Skip to main content

CT of Cardiac and Paracardiac Masses

  • Chapter
  • First Online:
CT of the Heart

Part of the book series: Contemporary Medical Imaging ((CMI))

  • 2767 Accesses

Abstract

There is a broad spectrum of cardiac and paracardiac masses, which includes nonneoplastic as well as neoplastic lesions, both benign and malignant lesions. In addition, there are several normal variants that may mimic masses. CT scan has become an important imaging modality in the evaluation of these cardiac and paracardiac masses due to several advantages such as high spatial resolution, good temporal resolution, wide field of view, and multiplanar reconstruction capabilities. It is particularly valuable in patients who have contraindications for undergoing MRI. CT is ideal for detection of calcifications and evaluation of vascular supply in cardiac masses. In this article, we review the role of CT in the evaluation of cardiac and paracardiac masses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burke A, Virmani R. Tumors of the heart and great vessels. Washington, DC: Amer Registry of Pathology; 1996.

    Google Scholar 

  2. Lam KY, Dickens P, Chan AC. Tumors of the heart. A 20-year experience with a review of 12,485 consecutive autopsies. Arch Pathol Lab Med. 1993;117(10):1027–31.

    CAS  PubMed  Google Scholar 

  3. Kassop D, Donovan MS, Cheezum MK, et al. Cardiac masses on cardiac CT: a review. Curr Cardiovasc Imaging Rep [Internet]. 2014;7(8):9281. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4090749/pdf/12410_2014_Article_9281.pdf.

  4. Hoey E, Ganeshan A, Nader K, Randhawa K, Watkin R. Cardiac neoplasms and pseudotumors: imaging findings on multidetector CT angiography. Diagn Interv Radiol. 2012;18(1):67–77.

    PubMed  Google Scholar 

  5. Hoey ET, Mankad K, Puppala S, Gopalan D, Sivananthan MU. MRI and CT appearances of cardiac tumours in adults. Clin Radiol. 2009;64(12):1214–30.

    Article  CAS  PubMed  Google Scholar 

  6. Kumar N, Agarwal S, Ahuja A, Das P, Airon B, Ray R. Spectrum of cardiac tumors excluding myxoma: experience of a tertiary center with review of the literature. Pathol Res Pract. 2011;207(12):769–74.

    Article  CAS  PubMed  Google Scholar 

  7. Tao TY, Yahyavi-Firouz-Abadi N, Singh GK, Bhalla S. Pediatric cardiac tumors: clinical and imaging features. Radiographics. Radiological Society of North America. 2014;34(4):1031–46.

    Google Scholar 

  8. Beghetti M, Gow RM, Haney I, Mawson J, Williams WG, Freedom RM. Pediatric primary benign cardiac tumors: a 15-year review. Am Heart J. 1998;134(6):1107–14.

    Google Scholar 

  9. Motwani M, Kidambi A, Herzog BA, Uddin A, Greenwood JP, Plein S. MR imaging of cardiac tumors and masses: a review of methods and clinical applications. Radiology. 2013;268(1):26–43.

    Article  PubMed  Google Scholar 

  10. Rajiah P, Kanne JP, Kalahasti V, Schoenhagen P. Computed tomography of cardiac and pericardiac masses. J Cardiovasc Comput Tomogr. 2011;5(1):16–29.

    Article  PubMed  Google Scholar 

  11. Anavekar NS, Bonnichsen CR, Foley TA, et al. Computed tomography of cardiac pseudotumors and neoplasms. Radiol Clin N Am. 2010;48(4):799–816.

    Article  PubMed  Google Scholar 

  12. Akcay M, Bilen ES, Bilge M, Durmaz T, Kurt M. Prominent crista terminalis: as an anatomic structure leading to atrial arrhythmias and mimicking right atrial mass. J Am Soc Echocardiogr. 2007;20(2):197.e9–e10.

    Article  Google Scholar 

  13. Salustri A, Bakir S, Sana A, Lange P, Mahmeed Al WA. Prominent crista terminalis mimicking a right atrial mass: case report. Cardiovasc Ultrasound. 6 ed. BioMed Central. 2010;8(1):47.

    Google Scholar 

  14. Gad A, Mannan J, Chhabra M, Zhang XXY, Narula P, Hoang D. Prominent Eustachian valve in newborns: a report of four cases. AJP Rep. 2016;6(1):e33–7.

    PubMed  Google Scholar 

  15. Watson T, Kakar P, Srivastava S, Dhanjal TS. Eustachian valve remnant. Cardiol J. 2007;14(5):508–9.

    PubMed  Google Scholar 

  16. Yavuz T, Nazli C, Kinay O, Kutsal A. Giant Eustachian valve with echocardiographic appearance of divided right atrium. Tex Heart Inst J. 2002;29(4):336–8.

    PubMed  PubMed Central  Google Scholar 

  17. Schneider B, Hofmann T, Justen MH, Meinertz T. Chiari’s network: normal anatomic variant or risk factor for arterial embolic events? J Am Coll Cardiol. 1995;26(1):203–10.

    Article  CAS  PubMed  Google Scholar 

  18. Islam AKMM, Sayami LA, Zaman S. Chiari network: a case report and brief overview. J Saudi Heart Assoc. 2013;25(3):225–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hightower JS, Taylor AG, Ursell PC, LaBerge JM. The Chiari network: a rare cause of intracardiac guide wire entrapment. J Vasc Interv Radiol. 2015;26(4):604–6.

    Article  PubMed  Google Scholar 

  20. Lodhi AM, Nguyen T, Bianco C, Movahed A. Coumadin ridge: an incidental finding of a left atrial pseudotumor on transthoracic echocardiography. World J Clin Cases. 2015;3(9):831–4.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kim DT, Lai AC, Hwang C, et al. The ligament of Marshall: a structural analysis in human hearts with implications for atrial arrhythmias. J Am Coll Cardiol. 2000;36(4):1324–7.

    Article  CAS  PubMed  Google Scholar 

  22. Terpenning S, White CS. Imaging pitfalls, normal anatomy, and anatomical variants that can simulate disease on cardiac imaging as demonstrated on multidetector computed tomography. Acta Radiol Short Rep. 2015;4(1):1–15.

    Google Scholar 

  23. Kim DH, Choi SI, Choi J-A, et al. Various findings of cardiac thrombi on MDCT and MRI. J Comput Assist Tomogr. 2006;30(4):572–7.

    Article  CAS  PubMed  Google Scholar 

  24. Bittencourt MS, Achenbach S, Marwan M, et al. Left ventricular thrombus attenuation characterization in cardiac computed tomography angiography. J Cardiovasc Comput Tomogr. 2012;6(2):121–6.

    Article  PubMed  Google Scholar 

  25. Hong YJ, Hur J, Kim YJ, et al. Dual-energy cardiac computed tomography for differentiating cardiac myxoma from thrombus. Int J Cardiovasc Imaging. Springer Netherlands. 2014;30(Suppl 2(2)):121–8.

    Article  Google Scholar 

  26. Patel A, Au E, Donegan K, et al. Multidetector row computed tomography for identification of left atrial appendage filling defects in patients undergoing pulmonary vein isolation for treatment of atrial fibrillation: comparison with transesophageal echocardiography. Heart Rhythm. 2008;5(2):253–60.

    Article  PubMed  Google Scholar 

  27. Hur J, Kim YJ, Lee H-J, et al. Left atrial appendage thrombi in stroke patients: detection with two-phase cardiac CT angiography versus transesophageal echocardiography 1. Radiology. 2009;251(3):683–90.

    Article  PubMed  Google Scholar 

  28. Czekajska-Chehab E, Tomaszewska M, Olchowik G, Tomaszewski M, Adamczyk P, Drop A. Lipomatous hypertrophy of the interatrial septum in ECG-gated multislice computed tomography of the heart. Med Sci Monit. 2012;18(7):MT54–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fan C-M, Fischman AJ, Kwek BH, Abbara S, Aquino SL. Lipomatous hypertrophy of the interatrial septum: increased uptake on FDG PET. AJR Am J Roentgenol [Internet]. 2005;184(1):339–342. Available from: http://www.ajronline.org/doi/pdfplus/10.2214/ajr.184.1.01840339.

    Article  PubMed  Google Scholar 

  30. Anderson RH, Anderson RH, Webb S, Brown NA, Webb S, Brown NA. Clinical anatomy of the atrial septum with reference to its developmental components. Clin Anat. 1999;12(5):362–74.

    Article  CAS  PubMed  Google Scholar 

  31. Sánchez-Quintana D, Ho SY, Cabrera JA, Farré J, Anderson RH. Topographic anatomy of the inferior pyramidal space: relevance to radiofrequency catheter ablation. J Cardiovasc Electrophysiol. 2001;12(2):210–7.

    Article  PubMed  Google Scholar 

  32. Laura DM, Donnino R, Kim EE, Benenstein R, Freedberg RS, Saric M. Lipomatous atrial septal hypertrophy: a review of its anatomy, pathophysiology, multimodality imaging, and relevance to percutaneous interventions. J Am Soc Echocardiogr. 2016;29(8):717–23.

    Article  PubMed  Google Scholar 

  33. Heyer CM, Kagel T, Lemburg SP, Bauer TT, Nicolas V. Lipomatous hypertrophy of the interatrial septum: a prospective study of incidence, imaging findings, and clinical symptoms. Chest. 2003;124(6):2068–73.

    Article  PubMed  Google Scholar 

  34. O’Connor S, Recavarren R, Nichols LC, Parwani AV. Lipomatous hypertrophy of the interatrial septum: an overview. Arch Pathol Lab Med. 2006;130(3):397–9.

    PubMed  Google Scholar 

  35. Xanthos T, Giannakopoulos N, Papadimitriou L. Lipomatous hypertrophy of the interatrial septum: a pathological and clinical approach. Int J Cardiol. 2007;121(1):4–8.

    Article  PubMed  Google Scholar 

  36. Pomerance A. Pathological and clinical study of calcification of the mitral valve ring. J Clin Pathol. 1970;23(4):354–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shriki J, Rongey C, Ghosh B, et al. Caseous mitral annular calcifications: multimodality imaging characteristics. World J Radiol. 2010;2(4):143–7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Harpaz D, Auerbach I, Vered Z, Motro M, Tobar A, Rosenblatt S. Caseous calcification of the mitral annulus: a neglected, unrecognized diagnosis. J Am Soc Echocardiogr. 2001;14(8):825–31.

    Article  CAS  PubMed  Google Scholar 

  39. Elgendy IY, Conti CR. Caseous calcification of the mitral annulus: a review. Clin Cardiol. Wiley Periodicals, Inc. 2013;36(10):E27–31.

    Google Scholar 

  40. Gilbert HM, Grodman R, Chung MH, Hartman G, Krieger KH, Hartman BJ. Sterile, Caseous mitral valve “abscess” mimicking infective endocarditis. Clin Infect Dis. 1997;24(5):1015–6.

    Article  CAS  PubMed  Google Scholar 

  41. Wang ZJ, Reddy GP, Gotway MB, Yeh BM, Hetts SW, Higgins CB. CT and MR imaging of pericardial disease. Radiographics. 2003;23(suppl_1):S167–80.

    Article  PubMed  Google Scholar 

  42. Kim JH, Goo JM, Lee HJ, et al. Cystic tumors in the anterior mediastinum. J Comput Assist Tomogr. 2003;27(5):714–23.

    Article  PubMed  Google Scholar 

  43. Jeung M-Y, Gasser B, Gangi A, et al. Imaging of cystic masses of the mediastinum. Radiographics. 2002;22(suppl_1):S79–93.

    Article  PubMed  Google Scholar 

  44. Rajiah P, Kanne JP. Computed tomography of the pericardium and pericardial disease. J Cardiovasc Comput Tomogr. 2010;4(1):3–18.

    Article  PubMed  Google Scholar 

  45. McAdams HP, Kirejczyk WM, Rosado-de-Christenson ML, Matsumoto S. Bronchogenic cyst: imaging features with clinical and histopathologic correlation. Radiology. 2000;217(2):441–6.

    Article  CAS  PubMed  Google Scholar 

  46. Seo N, Kang J-W, Lim C-H, Kim B, Lee HJ, Lim T-H. CT findings of an intracardiac bronchogenic cyst. Int J Cardiovasc Imaging. 2011;27(5):701–4.

    Article  PubMed  Google Scholar 

  47. Forcillo J, Dion D, Sauvageot C, Jeanmart H. Intraventricular bronchogenic cyst: a rare congenital anomaly. Ann Thorac Surg. 2015;100(3):1101–3.

    Article  PubMed  Google Scholar 

  48. Wang J, Zhu Q, Liang B, Shi H, Han P, Kong X. Left ventricular bronchogenic cyst. Ann Thorac Surg. 2016;101(2):744–6.

    Article  PubMed  Google Scholar 

  49. Dean C, Etienne D, Carpentier B, Gielecki J, Tubbs RS, Loukas M. Hiatal hernias. Surg Radiol Anat. 2012;34(4):291–9.

    Article  PubMed  Google Scholar 

  50. Díaz-Zamudio M, Bacilio-Pérez U, Herrera-Zarza MC, et al. Coronary artery aneurysms and ectasia: role of coronary CT angiography. Radiographics. 2009;29(7):1939–54.

    Article  PubMed  Google Scholar 

  51. Frazier AA, Qureshi F, Read KM, Gilkeson RC, Poston RS, White CS. Coronary artery bypass grafts: assessment with multidetector CT in the early and late postoperative settings. Radiographics. 2005;25(4):881–96.

    Article  PubMed  Google Scholar 

  52. Rajiah P, Kanne JP. Computed tomography of septal defects. J Cardiovasc Comput Tomogr. 2010;4(4):231–45.

    Article  PubMed  Google Scholar 

  53. Murdoch DR, Corey GR, Hoen B, et al. Clinical presentation, etiology, and outcome of infective endocarditis in the 21st century: the International Collaboration on Endocarditis-Prospective Cohort Study. Arch Intern Med. 2009;169(5):463–73.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Murillo H, Restrepo CS, Marmol-Velez JA, et al. Infectious diseases of the heart: pathophysiology, clinical and imaging overview. Radiographics [Internet]. 2016;36(4):963–983. Available from: http://pubs.rsna.org/doi/pdf/10.1148/rg.2016150225.

    Article  PubMed  Google Scholar 

  55. Grebenc ML, Rosado-de-Christenson ML, Burke AP, Green CE, Galvin JR. From the archives of the AFIP. Radiographics. 2002;22(3):673–89.

    Article  PubMed  Google Scholar 

  56. Araoz PA, Araoz PA, Mulvagh SL, et al. CT and MR imaging of benign primary cardiac neoplasms with echocardiographic correlation. Radiographics. 2000;20(5):1303–19.

    Article  CAS  PubMed  Google Scholar 

  57. Swartz MF, Lutz CJ, Chandan VS, Landas S, Fink GW. Atrial myxomas: pathologic types, tumor location, and presenting symptoms. J Card Surg. Blackwell Publishing Inc. 2006;21(4):435–40.

    Article  Google Scholar 

  58. Amano J, Kono T, Wada Y, et al. Cardiac myxoma: its origin and tumor characteristics. Ann Thorac Cardiovasc Surg. 2003;9(4):215–21.

    PubMed  Google Scholar 

  59. Auger D, Pressacco J, Marcotte F, Tremblay A, Dore A, Ducharme A. Cardiac masses: an integrative approach using echocardiography and other imaging modalities. Heart. BMJ Publishing Group Ltd and British Cardiovascular Society. 2011;97(13):1101–9.

    Google Scholar 

  60. Burke A, Jeudy J, Virmani R. Cardiac tumours: an update. Heart. 2008;94(1):117–23.

    Article  PubMed  Google Scholar 

  61. Barbier G, Vazquez Figueroa JG, Rinehart S, et al. Tissue characterization of a papillary fibroelastoma on the aortic valve by contrast-enhanced 320-detector row computed tomography. J Cardiovasc Comput Tomogr. 2010;4(5):345–7.

    Article  PubMed  Google Scholar 

  62. Mariscalco G, Bruno VD, Borsani P, Dominici C, Sala A. Papillary fibroelastoma: insight to a primary cardiac valve tumor. J Card Surg. 2010;25(2):198–205.

    Article  PubMed  Google Scholar 

  63. Daveron E, Jain N, Kelley GP, et al. Papillary fibroelastoma and Lambl's excrescences: echocardiographic diagnosis and differential diagnosis. Echocardiography. Blackwell Science Inc. 2005;22(5):461–3.

    Article  Google Scholar 

  64. Hrabak-Paar M, Hübner M, Stern-Padovan R, Lušić M. Hemangioma of the interatrial septum: CT and MRI features. Cardiovasc Intervent Radiol. 2011;34(Suppl 2(S2)):S90–3.

    Article  PubMed  Google Scholar 

  65. Becker AE. Primary heart tumors in the pediatric age group: a review of salient pathologic features relevant for clinicians. Pediatr Cardiol. Springer-Verlag. 2000;21(4):317–23.

    Article  CAS  Google Scholar 

  66. Burke A, Virmani R. Pediatric heart tumors. Cardiovasc Pathol. 2008;17(4):193–8.

    Article  PubMed  Google Scholar 

  67. Esmaeilzadeh M, Jalalian R, Maleki M, Givtaj N, Mozaffari K, Parsaee M. Cardiac cavernous hemangioma. Eur J Echocardiogr. The Oxford University Press. 2007;8(6):487–9.

    Article  Google Scholar 

  68. Wang J-G, Han J, Jiang T, Li Y-J. Cardiac paragangliomas. J Card Surg. 2015;30(1):55–60.

    Article  PubMed  Google Scholar 

  69. Sparrow PJ, Kurian JB, Jones TR, Sivananthan MU. MR imaging of cardiac tumors. Radiographics. 2005;25(5):1255–76.

    Article  PubMed  Google Scholar 

  70. Beroukhim RS, Prakash A, Buechel ERV, et al. Characterization of cardiac tumors in children by cardiovascular magnetic resonance imaging: a multicenter experience. J Am Coll Cardiol. 2011;58(10):1044–54.

    Article  PubMed  Google Scholar 

  71. Abraham KP, Reddy V, Gattuso P. Neoplasms metastatic to the heart: review of 3314 consecutive autopsies. Am J Cardiovasc Pathol. 1990;3(3):195–8.

    CAS  PubMed  Google Scholar 

  72. Klatt EC, Heitz DR. Cardiac metastases. Cancer. 1990;65(6):1456–9.

    Article  CAS  PubMed  Google Scholar 

  73. Chiles C, Woodard PK, Gutierrez FR, Link KM. Metastatic involvement of the heart and pericardium: CT and MR imaging. Radiographics. Radiological Society of North America. 2001;21(2):439–49.

    CAS  Google Scholar 

  74. Glancy DL, Roberts WC. The heart in malignant melanoma. A study of 70 autopsy cases. Am J Cardiol. 1968;21(4):555–71.

    Article  CAS  PubMed  Google Scholar 

  75. Oto A, Herts BR, Remer EM, Novick AC. Inferior vena cava tumor thrombus in renal cell carcinoma: staging by MR imaging and impact on surgical treatment. AJR Am J Roentgenol. 1998;171(6):1619–24.

    Article  CAS  PubMed  Google Scholar 

  76. Agaimy A, Rösch J, Weyand M, Strecker T. Primary and metastatic cardiac sarcomas: a 12-year experience at a German heart center. Int J Clin Exp Pathol. 2012;5(9):928–38.

    PubMed  PubMed Central  Google Scholar 

  77. Thomason R, Schlegel W, Lucca M, Cummings S, Lee S. Primary malignant mesothelioma of the pericardium. Case report and literature review. Tex Heart Inst J. Texas Heart Institute. 1994;21(2):170–4.

    CAS  Google Scholar 

  78. Suman S, Schofield P, Large S. Primary pericardial mesothelioma presenting as pericardial constriction: a case report. Heart. 2004;90(1):e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jeudy J, Kirsch J, Tavora F, et al. From the radiologic pathology archives: cardiac lymphoma: radiologic-pathologic correlation. Radiographics. 2012;32(5):1369–80.

    Article  PubMed  Google Scholar 

  80. Shah RN, Simmons TW, Carr JJ, Entrikin DW. Primary cardiac lymphoma diagnosed by multiphase-gated cardiac CT and CT-guided percutaneous trans-sternal biopsy. J Cardiovasc Comput Tomogr. 2012;6(2):137–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Humana Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goerne, H., Rajiah, P. (2019). CT of Cardiac and Paracardiac Masses. In: Schoepf, U. (eds) CT of the Heart. Contemporary Medical Imaging. Humana, Totowa, NJ. https://doi.org/10.1007/978-1-60327-237-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-237-7_38

  • Published:

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-60327-236-0

  • Online ISBN: 978-1-60327-237-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics