Skip to main content

Significance of the SXT/R391 Family of Integrating Conjugative Elements in Vibrio cholerae

  • Chapter
  • First Online:
Epidemiological and Molecular Aspects on Cholera

Part of the book series: Infectious Disease ((ID))

Abstract

Integrating conjugative elements (ICEs) are self-transmissible mobile elements that transfer between bacteria via conjugation and integrate into the chromosome. SXTMO10 is an ICE that was initially discovered in a 1992 Vibrio cholerae O139 clinical isolate from India. SXTMO10 and related ICEs became prevalent in Asian V. cholerae populations in the 1990s and are now present in most clinical and environmental V. cholerae isolates from Asia and Africa, playing an important role in the spread of antibiotic resistance genes in this pathogen. More than 35 SXTMO10-related elements have now been identified worldwide in environmental and clinical isolates of at least nine Vibrio-like species. The SXTMO10-related ICEs have a highly conserved overall genome organization, disrupted by ICE-specific regions conferring ICE-specific properties. The appearance of SXTMO10-related ICEs in V. cholerae seems to be correlated with an increased use of antibiotics to treat cholera. However, discovery of ICEs that do not confer any drug resistance suggests that these mobile elements could confer other advantages to the bacteria in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sack DA, Sack RB, Nair GB, Siddique AK. Cholera. Lancet. 2004;363:223–33.

    Article  CAS  Google Scholar 

  2. Mwansa JC, Mwaba J, Lukwesa C, Bhuiyan NA, Ansaruzzaman M, Ramamurthy T, Alam M, Balakrish Nair G. Multiply antibiotic-resistant Vibrio cholerae O1 biotype El Tor strains emerge during cholera outbreaks in Zambia. Epidemiol Infect. 2007;135:847–53.

    Article  PubMed  CAS  Google Scholar 

  3. Thungapathra M, Amita, Sinha KK, Chaudhuri SR, Garg P, Ramamurthy T, Nair GB, Ghosh A. Occurrence of antibiotic resistance gene cassettes aac(6 )-Ib, dfrA5, dfrA12, and ereA2 in class I integrons in non-O1, non-O139 Vibrio cholerae strains in India. Antimicrob Agents Chemother. 2002;46:2948–55.

    Article  PubMed  CAS  Google Scholar 

  4. Ceccarelli D, Salvia AM, Sami J, Cappuccinelli P, Colombo MM. New cluster of plasmid-located class 1 integrons in Vibrio cholerae O1 and a dfrA15 cassette-containing integron in Vibrio parahaemolyticus isolated in Angola. Antimicrob Agents Chemother. 2006;50:2493–9.

    Article  PubMed  CAS  Google Scholar 

  5. Dalsgaard A, Forslund A, Sandvang D, Arntzen L, Keddy K. Vibrio cholerae O1 outbreak isolates in Mozambique and South Africa in 1998 are multiple-drug resistant, contain the SXT element and the aadA2 gene located on class 1 integrons. J Antimicrob Chemother. 2001;48:827–38.

    Article  PubMed  CAS  Google Scholar 

  6. Burrus V, Pavlovic G, Decaris B, Guedon G. Conjugative transposons: the tip of the iceberg. Mol Microbiol. 2002;46:601–10.

    Article  PubMed  CAS  Google Scholar 

  7. Burrus V, Waldor MK. Shaping bacterial genomes with integrative and conjugative elements. Res Microbiol. 2004;155:376–86.

    Article  PubMed  CAS  Google Scholar 

  8. Nair GB, Ramamurthy T, Bhattacharya SK, et al. Spread of Vibrio cholerae O139 Bengal in India. J Infect Dis. 1994;169:1029–34.

    Article  PubMed  CAS  Google Scholar 

  9. Cholera Working Group. Large epidemic of cholera-like disease in Bangladesh caused by Vibrio cholerae O139 synonym Bengal. Lancet. 1993;342:387–90.

    Article  Google Scholar 

  10. Waldor MK, Mekalanos JJ. ToxR regulates virulence gene expression in non-O1 strains of Vibrio cholerae that cause epidemic cholera. Infect Immun. 1994;62:72–8.

    PubMed  CAS  Google Scholar 

  11. Popovic T, Fields PI, Olsvik O, et al. Molecular subtyping of toxigenic Vibrio cholerae O139 causing epidemic cholera in India and Bangladesh, 1992–1993. J Infect Dis. 1995;171:122–7.

    Article  PubMed  CAS  Google Scholar 

  12. Waldor MK, Mekalanos JJ. Emergence of a new cholera pandemic: molecular analysis of virulence determinants in Vibrio cholerae O139 and development of a live vaccine prototype. J Infect Dis. 1994;170:278–83.

    Article  PubMed  CAS  Google Scholar 

  13. Calia KE, Murtagh M, Ferraro MJ, Calderwood SB. Comparison of Vibrio cholerae O139 with V. cholerae O1 classical and El Tor biotypes. Infect Immun. 1994;62:1504–6.

    PubMed  CAS  Google Scholar 

  14. Rhine JA, Taylor RK. TcpA pilin sequences and colonization requirements for O1 and O139 Vibrio cholerae. Mol Microbiol. 1994;13:1013–20.

    Article  PubMed  CAS  Google Scholar 

  15. Iredell JR, Manning PA. Biotype-specific tcpA genes in Vibrio cholerae. FEMS Microbiol Lett. 1994;121:47–54.

    Article  PubMed  CAS  Google Scholar 

  16. Karaolis DK, Lan R, Reeves PR. The sixth and seventh cholera pandemics are due to independent clones separately derived from environmental, nontoxigenic, non-O1 Vibrio cholerae. J Bacteriol. 1995;177:3191–8.

    PubMed  CAS  Google Scholar 

  17. Nair GB, Shimada T, Kurazono H, et al. Characterization of phenotypic, serological, and toxigenic traits of Vibrio cholerae O139 Bengal. J Clin Microbiol. 1994;32:2775–9.

    PubMed  CAS  Google Scholar 

  18. Waldor MK, Tschape H, Mekalanos JJ. A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139. J Bacteriol. 1996;178:4157–65.

    PubMed  CAS  Google Scholar 

  19. Hochhut B, Lotfi Y, Mazel D, Faruque SM, Woodgate R, Waldor MK. Molecular analysis of antibiotic resistance gene clusters in Vibrio cholerae O139 and O1 SXT constins. Antimicrob Agents Chemother. 2001;45:2991–3000.

    Article  PubMed  CAS  Google Scholar 

  20. Amita, Chowdhury SR, Thungapathra M, Ramamurthy T, Nair GB, Ghosh A. Class I integrons and SXT elements in El Tor strains isolated before and after 1992 Vibrio cholerae O139 outbreak, Calcutta, India. Emerg Infect Dis. 2003;9:500–2.

    Article  PubMed  CAS  Google Scholar 

  21. Yamamoto T, Nair GB, Albert MJ, Parodi CC, Takeda Y. Survey of in vitro susceptibilities of Vibrio cholerae O1 and O139 to antimicrobial agents. Antimicrob Agents Chemother. 1995;39:241–4.

    Article  PubMed  CAS  Google Scholar 

  22. Burrus V, Marrero J, Waldor MK. The current ICE age: biology and evolution of SXT-related integrating conjugative elements. Plasmid. 2006;55:173–83.

    Article  PubMed  CAS  Google Scholar 

  23. Marrero J, Waldor MK. The SXT/R391 family of integrative conjugative elements is composed of two exclusion groups. J Bacteriol. 2007;189:3302–5.

    Article  PubMed  CAS  Google Scholar 

  24. Alam M, Hasan NA, Sadique A, Bhuiyan NA, Ahmed KU, Nusrin S, Nair GB, Siddique AK, Sack RB, Sack DA, Huq A, Colwell RR. Seasonal cholera caused by Vibrio cholerae serogroups O1 and O139 in the coastal aquatic environment of Bangladesh. Appl Environ Microbiol. 2006;72:4096–104.

    Article  PubMed  CAS  Google Scholar 

  25. Agrawal G, Jalgaonkar SV, Jagtap PM, Kamlakar UP, Deogade NG. Emergence and re-emergence of Vibrio cholerae O139: an epidemiological study during 1993–2002 at Nagpur, Central India. Indian J Med Sci. 2003;57:155–7.

    PubMed  CAS  Google Scholar 

  26. Faruque SM, Chowdhury N, Kamruzzaman M, Ahmad QS, Faruque AS, Salam MA, Ramamurthy T, Nair GB, Weintraub A, Sack DA. Reemergence of epidemic Vibrio cholerae O139, Bangladesh. Emerg Infect Dis. 2003;9:1116–22.

    Article  Google Scholar 

  27. Bani S, Mastromarino PN, Ceccarelli D, Le Van A, Salvia AM, Ngo Viet QT, Hai DH, Bacciu D, Cappuccinelli P, Colombo MM. Molecular characterization of ICEVchVie0 and its disappearance in Vibrio cholerae O1 strains isolated in 2003 in Vietnam. FEMS Microbiol Lett. 2007;266:42–8.

    Article  PubMed  CAS  Google Scholar 

  28. Ehara M, Nguyen BM, Nguyen DT, Toma C, Higa N, Iwanaga M. Drug susceptibility and its genetic basis in epidemic Vibrio cholerae O1 in Vietnam. Epidemiol Infect. 2004;132:595–600.

    Article  PubMed  CAS  Google Scholar 

  29. Iwanaga M, Toma C, Miyazato T, Insisiengmay S, Nakasone N, Ehara M. Antibiotic resistance conferred by a class I integron and SXT constin in Vibrio cholerae O1 strains isolated in Laos. Antimicrob Agents Chemother. 2004;48:2364–9.

    Article  PubMed  CAS  Google Scholar 

  30. Mantri CK, Mohapatra SS, Ramamurthy T, Ghosh R, Colwell RR, Singh DV. Septaplex PCR assay for rapid identification of Vibrio cholerae including detection of virulence and int SXT genes. FEMS Microbiol Lett. 2006;265:208–14.

    Article  PubMed  CAS  Google Scholar 

  31. Ceccarelli D, Bani S, Cappuccinelli P, Colombo MM. Prevalence of aadA1 and dfrA15 class 1 integron cassettes and SXT circulation in Vibrio cholerae O1 isolates from Africa. J Antimicrob Chemother. 2006;58:1095–7.

    Article  PubMed  CAS  Google Scholar 

  32. Ahmed AM, Shinoda S, Shimamoto T. A variant type of Vibrio cholerae SXT element in a multidrug-resistant strain of Vibrio fluvialis. FEMS Microbiol Lett. 2005;242:241–7.

    Article  PubMed  CAS  Google Scholar 

  33. Burrus V, Quezada-Calvillo R, Marrero J, Waldor MK. SXT-related integrating conjugative element in New World Vibrio cholerae. Appl Environ Microbiol. 2006;72:3054–7.

    Article  PubMed  CAS  Google Scholar 

  34. Osorio CR, Marrero J, Wozniak RA, Lemos ML, Burrus V, Waldor MK. Genomic and functional analysis of ICEPdaSpa1, a fish-pathogen-derived SXT-related integrating conjugative element that can mobilize a virulence plasmid. J Bacteriol. 2008;190:3353–61.

    Article  PubMed  CAS  Google Scholar 

  35. Juiz-Rio S, Osorio CR, de Lorenzo V, Lemos ML. Subtractive hybridization reveals a high genetic diversity in the fish pathogen Photobacterium damselae subsp. piscicida: evidence of a SXT-like element. Microbiology. 2005;151:2659–69.

    Article  PubMed  CAS  Google Scholar 

  36. Korichi MN, Belhocine S, Rahal K. Plasmides IncJ identifiés pour la première fois dans Vibrio cholerae El Tor. Med Trop. 1997;57:249–52.

    CAS  Google Scholar 

  37. Hochhut B, Beaber JW, Woodgate R, Waldor MK. Formation of chromosomal tandem arrays of the SXT element and R391, two conjugative chromosomally integrating elements that share an attachment site. J Bacteriol. 2001;183:1124–32.

    Article  PubMed  CAS  Google Scholar 

  38. Beaber JW, Burrus V, Hochhut B, Waldor MK. Comparison of SXT and R391, two conjugative integrating elements: definition of a genetic backbone for the mobilization of resistance determinants. Cell Mol Life Sci. 2002;59:2065–70.

    Article  PubMed  CAS  Google Scholar 

  39. Boltner D, Osborn AM. Structural comparison of the integrative and conjugative elements R391, pMERPH, R997, and SXT. Plasmid. 2004;51:12–23.

    Article  PubMed  CAS  Google Scholar 

  40. Yokota T, Kuwahara S. Temperature-sensitive R plasmid obtained from naturally isolated drug-resistant Vibrio cholerae (biotype El Tor). Antimicrob Agents Chemother. 1977;11:13–20.

    Article  PubMed  CAS  Google Scholar 

  41. Beaber JW, Hochhut B, Waldor MK. Genomic and functional analyses of SXT, an integrating antibiotic resistance gene transfer element derived from Vibrio cholerae. J Bacteriol. 2002;184:4259–69.

    Article  PubMed  CAS  Google Scholar 

  42. Boltner D, MacMahon C, Pembroke JT, Strike P, Osborn AM. R391: a conjugative integrating mosaic comprised of phage, plasmid, and transposon elements. J Bacteriol. 2002;184:5158–69.

    Article  PubMed  CAS  Google Scholar 

  43. Pembroke JT, Piterina AV. A novel ICE in the genome of Shewanella putrefaciens W3-18-1: comparison with the SXT/R391 ICE-like elements. FEMS Microbiol Lett. 2006;264:80–8.

    Article  PubMed  CAS  Google Scholar 

  44. Mead S, Vaisman A, Valjavec-Gratian M, Karata K, Vandewiele D, Woodgate R. Characterization of polVR391: a Y-family polymerase encoded by rumA’B from the IncJ conjugative transposon, R391. Mol Microbiol. 2007;63:797–810.

    CAS  Google Scholar 

  45. Kulaeva OI, Wootton JC, Levine AS, Woodgate R. Characterization of the umu-complementing operon from R391. J Bacteriol. 1995;177:2737–43.

    PubMed  CAS  Google Scholar 

  46. Hochhut B, Waldor MK. Site-specific integration of the conjugal Vibrio cholerae SXT element into prfC. Mol Microbiol. 1999;32:99–110.

    Article  PubMed  CAS  Google Scholar 

  47. Burrus V, Waldor MK. Control of SXT integration and excision. J Bacteriol. 2003;185:5045–54.

    Article  PubMed  CAS  Google Scholar 

  48. O’Halloran JA, McGrath BM, Pembroke JT. The orf4 gene of the enterobacterial ICE, R391, encodes a novel UV-inducible recombination directionality factor, Jef, involved in excision and transfer of the ICE. FEMS Microbiol Lett. 2007;272:99–105.

    Article  PubMed  Google Scholar 

  49. Lewis JA, Hatfull GF. Control of directionality in integrase-mediated recombination: examination of recombination directionality factors (RDFs) including Xis and Cox proteins. Nucleic Acids Res. 2001;29:2205–16.

    Article  PubMed  CAS  Google Scholar 

  50. McLeod SM, Burrus V, Waldor MK. Requirement for Vibrio cholerae integration host factor in conjugative DNA transfer. J Bacteriol. 2006;188:5704–11.

    Article  PubMed  CAS  Google Scholar 

  51. Maeda K, Nojiri H, Shintani M, Yoshida T, Habe H, Omori T. Complete nucleotide sequence of carbazole/dioxin-degrading plasmid pCAR1 in Pseudomonas resinovorans strain CA10 indicates its mosaicity and the presence of large catabolic transposon Tn4676. J Mol Biol. 2003;326:21–33.

    Article  PubMed  CAS  Google Scholar 

  52. Murata T, Ohnishi M, Ara T, Kaneko J, Han CG, Li YF, Takashima K, Nojima H, Nakayama K, Kaji A, Kamio Y, Miki T, Mori H, Ohtsubo E, Terawaki Y, Hayashi T. Complete nucleotide sequence of plasmid Rts1: implications for evolution of large plasmid genomes. J Bacteriol. 2002;184:3194–202.

    Article  PubMed  CAS  Google Scholar 

  53. Gilmour MW, Thomson NR, Sanders M, Parkhill J, Taylor DE. The complete nucleotide sequence of the resistance plasmid R478: defining the backbone components of incompatibility group H conjugative plasmids through comparative genomics. Plasmid. 2004;52:182–202.

    Article  PubMed  CAS  Google Scholar 

  54. Hochhut B, Marrero J, Waldor MK. Mobilization of plasmids and chromosomal DNA mediated by the SXT element, a constin found in Vibrio cholerae O139. J Bacteriol. 2000;182:2043–7.

    Article  PubMed  CAS  Google Scholar 

  55. Marrero J, Waldor MK. Interactions between inner membrane proteins in donor and recipient cells limit conjugal DNA transfer. Dev Cell. 2005;8:963–70.

    Article  PubMed  CAS  Google Scholar 

  56. Marrero J, Waldor MK. Determinants of entry exclusion within Eex and TraG are cytoplasmic. J Bacteriol. 2007;189:6469–73.

    Article  PubMed  CAS  Google Scholar 

  57. Beaber JW, Waldor MK. Identification of operators and promoters that control SXT conjugative transfer. J Bacteriol. 2004;186:5945–9.

    Article  PubMed  CAS  Google Scholar 

  58. Beaber JW, Hochhut B, Waldor MK. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature. 2004;427:72–4.

    Article  PubMed  CAS  Google Scholar 

  59. McGrath BM, O’Halloran JA, Pembroke JT. Pre-exposure to UV irradiation increases the transfer frequency of the IncJ conjugative transposon-like elements R391, R392, R705, R706, R997 and pMERPH and is recA+ dependent. FEMS Microbiol Lett. 2005;243:461–5.

    Article  PubMed  CAS  Google Scholar 

  60. Murphy DB, Pembroke JT. Transfer of the IncJ plasmid R391 to recombination deficient Escherichia coli K12: evidence that R391 behaves as a conjugal transposon. FEMS Microbiol Lett. 1995;134:153–8.

    Article  PubMed  CAS  Google Scholar 

  61. Heidelberg JF, Eisen JA, Nelson WC Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Umayam L, Gill SR, Nelson KE, Read TD, Tettelin H, Richardson D, Ermolaeva MD, Vamathevan J, Bass S, Qin H, Dragoi I, Sellers P, McDonald L, Utterback T, Fleishmann RD, Nierman WC, White O. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature. 2000;406:477–83.

    Article  PubMed  CAS  Google Scholar 

  62. Novick RP, Subedi A. The SaPIs: mobile pathogenicity islands of Staphylococcus. Chem Immunol Allergy. 2007;93:42–57.

    Article  PubMed  CAS  Google Scholar 

  63. Lesic B, Carniel E. Horizontal transfer of the high-pathogenicity island of Yersinia pseudotuberculosis. J Bacteriol. 2005;187:3352–8.

    Article  PubMed  CAS  Google Scholar 

  64. Schubert S, Dufke S, Sorsa J, Heesemann J. A novel integrative and conjugative element (ICE) of Escherichia coli: the putative progenitor of the Yersinia high-pathogenicity island. Mol Microbiol. 2004;51:837–48.

    Article  PubMed  CAS  Google Scholar 

  65. Waldor MK, Mekalanos JJ. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science. 1996;272:1910–4.

    Article  PubMed  CAS  Google Scholar 

  66. McLeod SM, Kimsey HH, Davis BM, Waldor MK. CTXphi and Vibrio cholerae: exploring a newly recognized type of phage–host cell relationship. Mol Microbiol. 2005;57:347–56.

    Article  PubMed  CAS  Google Scholar 

  67. Davis BM, Waldor MK. Filamentous phages linked to virulence of Vibrio cholerae. Curr Opin Microbiol. 2003;6:35–42.

    Article  PubMed  CAS  Google Scholar 

  68. Manning PA. The tcp gene cluster of Vibrio cholerae. Gene. 1997;192:63–70.

    Article  PubMed  CAS  Google Scholar 

  69. Herrington DA, Hall RH, Losonsky G, Mekalanos JJ, Taylor RK, Levine MM. Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J Exp Med. 1988;168:1487–92.

    Article  PubMed  CAS  Google Scholar 

  70. Taylor RK, Miller VL, Furlong DB, Mekalanos JJ. Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci USA. 1987;84:2833–7.

    Article  PubMed  CAS  Google Scholar 

  71. Karaolis DK, Somara S, Maneval DR, Jr., Johnson JA, Kaper JB. A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria. Nature. 1999;399:375–9.

    Article  PubMed  CAS  Google Scholar 

  72. Fullner KJ, Mekalanos JJ. Genetic characterization of a new type IV-A pilus gene cluster found in both classical and El Tor biotypes of Vibrio cholerae. Infect Immun. 1999;67:1393–404.

    PubMed  CAS  Google Scholar 

  73. Blokesch M, Schoolnik GK. Serogroup conversion of Vibrio cholerae in aquatic reservoirs. PLoS Pathog. 2007;3:e81.

    Article  PubMed  Google Scholar 

  74. Karaolis DK, Kaper JB. Vibrio cholerae TCP: a trifunctional virulence factor? Response. Trends Microbiol. 1999;7:393.

    Article  Google Scholar 

  75. Lee CA. Vibrio cholerae TCP: a trifunctional virulence factor? Trends Microbiol. 1999;7:391–2;discussion 393.

    Article  PubMed  CAS  Google Scholar 

  76. Faruque SM, Asadulghani, Saha MN, Alim AR, Albert MJ, Islam KM, Mekalanos JJ. Analysis of clinical and environmental strains of nontoxigenic Vibrio cholerae for susceptibility to CTXPhi: molecular basis for origination of new strains with epidemic potential. Infect Immun. 1998;66:5819–25.

    PubMed  CAS  Google Scholar 

  77. Said B, Smith HR, Scotland SM, Rowe B. Detection and differentiation of the gene for toxin co-regulated pili (tcpA) in Vibrio cholerae non-O1 using the polymerase chain reaction. FEMS Microbiol Lett. 1995;125:205–9.

    Article  PubMed  CAS  Google Scholar 

  78. Toma C, Nakasone N, Song T, Iwanaga M. Vibrio cholerae SXT element, Laos. Emerg Infect Dis. 2005;11:346–7.

    Article  PubMed  Google Scholar 

  79. Matthew M, Hedges RW, Smith JT. Types of beta-lactamase determined by plasmids in gram-negative bacteria. J Bacteriol. 1979;138:657–62.

    PubMed  CAS  Google Scholar 

  80. Hedges RW. R factors from Proteus mirabilis and P. vulgaris. J Gen Microbiol. 1975;87:301–11.

    PubMed  CAS  Google Scholar 

  81. Coetzee JN, Datta N, Hedges RW. R factors from Proteus rettgeri. J Gen Microbiol. 1972;72:543–52.

    PubMed  CAS  Google Scholar 

  82. Hedges RW. R factors from Providence. J Gen Microbiol. 1974;81:171–81.

    PubMed  CAS  Google Scholar 

  83. Peters SE, Hobman JL, Strike P, Ritchie DA. Novel mercury resistance determinants carried by IncJ plasmids pMERPH and R391. Mol Gen Genet. 1991;228:294–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

V.B. holds a Canada research chair on molecular biology, impact and evolution of bacterial mobile elements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Burrus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Burrus, V. (2011). Significance of the SXT/R391 Family of Integrating Conjugative Elements in Vibrio cholerae . In: Ramamurthy, T., Bhattacharya, S. (eds) Epidemiological and Molecular Aspects on Cholera. Infectious Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-60327-265-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-265-0_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-60327-264-3

  • Online ISBN: 978-1-60327-265-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics