Skip to main content

Diversity and Genetic Basis of Polysaccharide Biosynthesis in Vibrio cholerae

  • Chapter
  • First Online:
Epidemiological and Molecular Aspects on Cholera

Part of the book series: Infectious Disease ((ID))

Abstract

Vibrio cholerae elaborates three types of polysaccharide structures: lipopolysaccharide (LPS), a component of which is the O-polysaccharide or O-antigen, capsular polysaccharide (CPS) or K-antigen, and “rugose” polysaccharide also known as exopolysaccharide (EPS) or Vibrio polysaccharide (VPS). The major protective antigen for V. cholerae is the O-antigen. A strain typing scheme based on the somatic O-antigen has been in use for a number of years. There are 206 serogroups identified so far and of these only O1 and O139 are known to cause epidemic/pandemic cholera, although a handful of non-O1/non-O139 strains are known to possess the major virulence factors. The O-antigen diversity is due to the number and composition of monosaccharide components, linkages, addition of non-sugar moieties, modal length of the polysaccharide chain, and biosynthesis mechanisms. The genetic basis of this diversity is just beginning to be understood with the sequencing of a number of gene clusters that encode O-polysaccharide (OPS)/capsule structures. In this review, we summarize our current knowledge on the biochemical composition and structure of some of the O-polysaccharides, genes involved in their biosynthesis, and touch upon the role of horizontal gene transfer in creating this diversity and possible mechanisms that may be operative in this process. We highlight the fact that the distinction between OPS and CPS seems to be less evident in V. cholerae than in other species since the genes encoding these structures are shared and map in the same region of the genome. We also describe our current understanding of the genetics and regulation of EPS/VPS synthesis and its role in biofilm formation and environmental survival of V. cholerae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reeves PR, Hobbs M, Valvano MA, Skurnik M, Whitfield C, Coplin D, Kido N, Klena J, Maskell D, Raetz CRH, Rick PD. Bacterial polysaccharide synthesis and gene nomenclature. Trend Microbiol. 1996;4:495–503.

    Article  CAS  Google Scholar 

  2. Schaechter M, Ingraham JL, Neidhart FC. Prokaryotic cell structure and function: envelopes and appendages. In: Microbe. Washington, DC: ASM; 2005. pp. 19–37.

    Google Scholar 

  3. Manning PA, Stroeher UH, Morona R. Molecular basis of O-antigen biosynthesis in Vibrio cholerae O1: Ogawa-Inaba switching. In: Wachsmuth IK, Blake PA, Olsvik O, editors. Vibrio cholerae and cholera: molecular to global perspectives. Washington, DC: ASM; 1994. pp. 77–94.

    Google Scholar 

  4. Kenne L, Lindberg B. Bacterial lipopolysaccharides. In: Aspinell GO, editor. The Polysaccharides, vol. 2. New York: Academic; 1983. pp. 287–363.

    Google Scholar 

  5. Shimada T, Arakawa E, Itoh K, Okitsu T, Matsushima A, Asai Y, Yamai S, Nakazato T, Nair GB, Albert MJ, Takeda Y. Extended serotyping scheme for Vibriocholerae. Curr Microbiol. 1994; 28: 175–8.

    Google Scholar 

  6. Li M, Shimada T, Morris JG Jr., Sulakvelidze A, Sozhamannan S. 2002. Evidence for the emergence of non-O1 and non-O139 Vibrio cholerae strains with pathogenic potential by exchange of O-antigen biosynthesis regions. Infect Immun. 2002;70:2441–53.

    Google Scholar 

  7. Boyd EF, Waldor MK. Evolutionary and functional analyses of variants of the toxin- coregulated pilus protein TcpA from toxigenic Vibrio cholerae non-O1/non-O139 serogroup isolates. Microbiology. 2002;148:1655–66.

    Google Scholar 

  8. Mukhopadhyay AK, Chakraborty S, Takeda Y, Nair GB, Berg DE. Characterization of VPI pathogenicity island and CTXφ prophage in environmental strains of Vibrio cholerae. J Bacteriol. 2001;183:4737–46.

    Google Scholar 

  9. Li M, Kotetishvili M, Chen Y, Sozhamannan S. Comparative genomic analyses of the vibrio pathogenicity island and cholera toxin prophage regions in nonepidemic serogroup strains of Vibrio cholerae. Appl Environ Microbiol. 2003;69:1728–38.

    Google Scholar 

  10. Johnson JA, Joseph A, Panigrahi P, Morris JG. Frequency of encapsulated versus unencapsulated strains of non-O1 Vibrio cholerae isolated from patients with septicemia or diarrhea, or from environmental strains. In: American Society of Microbiology annual meeting. New Orleans: Lousiana; 1992.

    Google Scholar 

  11. Comstock LE, Johnson JA, Michalski JM, Morris JG, Kaper JB. Cloning and sequence of a region encoding a surface polysaccharide of Vibrio cholerae O139 and characterization of the insertion site in the chromosome of Vibrio cholerae O1. Mol Microbiol. 1996;19:815–26.

    Google Scholar 

  12. Comstock LE, Maneval D, Panigrahi P, Joseph A, Levine MM, Kaper JB, Morris JG, Johnson JA. The capsule and O antigen in Vibrio cholerae O139 Bengal are associated with a genetic region not present in Vibrio cholerae O1. Infect Immun. 1995;63:317–23.

    Google Scholar 

  13. Chen Y, Bystricky P, Adeyeye J, Panigrahi P, Ali A, Johnson JA, Bush CA, Morris JG, Stine OC. The capsule polysaccharide structure and biogenesis for non-O1 Vibrio cholerae NRT36S: genes are embedded in the LPS region. BMC Microbiol. 2007;7:1–15.

    Article  CAS  Google Scholar 

  14. Rice EW, Johnson CJ, Clark RM, Fox KR, Reasoner OJ, Dunnigan ME, Panigraghi P, Johnson JA, Morris JG Jr. Chlorine and survival of "rugose" Vibrio cholerae. Lancet. 1992;340:740.

    Article  PubMed  CAS  Google Scholar 

  15. Morris JG Jr, Sztein MB, Rice EW, Nataro JP, Losonsky GA, Panigrahi P, Tacket CO, Johnson JA. 1996. Vibrio cholerae O1 can assume a chlorine-resistant rugose survival form that is virulent for humans. J Infect Dis. 1996;174:1364–8.

    Google Scholar 

  16. Rice EW, Johnson CH, Clark RM, Fox KR, Reasoner DJ, Dunnigan ME, Panigrahi P, Johnson JA, Morris JG Jr. 1993. Vibrio cholerae O1 can assume a “rugose” survival form that resists killing by chlorine, yet retains virulence. Int J Environ Health Res. 1993;3:89–98.

    Article  Google Scholar 

  17. Wai SN, Mizunoe Y, Takade A, Kawabata SI, Yoshida SI. Vibrio cholerae O1 strain TSI-4 produces the exopolysaccharide materials that determine colony morphology, stress resistance, and biofilm formation. Appl Environ Microbiol. 1998;64:3648–55.

    Google Scholar 

  18. White PB. The rugose variant of vibrios. J Pathol Bacteriol. 1938;46:1–6.

    Article  CAS  Google Scholar 

  19. White PB. The characteristic hapten and antigen of rugose races of cholera and El Tor vibrios. J Pathol Bacteriol. 1940;50:160–4.

    Google Scholar 

  20. Morris JG, and the cholera laboratory task force. Vibrio cholerae O139 Bengal. In: Wachsmuth IK, Blake PA, Olsvik O, editors. Vibrio cholerae and cholera: Molecular to Global Perspectives. Washington, DC: ASM; 1994. pp. 95–102.

    Google Scholar 

  21. Stroeher UH, Jedani KE, Manning PA. Genetic organization of the regions associated with surface polysaccharide synthesis in Vibrio cholerae O1, O139 and Vibrio anguillarum O1 and O2: a review. Gene. 1998;223:269–82.

    Google Scholar 

  22. Chatterjee SN, Chaudhuri K. Lipopolysaccharides of Vibrio cholerae I. Physical and chemical characterization. Biochimica et Biophysica Acta. 2003;1639:65–79.

    Article  PubMed  CAS  Google Scholar 

  23. Chatterjee SN, Chaudhuri K. Lipopolysaccharides of Vibrio cholerae II. Genetics of biosynthesis. Biochimica et Biophysica Acta. 2003;1690:93–109.

    Article  Google Scholar 

  24. Chatterjee SN, Chaudhuri K. Lipopolysaccharides of Vibrio cholerae III. Biological functions. Biochimica et Biophysica Acta. 2003;1762:1–16.

    Article  Google Scholar 

  25. Broady KW, Rietschel E, Luderitz O. The chemical structure of the lipid A component of lipopolysaccharides from Vibrio cholerae. Eur J Biochem. 1981;115:463–8.

    Google Scholar 

  26. Raziuddin S. Studies of the polysaccharide fraction from the cell wall lipopolysaccharide (O-antigen) of Vibrio cholerae. Indian J Biochem Biophys. 1997;14:262–3.

    Google Scholar 

  27. Armstrong JL, Redmond JW. The fatty acids present in the lipopolysaccharide of Vibrio cholerae 569B (Inaba). Biochem Biophys Acta. 1973;348:302–5.

    Google Scholar 

  28. Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Umayam L, Gill SR, Nelson KE, Read TD, Tettelin H, Richardson D, Ermolaeva MD, Vamathevan J, Bass S, Qin H, Dragoi I, Sellers P, McDonald L, Utterback T, Fleishmann RD, Nierman WC, White O, Salzberg SL, Smith HO, Colwell RR, Mekalanos JJ, Venter JC, Fraser CM. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature. 2006;406:477–83.

    Google Scholar 

  29. Brade H. Occurance of 2-keto-deoxyoctonic 5-phosphate in lipopolysaccharides of Vibrio cholerae ogawa and Inaba. J Bacteriol. 1985;161:795–8.

    Google Scholar 

  30. Morona R, Brown MH, Yeadon J, Heuzenroeder MW, PA Manning. Effect of lipopolysaccharide core synthesis mutations on the production of Vibrio cholerae O-antigen in Escherichia coli K-12. FEMS Mirobiol Lett. 1991;82:279–86.

    Google Scholar 

  31. Nesper J, KraibA, Schild S, Blab J, Klose KE, Bockemuhl J, J Reidl. Comparative and genetic analyses of the putative Vibrio cholerae lipopolysaccharide core oligosaccharide biosynthesis (wav) gene cluster. Infect Immun. 2002;70:2419–33.

    Google Scholar 

  32. Nesper J, Kapfhammer D, Klose KE, Merkert H, Reidl J. 2000. Characterization of Vibrio cholerae O1 antigen as a bacteriophage K139 receptor and identification of IS 1004 insertions aborting O1-antigen biosynthesis. J Bacteriol. 2000;182:5097–104.

    Google Scholar 

  33. Nesper J, Lauriano CM, Klose KE, Kapfhammer D, Kraiss A, and J. Reidl. Characterization of Vibrio cholerae O1 El Tor galU and galE mutants: influence on lipopolysaccharide structure, colonization, and biofilm formation. Infect Immun. 2001;69:435–45.

    Google Scholar 

  34. Jansson PE. The chemistry of O-polysaccharide chains in bacterial lipopolysaccharides. In: Brade H, Opal SM, Vogel SN, Morrison DC, editors. Endotoxin in health and disease. New York: Marcel Dekker; 1999. pp. 155–78.

    Google Scholar 

  35. Kocharova NA, Perepelov AV, Zatonsky GV, Shashkov AS, Knirel YA, Jansson PE, Weintraub A. Structural studies of the O-specific polysaccharide of Vibrio cholerae O:2. Carbohydr Res. 2001;330:83–92.

    Article  PubMed  CAS  Google Scholar 

  36. Bergstrom N, Nair GB, Weintraub A, Jansson PE. Structure of the O-polysaccharide from the lipopolysaccharide from Vibrio cholerae O6. Carbohydr Res. 2002;337:813–7.

    Google Scholar 

  37. Sakazaki R. 1994. Bacteriology of vibrio and related organisms. In: Wachsmuth IK, Blake PA, Olsvik O, editors. Vibrio cholerae and cholera: Molecular to Global Perspectives. Washington, DC: ASM; 1994. pp. 37–55.

    Google Scholar 

  38. Bhaskaran, K, Gorrill RH. A study of antigenic variation in Vibrio cholerae. J Gen Microbiol. 1957;16:721–9.

    Google Scholar 

  39. Kenne L, Lindberg B, Unger P, Holme T, Holmgren J. Structural studies of the Vibrio cholerae O-antigen. Carbohydr. Res. 1982;100:341–9.

    Google Scholar 

  40. Redmond JW. The structure on the O-antigenic side chain of the lipopolysaccharide of Vibrio cholerae 569B (Inaba). Biochem. Biophys. Acta. 1979;584:346–52.

    Google Scholar 

  41. Manning PA, Heuzenroeder MW, Yeadon J, Leavesley DI, Reeves PR, D. Rowley D. Molecular cloning and expression in Escherichia coli K-12 of the O-antigen of the Ogawa and Inaba serotypes of the lipopolysaccharide of Vibrio cholerae O1 and their potential for vaccine development. Infect. Immun. 1986;53:272–7.

    Google Scholar 

  42. Ward HM, Morelli G, Kamke M, Morona R, Yeadon J, Hackett JA, Manning PA. A physical map of the chromosomal region determining O-antigen biosynthesis in Vibrio cholerae O1. Gene. 1987;55:197–204.

    Article  PubMed  CAS  Google Scholar 

  43. Fallarino A, Mavrangelos C, Stroeher UH, Manning PA. Identification of additional genes required for O-antigen biosynthesis in Vibrio cholerae O1. J Bacteriol. 1997;179:2147–53.

    Google Scholar 

  44. Hobbs M, Reeves PR. The JUMPstart sequence: a 39 bp element common to several polysaccharide gene clusters. Mol Microbiol. 1994;12:855–6.

    Google Scholar 

  45. Stroeher UH, Karageorgos LE, Brown MH, Morona R, Manning PA. A putative pathway for perosamine biosynthesis is the first function encoded within the rfb region of Vibrio cholerae O1. Gene. 1995;166:33–42.

    Article  PubMed  CAS  Google Scholar 

  46. Morona R, Stroeher UH, Karageorgos lE, Brown MH, Manning PA. A putative pathway for biosynthesis of the O-antigen component, 3-deoxy-L-glycero-tetronic acid, based on the sequence of the Vibrio cholerae O1 rfb region. Gene. 1995;166:19–31.

    Article  PubMed  CAS  Google Scholar 

  47. Stroeher UH, Karageorgos LE, Morona R, Manning PA. Serotype conversion in Vibrio cholerae O1. Proc Natl Acad Sci USA. 1992;89:2566–70.

    Google Scholar 

  48. Hisatsune K, Kondo S, Isshiki Y, Iguchi T, Haishima Y. Occurance of 2-O-methyl-N-(3-deoxy-L-glycero-tetronyl)-D-perosamine (4-amino-4, 6-didexoy-D-mannose-pyranose) in lipopolysaccharide from the Ogawa but not from Inaba forms of O1 Vibrio cholerae. Biochem Biophys Res Commun. 1993;190:302–7.

    Google Scholar 

  49. Blokesch M, Schoolnik GK. Serogroup conversion of Vibrio cholerae in aquatic reservoirs. Plos Pathogens. 2007;3:0733–42.

    Google Scholar 

  50. Albert MJ, Siddique AK, Islam MS, Faruque ASG, Ansaruzzaman M, Faruque MSM, Sack RB. Large outbreak of clinical cholera due to Vibrio cholerae non-O1 in Bangladesh. Lancet. 1993;341:704.

    Article  PubMed  CAS  Google Scholar 

  51. Albert MJ, Ansaruzzaman M, Bardhan PK, Faruque ASG, Faruque SM, Islam MS, Mahalanabis D, Sack RB, M. Salam MS, Siddique AK, Yunus MD, Zaman K. Large epidemic of cholera-like disease in Bangladesh caused by Vibrio cholerae O139 synonym Bengal. Lancet. 1993;342:387–90.

    Google Scholar 

  52. Ramamurthy T, Garg S, Sharma R, Bhattacharya SK, Nair GB, Shimada T, Takeda T, Karasawa T, Kurazano H, Pal A, Takeda Y. 1993. Emergence of novel strain of Vibrio cholerae with epidemic potential in southern and eastern India. Lancet. 1993;341:703–4.

    Google Scholar 

  53. Waldor MK, Colwell R, Mekalanos JJ. The Vibrio cholerae O139 serogroup antigen includes O-polysaccharide capsule and lipopolysaccharide virulence determinant. Proc Natl Acad Sci USA. 1994;91:11388–92.

    Google Scholar 

  54. Johnson JA, Salles CA, Panigrahi P, Albert MJ, Wright AC, Johnson RJ, Morris Jr JG. Vibrio cholerae O139 synonym Bengal is related to Vibrio cholerae El Tor but has important differences. Infec Immun. 1994;62:2108–10.

    Google Scholar 

  55. Cox AD, Brisson JR, Varma V, Perry MB. Structural analysis of the lipopolysaccharide from Vibrio cholerae O139. Carbohydr Res. 1996;290:43–58.

    Article  PubMed  CAS  Google Scholar 

  56. Knirel YA, Widmalm G, Senchenkova SN, Jansson PE, Weintraub A. Structural studies on the short-chain lipopolysaccharide of Vibrio cholerae O139 Bengal. Eur Biochem. 1997;247:402–10.

    Google Scholar 

  57. Weintraub A, Widmalm G, Jansson PE, Jansson M, Hultenby K, Albert MJ. Vibrio cholerae O139 Bengal possesses a capsular polysaccharide which may confer increased virulence. Microb. Pathoge. 1994;16:235–41.

    Google Scholar 

  58. Preston LM, Xu Q, Johnson JA, Joseph A, Maneval DR, Husain K, Reddy GP, Bush CA, Morris JG Jr. 1995. Preliminary structure determination of the capsular polysaccharide of Vibrio cholerae O139 Bengal AI-1837. J. Bacteriol. 1995;177:835–8.

    Google Scholar 

  59. Knirel YA, Pardes L, Jansson PE, Weintraub A, Widmalm G, Albert MJ. Structure of the capsular polysaccharide of Vibrio cholerae O139 Bengal containing D-galactose 4,6-cyclophosphate. Eur J Biochem. 1995;232:391–6.

    Google Scholar 

  60. Adeyeye J, Azurmundi HF, Stroop CJM, Sozhamannan S, Williams AL, Adetumbi AM, Johnson JA, Bush CA. Conformation of the hexasaccharide repeating subunit from the V. cholerae O139 capsular polysaccharide. Biochemistry. 2003;42:3979–88.

    Google Scholar 

  61. Bik EM, Bunschoten AE, Gouw RD, Mooi FR. Genesis of the novel epidemic Vibrio cholerae O139 strain: evidence for horizontal transfer of genes involved in polysaccharide synthesis. EMBO J. 1995;14:209–16.

    Google Scholar 

  62. Comstock LE, Johnson JA, Michalski JM, Morris JG Jr, Kaper JB. Cloning and sequence of a region encoding a surface polysaccharide of Vibrio cholerae O139 and characterization of the insertion site in the chromosome of Vibrio cholerae O1. Mol Microbiol. 1996;19:815–26.

    Google Scholar 

  63. Stroeher UH, Parasivam G, Dredge BK, Manning PA. Novel Vibrio cholerae O139 genes involved in lipopolysaccharide biosynthesis. J Bacteriol. 1997;179:2740–7.

    Google Scholar 

  64. Bastin DA, Reeves PR. Sequence analysis of the O-antigen gene (rfb) cluster of Escherichia coli O111. Gene. 1995;164:17–23.

    Article  PubMed  CAS  Google Scholar 

  65. Cox AD, Brisson JR, Thibault P, Perry MB. Structural analysis of the lipopolysaccharide from Vibrio cholerae serotype O22. Carbohyd Res. 1997;304:191–208.

    Article  CAS  Google Scholar 

  66. Knirel, YA, Senchenkova SN, Jansson PE, Weintraub A. More on the structure of Vibrio cholerae O22 lipopolysaccharide. Carbohydr Res. 1998;310:117–9.

    Google Scholar 

  67. Yamasaki S, Shimizu T, Hoshino K, Ho S-T, Shimada T, Nair GB, Takeda Y. The genes responsible for O-antigen synthesis of Vibrio cholerae O139 are closely related to those of Vibrio cholerae O22. Gene. 1999;237:321–32.

    Google Scholar 

  68. Aldova E, Laznickova K, Stepankova E, Lietava J. Isolation of nonagglutinable vibrios from an enteritis outbreak in Czechoslovakia. J Infect Dis. 1968;118:25–31.

    Article  PubMed  CAS  Google Scholar 

  69. Kamal AM. Outbreak of gastro-enteritis by non-agglutinable (NAG) vibrios in the republic of the Sudan. J Egypt Public Health Assoc. 1971;XLVI:125–59.

    Google Scholar 

  70. Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem 2002;71:635–700.

    Article  PubMed  CAS  Google Scholar 

  71. Rivas M, Toma C, Miliwebsky E, Caffer MI, Galas M, Varela P, Tous M, Bru AM, Binsztein N. Cholera isolates in relation to the "eighth pandemic". Lancet. 1993;342:926–7.

    Google Scholar 

  72. Mooi FR, Bik EM. The evolution of epidemic Vibrio cholerae strains. Trends Microbiol. 1997;4:161–5.

    Google Scholar 

  73. Stroeher UH, Manning PA. Vibrio cholerae serotype O139: swapping genes for surface polysaccharide biosynthesis. Trends Microbiol. 1997;5:178–80.

    Google Scholar 

  74. Bik EM, Gouw RD, Mooi FR. DNA fingerprinting of Vibrio cholerae strains with a novel insertion sequence element: a tool to identify epidemic strains. J Clin Microbiol. 1996;34:1453–61.

    Google Scholar 

  75. Dziejman M, Balon E, Boyd D, Fraser CM, Heidelberg JF, Mekalanos JJ. Comparative genomic analysis of Vibrio cholerae: Genes that correlate with cholera endemic and pandemic disease. Proc Natl Acad Sci USA 2002;99:1556–61.

    Google Scholar 

  76. Sugiyama T, Kido N, Kato Y, Koide N, Yoshida T, Yokochi T. Evolutionary relationship among rfb gene clusters synthesizing mannose homo polymer as O-specific polysaccharides in Esherichia coli and Klebsiella. Gene. 1997;198:111–3.

    Google Scholar 

  77. Waldor MK, Mekalanos JJ. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science. 1996;272:1910–4.

    Google Scholar 

  78. O’Shea YA, Boyd EF. Mobilization of the Vibrio pathogenicity island between Vibrio cholerae isolates mediated by CP-T1 generalized transduction. FEMS Microbiol Lett. 2002;214:153–7.

    Google Scholar 

  79. Meibom KL, Blokesch M, Dolganov NA, Wu CY, Schoolnik GK. Chitin induces natural competence in Vibrio cholerae. Science. 2005;310:1824–7.

    Google Scholar 

  80. Dybvig, K. DNA rearrangements and phenotypic switching in prokaryotes. Mol Microbiol. 1993;10:465–71.

    Google Scholar 

  81. Henderson IR, Owen P, Nataro JP. 1999. Molecular switches-the ON and OFF of bacterial phase variation. Mol Microbiol. 1999;33:919–32.

    Google Scholar 

  82. Smits WK, Kuipers OP, Veening JW. Phenotypic variation in bacteria: the role of feedback regulation. Nat Rev Microbiol. 2006;4:259–71.

    Google Scholar 

  83. Yildiz FH, Schoolnik GK. Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci USA. 1999;96:4028–33.

    Google Scholar 

  84. Ali A, Rashid MH, Karaolis DK. High-frequency rugose exopolysaccharide production by Vibrio cholerae. Appl Environ Microbiol. 2002;68:5773–8.

    Google Scholar 

  85. Hammer BK, Bassler BL. Quorum sensing controls biofilm formation in Vibrio cholerae. Mol Microbiol. 2003;50:101–4.

    Google Scholar 

  86. Yildiz FH, Liu XS, Heydorn A, and Schoolnik GK. Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Mol Microbiol. 2004;53:497–515.

    Article  PubMed  CAS  Google Scholar 

  87. Zhu J, Mekalanos JJ. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev Cell. 2003;5:647–56.

    Google Scholar 

  88. Lauriano CM, Ghosh C, Correa NE, and Klose KE. The sodium-driven flagellar motor controls exopolysaccharide expression in Vibrio cholerae. J Bacteriol. 2004;186:4864–74.

    Google Scholar 

  89. Watnick PI, Lauriano CM, Klose KE, Croal L, Kolter R. The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Mol Microbiol. 2001;39:223–35.

    Google Scholar 

  90. Haugo AJ, Watnick PI. Vibrio cholerae CytR is a repressor of biofilm development. Mol Microbiol. 2002;45:471–83.

    Google Scholar 

  91. Islam MS, Jahid MI, Rahman MM, Rahman MZ, Islam MS, Kabir MS, Sack DA, Schoolnik GK. 2007. Biofilm Acts as a Microenvironment for Plankton-Associated Vibrio cholerae in the Aquatic Environment of Bangladesh. Microbiol Immunol. 2007;51:369–79.

    Google Scholar 

  92. Beyhan S, Yildiz FH. Smooth to rugose phase variation in Vibrio cholerae can be mediated by a single nucleotide change that targets c-di-GMP signalling pathway. Mol Microbiol. 2007;63:995–1007.

    Article  PubMed  CAS  Google Scholar 

  93. Matz C, McDougald D, Moreno AM, Yung PY, Yildiz FH, Kjelleberg S. Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae. Proc Natl Acad Sci USA. 2005;102:16819–24.

    Google Scholar 

  94. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annu Rev Microbiol. 1995;49:711–45.

    Google Scholar 

  95. Davey ME, O'Toole GA. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev. 2000;64:847–67.

    Google Scholar 

  96. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15:167–93.

    Google Scholar 

  97. Parsek MR, Singh PK. Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol. 2003;57:677–701.

    Article  PubMed  CAS  Google Scholar 

  98. Heydorn A, Nielsen AT, Hentzer M, Sternberg MC, Givskov M, Ersboll BK, Molin S. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology. 2000;146:2395–407.

    Google Scholar 

  99. Ali A, Mahmud ZH, Morris JG Jr, Sozhamannan S, Johnson JA. Sequence analysis of TnphoA insertion sites in Vibrio cholerae mutants defective in rugose polysaccharide production. Infect Immun. 2000;68:6857–64.

    Google Scholar 

  100. Yildiz FH, Dolganov NA, and Schoolnik GK. 2001. VpsR, a Member of the response regulators of the two-component regulatory systems is required for expression of vps biosynthesis genes and EPS(ETr)-associated phenotypes in Vibrio cholerae O1 El Tor. J Bacteriol. 2001;183:1716–26.

    Google Scholar 

  101. Casper-Lindley C, Yildiz FH. VpsT is a transcriptional regulator required for expression of vps biosynthesis genes and the development of rugose colonial morphology in Vibrio cholerae O1 El Tor. J Bacteriol. 2004;186:1574–8.

    Google Scholar 

  102. Romling U, Sierralta WD, Eriksson K, and Normark S. Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Mol Microbiol. 1998;28:249–64.

    Google Scholar 

  103. Romling U, Rohde M, Olsen A, Normark S, and Reinkoster J. 2000. AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol Microbiol. 2000;36:10–23.

    Article  PubMed  CAS  Google Scholar 

  104. Uhlich GA, Keen JE, Elder RO. Mutations in the csgD promoter associated with variations in curli expression in certain strains of Escherichia coli O157:H7. Appl Environ Microbiol. 2001;67:2367–70.

    Google Scholar 

  105. Beyhan S, Bilecen K, Salama SR, Casper-Lindley C, Yildiz FH. 2007. Regulation of rugosity and biofilm formation in Vibrio cholerae: comparison of VpsT and VpsR regulons and epistasis analysis of vpsT, vpsR, and hapR. J Bacteriol. 2007;189:388–402.

    Article  PubMed  CAS  Google Scholar 

  106. Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol. 2001;55:165–99.

    Google Scholar 

  107. Miller MB, Skorupski K, Lenz DH, Taylor RK, Bassler BL. Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell. 2002;110:303–14.

    Google Scholar 

  108. Zhu J, Miller MB, Vance RE, Dziejman M, Bassler BL, Mekalanos JJ. 2002. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci USA. 2002;99:3129–34.

    Google Scholar 

  109. Ali A, Johnson JA, Franco AA, Metzger DJ, Connell TD, Morris JG Jr, Sozhamannan S. Mutations in the extracellular protein secretion pathway genes (eps) interfere with rugose polysaccharide production in and motility of Vibrio cholerae. Infect Immun. 2000;68:1967–74.

    Google Scholar 

  110. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437:376–80.

    Google Scholar 

  111. Faruque SM, Naser IB, Islam MJ, Faruque AS, Ghosh AN, Nair GB, Sack DA, Mekalanos JJ. Seasonal epidemics of cholera inversely correlate with the prevalence of environmental cholera phages. Proc Natl Acad Sci USA. 2005;102:1702–7.

    Google Scholar 

Download references

Acknowledgments

The authors thank Tim T. Binnewies and David W. Ussery of Center for Biological Sequence Analysis, BioCentrum-DTU-Denmark (web page: http://www.cbs.dtu.dk/services/GenomeAtlas/) for BLAST analysis of unfinished and finished Vibrio genomes and generating the BLAST atlas in Figs. 8.2 and 8.5. We also would like to thank TIGR for giving access to the sequences of unfinished genomes. S.S. is supported by funding from Defense Threat Reduction Agency, Department of Defense of the US Government and F.Y. is supported by funding from NIH RO1 grant # AI055987. The views expressed in this chapter are those of the author and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, or the U.S. Government. The authors thank ASM Press for use of certain text extracts from Chapter 6 of the book entitled Vibrio cholerae and Cholera: Molecular to Global Perspectives and Joachim Reidl for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanmuga Sozhamannan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sozhamannan, S., Yildiz, F.H. (2011). Diversity and Genetic Basis of Polysaccharide Biosynthesis in Vibrio cholerae . In: Ramamurthy, T., Bhattacharya, S. (eds) Epidemiological and Molecular Aspects on Cholera. Infectious Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-60327-265-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-265-0_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-60327-264-3

  • Online ISBN: 978-1-60327-265-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics