood 90: 4099–105, 1997.

    PubMed  CAS  Google Scholar 

  132. Moser, M. Regulation of Th1/Th2 development by antigen-presenting cells in vivo. Immunobiology 204: 551–7, 2001.

    PubMed  CAS  Google Scholar 

  133. Sharma, S., S.C. Yang, S. Hillinger, L.X. Zhu, M. Huang, R.K. Batra, J.F. Lin, M.D. Burdick, R.M. Strieter, and S.M. Dubinett. SLC/CCL21-mediated anti-tumor responses require IFNgamma, MIG/CXCL9 and IP-10/CXCL10. Mol Cancer 2: 22, 2003.

    PubMed  Google Scholar 

  134. Sharma, S., M. Stolina, J. Luo, R.M. Strieter, M. Burdick, L.X. Zhu, R.K. Batra, and S.M. Dubinett. Secondary lymphoid tissue chemokine mediates T cell-dependent antitumor responses in vivo. J Immunol 164: 4558–63, 2000.

    PubMed  CAS  Google Scholar 

  135. Tannenbaum, C.S., R. Tubbs, D. Armstrong, J.H. Finke, R.M. Bukowski, and T.A. Hamilton. The CXC chemokines IP-10 and Mig are necessary for IL-12-mediated regression of the mouse RENCA tumor. J Immunol 161: 927–32, 1998.

    PubMed  CAS  Google Scholar 

  136. Pan, J., M.D. Burdick, J.A. Belperio, Y.Y. Xue, C. Gerard, S. Sharma, S.M. Dubinett, and R.M. Strieter. CXCR3/CXCR3 ligand biological axis impairs RENCA tumor growth by a mechanism of immunoangiostasis. J Immunol 176: 1456–64, 2006.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants HL73848 and an American Lung Association Career Investigator Award (Mehrad) and CA87879 and HL66027 (Strieter).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Strieter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mehrad, B., Strieter, R.M. (2009). CXC Chemokines in Cancer Angiogenesis. In: Fulton, A. (eds) Chemokine Receptors in Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60327-267-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-267-4_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-266-7

  • Online ISBN: 978-1-60327-267-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics