Skip to main content

Monitoring of Antithrombotic Therapies in Interventional Cardiology

  • Chapter
  • First Online:
Antithrombotic Drug Therapy in Cardiovascular Disease

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1210 Accesses

Abstract

Percutaneous coronary intervention causes rupture of atherosclerotic plaque, which leads to platelet aggregation and thrombus formation. Antiplatelet and antithrombotic therapies are routine in the catheterization laboratory, but the optimal use of these agents during PCI continues to evolve. Central to the performance of procedures in the catheterization laboratory is the goal of decreasing ischemic complications while simultaneously minimizing bleeding complications. Dosing of medications for most disease processes involves some assessment of physiologic response to the medication. Despite the availability of multiple simple, point-of-care methods to monitor antiplatelet and anticoagulant therapies the utilization of these methods is almost never routinely performed and most anticoagulants are no longer monitored except for unfractionated heparin (UFH). As the use of more unique combinations of antithrombotic agents becomes commonplace, the need for effective monitoring will become even more important, making a thorough understanding of the limitations and benefits of present-day monitoring in the cath lab crucial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Milian M (1901) Influence de la peau sur la coagulabilite du sang. CR Soc Biol (Paris) 53:576–578

    Google Scholar 

  2. Ivy A, Nelson D, Bucher G (1941) The standardization of certain factors in the cutaneous “venostasis” bleeding time technique. J Lab Clin Med 26:1812–1822

    Google Scholar 

  3. Thompson C, Steinhubl SR (2002) Monitoring of platelet function in the setting of glycoprotein IIb/IIIa inhibitor therapy. J Interv Cardiol 15:61–70

    Article  PubMed  Google Scholar 

  4. Rodgers R, Levin J (1990) A critical reappraisal of the bleeding time. Semin Thromb Hemost 16:1–20

    Article  PubMed  CAS  Google Scholar 

  5. Tcheng J, Ellis SG, George BS et al (1994) Pharmacodynamics of chimeric glycoprotein IIb/IIIa integrin antiplatelet antibody Fab 7E3 in high-risk coronary angioplasty. Circulation 90:1757–1764

    Article  PubMed  CAS  Google Scholar 

  6. Harrington R, Kleiman NS, Kottke-Marchant K et al (1995) Immediate and reversible platelet inhibition after intravenous administration of a peptide glycoprotein IIb/IIIa inhibitor during percutaneous coronary intervention. Am J Cardiology 76:1222–1227

    Article  CAS  Google Scholar 

  7. Kereiakes D, Kleiman NS, Ambrose J et al (1996) Randomized, double-blind, placebo-controlled dose-ranging study of tirofiban (MK-383) platelet IIb/IIIa blockade in high risk patients undergoing coronary angioplasty. J Am Coll Cardiol 27:536–542

    Article  PubMed  CAS  Google Scholar 

  8. Harrison P et al (2007) Measuring antiplatelet drug effects in the laboratory. Thromb Res 120:323–336

    Article  PubMed  CAS  Google Scholar 

  9. Cardinal D, Flower RJ (1980) The electronic aggregometer: a novel device for assessing platelet behavior in blood. J Pharmacol Methods 3(2):135–158

    Article  PubMed  CAS  Google Scholar 

  10. Lincoff A (2003) Platelet glycoprotein IIb/IIIa inhibitors in cardiovascular disease. Humana Press, Totowa, NJ

    Book  Google Scholar 

  11. Mascelli M, Worley S, Veriabo N et al (1997) Rapid assessment of platelet function with a modified whole-blood aggregometer in percutaneous transluminal coronary angioplasty patients receiving anti-GP IIb/IIIa therapy. Circulation 96:3860–3866

    Article  PubMed  CAS  Google Scholar 

  12. Michelson A (1996) Flow cytometry: a clinical test of platelet function. Blood 87:4925–4936

    PubMed  CAS  Google Scholar 

  13. Schwarz UR, Geiger J, Walter U, Eigenthaler M (1999) Flow cytometry analysis of intracellular VASP phosphorylation for the assessment of activating and inhibitory signal transduction pathways in human platelets–definition and detection of ticlopidine/clopidogrel effects. Thromb Haemost 82:1145–1152

    PubMed  CAS  Google Scholar 

  14. Aleil B, Ravanat C, Cazenave JP, Rochoux G, Heitz A, Gachet C (2005) Flow cytometric analysis of intraplatelet VASP phosphorylation for the detection of clopidogrel resistance in patients with ischemic cardiovascular diseases. J Thromb Haemost 3:85–92

    Article  PubMed  CAS  Google Scholar 

  15. Michelson A, Frelinger AL, Furman M (2006) Current options in platelet function testing. Am J Cardio 98(Suppl):4N–10N

    Article  Google Scholar 

  16. Madan M, Berkowitz SD, Christie DJ et al (2001) Rapid assessment of glycoprotein IIb/IIIa blockade with the platelet function analyzer (PFA-100) during percutaneous coronary intervention. Am Heart J 141:226–233

    Article  PubMed  CAS  Google Scholar 

  17. Coller B, Lang D, Scudder LE (1997) Rapid and simple platelet function assay to assess glycoprotein IIb/IIIa receptor blockade. Circulation 95:860–867

    Article  PubMed  CAS  Google Scholar 

  18. Smith J, Steinhubl SR, Lincoff AM et al (1999) Rapid platelet-function assay: an automated and quantitative cartridge-based method. Circulation 99:620–625

    Article  PubMed  CAS  Google Scholar 

  19. Simon DI, Liu CB, Ganz P et al (2001) A comparative study of light transmission aggregometry and automated bedside platelet function assays in patients undergoing percutaneous coronary intervention and receiving abciximab, eptifibatide, or tirofiban. Catheter Cardiovasc Interv 52:425–432

    Article  PubMed  CAS  Google Scholar 

  20. Wheeler GL, Braden GA, Steinhubl SR et al (2002) The Ultegra rapid platelet-function assay: comparison to standard platelet function assays in patients undergoing percutaneous coronary intervention with abciximab therapy. Am Heart J 143:602–611

    Article  PubMed  CAS  Google Scholar 

  21. von Beckerath N, Pogatsa-Murray G, Wieczorek A, Sibbing D, Schomig A, Kastrati A (2006) Correlation of a new point-of-care test with conventional optical aggregometry for the assessment of clopidogrel responsiveness. Thromb Haemost 95:910–911

    Google Scholar 

  22. Haemoscope Inc. Homepage, http://www.haemoscope.com. Accessed 7/2009.

  23. Salooja N, Perry DJ (2001) Thrombelastography. Blood Coagul Fibrinolysis 12:327–337

    Article  PubMed  CAS  Google Scholar 

  24. Hobson AR, Agarwala RA, Swallow RA, Dawkins KD, Curzen NP (2006) Thrombelastography: current clinical applications and its potential role in interventional cardiology. Platelets 17:509–518

    Article  PubMed  CAS  Google Scholar 

  25. Craft R, Chavez JJ, Bresee SJ et al (2004) A novel modification of the thrombelastograph assay, isolating platelet function, correlates with optical platelet aggregation. J Lab Clin Med 143:301–309

    Article  PubMed  Google Scholar 

  26. Shenkman B, Savion N, Dardik R et al (2000) Testing of platelet deposition on polystyrene surface under flow conditions by the cone and plate(let) analyzer: role of platelet activation, fibrinogen and von Willebrand factor. Thromb Res 99:353–361

    Article  PubMed  CAS  Google Scholar 

  27. Osende J, Fuster V, Lev EI et al (2001) Testing platelet activation with a shear-dependent platelet function test versus aggregation-based tests: Relevance for monitoring long-term glycoprotein IIb/IIIa inhibition. Circulation 103:1488–1491

    Article  PubMed  CAS  Google Scholar 

  28. Spectre G, Brill A, Gural A et al (2005) A new point-of-care method for monitoring anti-platelet therapy: application of the cone and plate(let) analyzer. Platelets 16:293–299

    Article  PubMed  CAS  Google Scholar 

  29. Lakkis NM, George S, Thomas E et al (2001) Use of ICHOR-platelet works to assess platelet function in patients treated with GP IIb/IIIa inhibitors. Catheter Cardiovasc Interv 53:346–351

    Article  PubMed  CAS  Google Scholar 

  30. Craft RM, Chavez JJ, Snider CC, Muenchen RA, Carroll RC (2005) Comparison of modified Thrombelastograph and Plateletworks whole blood assays to optical platelet aggregation for monitoring reversal of clopidogrel inhibition in elective surgery patients. J Lab Clin Med 145:309–315

    Article  PubMed  CAS  Google Scholar 

  31. White MM, Krishnan R, Kueter TJ, Jacoski MV, Jennings LK (2004) The use of the point of care Helena ICHOR/Plateletworks and the Accumetrics Ultegra RPFA for assessment of platelet function with GPIIB-IIIa antagonists. J Thromb Thrombolysis 18:163–169

    Article  PubMed  CAS  Google Scholar 

  32. Ernst NM, Suryapranata H, Miedema K et al (2004) Achieved platelet aggregation inhibition after different antiplatelet regimens during percutaneous coronary intervention for ST-segment elevation myocardial infarction. J Am Coll Cardiol 44:1187–1193

    Article  PubMed  CAS  Google Scholar 

  33. Smit JJ, Ernst NM, Slingerland RJ et al (2006) Platelet microaggregation inhibition in patients with acute myocardial infarction pretreated with tirofiban and relationship with angiographic and clinical outcome. Am Heart J 151:1102–1107

    Article  PubMed  CAS  Google Scholar 

  34. Gold H, Coller BS, Yasuda T et al (1988) Rapid and sustained coronary artery recanalization with combined bolus injection of recombinant tissue-type plasminogen activator and monoclonal antiplatelet GPIIb/IIIa antibody in a canine preparation. Circulation 77:670–677

    Article  PubMed  CAS  Google Scholar 

  35. Yasuda T, Gold HK, Fallon JT et al (1988) Monoclonal antibody against the platelet glycoprotein (GP) IIb/IIIa receptor prevents coronary artery reocclusion after reperfusion with recombinant tissue-type plasminogen activator in dogs. J Clin Invest 81:1284–1291

    Article  PubMed  CAS  Google Scholar 

  36. Bates E, McGillem MJ, Mickelson JK et al (1991) A monoclonal antibody against the platelet glycoprotein IIb/IIIa receptor complex prevents platelet aggregation and thrombosis in a canine model of coronary angioplasty. Circulation 84:2463–2469

    Article  PubMed  CAS  Google Scholar 

  37. Use of a monoclonal antibody directed against the platelet glycoprotein IIb/IIIa receptor in high-risk coronary angioplasty. The EPIC Investigation. N Engl J Med (1994); 330:956–961.

    Google Scholar 

  38. Platelet glycoprotein IIb/IIIa receptor blockade and low-dose heparin during percutaneous coronary revascularization. The EPILOG Investigators (1997). N Engl J Med 336:1689–1696

    Google Scholar 

  39. Randomised placebo-controlled and balloon-angioplasty-controlled trial to assess safety of coronary stenting with use of platelet glycoprotein-IIb/IIIa blockade (1998). Lancet 352:87–92

    Google Scholar 

  40. Randomised placebo-controlled trial of effect of eptifibatide on complications of percutaneous coronary intervention: IMPACT-II. Integrilin to Minimise Platelet Aggregation and Coronary Thrombosis-II (1997). Lancet 349:1422–1428

    Google Scholar 

  41. Novel dosing regimen of eptifibatide in planned coronary stent implantation (ESPRIT): a randomised, placebo-controlled trial (2000). Lancet 356:2037–2044

    Google Scholar 

  42. Phillips D, Teng W, Arfsten A (1997) Effect of Ca2+ on GPIIb/IIIa interactions with integrilin. Enhanced GPIIb/IIIa binding and inhibition of platelet aggregation by reductions in the concentration of ionized calcium in plasma anticoagulated with citrate. Circulation 96:1488–1494

    Article  PubMed  CAS  Google Scholar 

  43. Gilchrist I, O’Shea JC, Kosoglou T et al (2001) Pharmacodynamics and pharmacokinetics of higher-dose double-bolus eptifibatide in percutaneous coronary intervention. Circulation 104:406–411

    Article  PubMed  CAS  Google Scholar 

  44. Steinhubl SR, Talley JD, Braden GA et al (2001) Point-of-care measured platelet inhibition correlates with a reduced risk of an adverse cardiac event after percutaneous coronary intervention: results of the GOLD (AU-Assessing Ultegra) multicenter study. Circulation 103:2572–2578

    Article  PubMed  CAS  Google Scholar 

  45. Danzi GB, Capuano C, Sesana M, Mauri L, Sozzi FB (2006) Variability in extent of platelet function inhibition after administration of optimal dose of glycoprotein IIb/IIIa receptor blockers in patients undergoing a high-risk percutaneous coronary intervention. Am J Cardiol 97:489–493

    Article  PubMed  CAS  Google Scholar 

  46. Gurbel PA, Bliden KP, Guyer K et al (2005) Platelet reactivity in patients and recurrent events post-stenting: results of the PREPARE POST-STENTING Study. J Am Coll Cardiol 46:1820–1826

    Article  PubMed  CAS  Google Scholar 

  47. Madan M, Berkowitz SD, Christie DJ, Smit AC, Sigmon KN, Tcheng JE (2002) Determination of platelet aggregation inhibition during percutaneous coronary intervention with the platelet function analyzer PFA-100. Am Heart J 144:151–158

    Article  PubMed  CAS  Google Scholar 

  48. Popma JJ, Ohman EM, Weitz J, Lincoff AM, Harrington RA, Berger P (2001) Antithrombotic therapy in patients undergoing percutaneous coronary intervention. Chest 119:321S–336S

    Article  PubMed  CAS  Google Scholar 

  49. Popma JJ, Berger P, Ohman EM, Harrington RA, Grines C, Weitz JI (2004) Antithrombotic therapy during percutaneous coronary intervention: the seventh ACCP conference on antithrombotic and thrombolytic therapy. Chest 126:576S–599S

    Article  PubMed  CAS  Google Scholar 

  50. Cattaneo M (2004) Aspirin and clopidogrel: efficacy, safety, and the issue of drug resistance. Arterioscler Thromb Vasc Biol 24:1980–1987

    Article  PubMed  CAS  Google Scholar 

  51. Michelson AD (2004) Platelet function testing in cardiovascular diseases. Circulation 110:e489–e493

    Article  PubMed  Google Scholar 

  52. Chen WH, Lee PY, Ng W, Tse HF, Lau CP (2004) Aspirin resistance is associated with a high incidence of myonecrosis after non-urgent percutaneous coronary intervention despite clopidogrel pretreatment. J Am Coll Cardiol 43:1122–1126

    Article  PubMed  CAS  Google Scholar 

  53. Chen WH, Lee PY, Ng W et al (2005) Relation of aspirin resistance to coronary flow reserve in patients undergoing elective percutaneous coronary intervention. Am J Cardiol 96:760–763

    Article  PubMed  CAS  Google Scholar 

  54. Buch AN, Singh S, Roy P et al (2007) Measuring aspirin resistance, clopidogrel responsiveness, and postprocedural markers of myonecrosis in patients undergoing percutaneous coronary intervention. Am J Cardiol 99:1518–1522

    Article  PubMed  CAS  Google Scholar 

  55. Marcucci R, Paniccia R, Antonucci E et al (2006) Usefulness of aspirin resistance after percutaneous coronary intervention for acute myocardial infarction in predicting one-year major adverse coronary events. Am J Cardiol 98:1156–1159

    Article  PubMed  CAS  Google Scholar 

  56. Angiolillo DJ, Fernandez-Ortiz A, Bernardo E et al (2006) Influence of aspirin resistance on platelet function profiles in patients on long-term aspirin and clopidogrel after percutaneous coronary intervention. Am J Cardiol 97:38–43

    Article  PubMed  CAS  Google Scholar 

  57. Jilma B (2001) Platelet function analyzer (PFA-100): a tool to quantify congenital or acquired platelet dysfunction. J Lab Clin Med 138:152–163

    Article  PubMed  CAS  Google Scholar 

  58. Malinin A, Pokov A, Spergling M et al (2007) Monitoring platelet inhibition after clopidogrel with the VerifyNow-P2Y12(R) rapid analyzer: the VERIfy Thrombosis risk ASsessment (VERITAS) study. Thromb Res 119:277–284

    Article  PubMed  CAS  Google Scholar 

  59. Barragan P, Bouvier JL, Roquebert PO et al (2003) Resistance to thienopyridines: clinical detection of coronary stent thrombosis by monitoring of vasodilator-stimulated phosphoprotein phosphorylation. Catheter Cardiovasc Interv 59:295–302

    Article  PubMed  Google Scholar 

  60. Gurbel PA, Bliden KP, Samara W et al (2005) Clopidogrel effect on platelet reactivity in patients with stent thrombosis: results of the CREST Study. J Am Coll Cardiol 46:1827–1832

    Article  PubMed  CAS  Google Scholar 

  61. Golanski J, Pluta J, Baraniak J, Watala C (2004) Limited usefulness of the PFA-100 for the monitoring of ADP receptor antagonists – in vitro experience. Clin Chem Lab Med 42:25–29

    Article  PubMed  CAS  Google Scholar 

  62. Hayward CP, Harrison P, Cattaneo M, Ortel TL, Rao AK (2006) Platelet function analyzer (PFA)-100 closure time in the evaluation of platelet disorders and platelet function. J Thromb Haemost 4:312–319

    Article  PubMed  CAS  Google Scholar 

  63. Matetzky S, Shenkman B, Guetta V et al (2004) Clopidogrel resistance is associated with increased risk of recurrent atherothrombotic events in patients with acute myocardial infarction. Circulation 109:3171–3175

    Article  PubMed  CAS  Google Scholar 

  64. Bliden KP, DiChiara J, Tantry US, Bassi AK, Chaganti SK, Gurbel PA (2007) Increased risk in patients with high platelet aggregation receiving chronic clopidogrel therapy undergoing percutaneous coronary intervention: is the current antiplatelet therapy adequate? J Am Coll Cardiol 49:657–666

    Article  PubMed  CAS  Google Scholar 

  65. Benito B, Masotti M, Betriu A (2005) Advances in adjunctive pharmacological therapy for percutaneous coronary interventions. Rev Esp Cardiol 58:729–743

    Article  PubMed  Google Scholar 

  66. Ravel R (1995) Clinical laboratory medicine. Mosby-Year Book, Inc., St. Louis, pp 85–112.

    Google Scholar 

  67. Hattersley PG (1966) Activated coagulation time of whole blood. Jama 196:436–440

    Article  PubMed  CAS  Google Scholar 

  68. Bowers J, Ferguson JJ (1993) Use of the activated clotting time in anticoagulation monitoring of intravascular procedures. Tex Heart Inst J 20:258–263

    PubMed  CAS  Google Scholar 

  69. Verska JJ (1977) Control of heparinization by activated clotting time during bypass with improved postoperative hemostasis. Ann Thorac Surg 24:170–173

    Article  PubMed  CAS  Google Scholar 

  70. Spinler SA, Wittkowsky AK, Nutescu EA, Smythe MA (2005) Anticoagulation monitoring part 2: Unfractionated heparin and low-molecular-weight heparin. Ann Pharmacother 39:1275–1285

    Article  PubMed  CAS  Google Scholar 

  71. Avendano A, Ferguson JJ (1994) Comparison of Hemochron and HemoTec activated coagulation time target values during percutaneous transluminal coronary angioplasty. J Am Coll Cardiol 23:907–910

    Article  PubMed  CAS  Google Scholar 

  72. Aylsworth CL, Stefan F, Woitas K, Rieger RH, LeBoutillier M 3rd, DiSesa VJ (2004) New technology, old standards: disparate activated clotting time measurements by the Hemochron Jr compared with the standard Hemochron. Ann Thorac Surg 77:973–976

    Article  PubMed  Google Scholar 

  73. Ferguson JJ, Dougherty KG, Gaos CM, Bush HS, Marsh KC, Leachman DR (1994) Relation between procedural activated coagulation time and outcome after percutaneous transluminal coronary angioplasty. J Am Coll Cardiol 23:1061–1065

    Article  PubMed  CAS  Google Scholar 

  74. Narins CR, Hillegass WB Jr, Nelson CL et al (1996) Relation between activated clotting time during angioplasty and abrupt closure. Circulation 93:667–671

    Article  PubMed  CAS  Google Scholar 

  75. Chew DP, Bhatt DL, Lincoff AM et al (2001) Defining the optimal activated clotting time during percutaneous coronary intervention: aggregate results from 6 randomized, controlled trials. Circulation 103:961–966

    Article  PubMed  CAS  Google Scholar 

  76. Moliterno DJ, Califf RM, Aguirre FV et al (1995) Effect of platelet glycoprotein IIb/IIIa integrin blockade on activated clotting time during percutaneous transluminal coronary angioplasty or directional atherectomy (the EPIC trial). Evaluation of c7E3 Fab in the Prevention of Ischemic Complications trial. Am J Cardiol 75:559–562

    Article  PubMed  CAS  Google Scholar 

  77. Ammar T, Scudder LE, Coller BS (1997) In vitro effects of the platelet glycoprotein IIb/IIIa receptor antagonist c7E3 Fab on the activated clotting time. Circulation 95:614–617

    Article  PubMed  CAS  Google Scholar 

  78. Ambrose JA, Hawkey M, Badimon JJ et al (2000) In vivo demonstration of an antithrombin effect of abciximab. Am J Cardiol 86:150–152

    Article  PubMed  CAS  Google Scholar 

  79. Ambrose JA, Doss R, Geagea JM, et al (2001) Effects on thrombin generation of the platelet glycoprotein IIb/IIIa inhibitors abciximab versus tirofiban during coronary intervention. Am J Cardiol 87:1231–1233, A8

    Google Scholar 

  80. Casserly IP, Topol EJ, Jia G et al (2003) Effect of abciximab versus tirofiban on activated clotting time during percutaneous intervention and its relation to clinical outcomes – observations from the TARGET trial. Am J Cardiol 92:125–129

    Article  PubMed  CAS  Google Scholar 

  81. Dauerman HL, Ball SA, Goldberg RJ, Desourdy MA, Furman MI (2002) Activated clotting times in the setting of eptifibatide use during percutaneous coronary intervention. J Thromb Thrombolysis 13:127–132

    Article  PubMed  CAS  Google Scholar 

  82. Pinto DS, Lorenz DP, Murphy SA, et al. Association of an activated clotting time < or  = 250 seconds with adverse event rates after percutaneous coronary intervention using tirofiban and heparin (a TACTICS-TIMI 18 substudy). Am J Cardiol 2003; 91:976-8, A4.

    Google Scholar 

  83. Levine GN, Berger PB, Cohen DJ et al (2006) Newer pharmacotherapy in patients undergoing percutaneous coronary interventions: a guide for pharmacists and other health care professionals. Pharmacotherapy 26:1537–1556

    Article  PubMed  CAS  Google Scholar 

  84. Collet JP, Montalescot G, Lison L et al (2001) Percutaneous coronary intervention after subcutaneous enoxaparin pretreatment in patients with unstable angina pectoris. Circulation 103:658–663

    Article  PubMed  CAS  Google Scholar 

  85. Collet JP, Montalescot G, Fine E et al (2003) Enoxaparin in unstable angina patients who would have been excluded from randomized pivotal trials. J Am Coll Cardiol 41:8–14

    Article  PubMed  CAS  Google Scholar 

  86. Martin JL, Fry ET, Sanderink GJ et al (2004) Reliable anticoagulation with enoxaparin in patients undergoing percutaneous coronary intervention: the pharmacokinetics of enoxaparin in PCI (PEPCI) study. Catheter Cardiovasc Interv 61:163–170

    Article  PubMed  Google Scholar 

  87. Montalescot G, Collet JP, Tanguy ML et al (2004) Anti-Xa activity relates to survival and efficacy in unselected acute coronary syndrome patients treated with enoxaparin. Circulation 110:392–398

    Article  PubMed  CAS  Google Scholar 

  88. Kereiakes DJ, Montalescot G, Antman EM et al (2002) Low-molecular-weight heparin therapy for non-ST-elevation acute coronary syndromes and during percutaneous coronary intervention: an expert consensus. Am Heart J 144:615–624

    PubMed  CAS  Google Scholar 

  89. Henry TD, Satran D, Knox LL, Iacarella CL, Laxson DD, Antman EM (2001) Are activated clotting times helpful in the management of anticoagulation with subcutaneous low-molecular-weight heparin? Am Heart J 142:590–593

    Article  PubMed  CAS  Google Scholar 

  90. Lawrence M, Mixon TA, Cross D, Gantt DS, Dehmer GJ (2004) Assessment of anticoagulation using activated clotting times in patients receiving intravenous enoxaparin during percutaneous coronary intervention. Catheter Cardiovasc Interv 61:52–55

    Article  PubMed  Google Scholar 

  91. Saw J, Kereiakes DJ, Mahaffey KW et al (2003) Evaluation of a novel point-of-care enoxaparin monitor with central laboratory anti-Xa levels. Thromb Res 112:301–306

    Article  PubMed  CAS  Google Scholar 

  92. Rabah MM, Premmereur J, Graham M et al (1999) Usefulness of intravenous enoxaparin for percutaneous coronary intervention in stable angina pectoris. Am J Cardiol 84:1391–1395

    Article  PubMed  CAS  Google Scholar 

  93. Chen WH, Lau CP, Lau YK et al (2002) Stable and optimal anticoagulation is achieved with a single dose of intravenous enoxaparin in patients undergoing percutaneous coronary intervention. J Invasive Cardiol 14:439–442

    PubMed  Google Scholar 

  94. Marmur JD, Anand SX, Bagga RS et al (2003) The activated clotting time can be used to monitor the low molecular weight heparin dalteparin after intravenous administration. J Am Coll Cardiol 41:394–402

    Article  PubMed  CAS  Google Scholar 

  95. Natarajan MK, Velianou JL, Turpie AG et al (2006) A randomized pilot study of dalteparin versus unfractionated heparin during percutaneous coronary interventions. Am Heart J 151:175

    Article  PubMed  Google Scholar 

  96. Lincoff AM, Bittl JA, Harrington RA et al (2003) Bivalirudin and provisional glycoprotein IIb/IIIa blockade compared with heparin and planned glycoprotein IIb/IIIa blockade during percutaneous coronary intervention: REPLACE-2 randomized trial. Jama 289:853–863

    Article  PubMed  CAS  Google Scholar 

  97. Stone GW, McLaurin BT, Cox DA et al (2006) Bivalirudin for patients with acute coronary syndromes. N Engl J Med 355:2203–2216

    Article  PubMed  CAS  Google Scholar 

  98. Hafner G, Roser M, Nauck M (2002) Methods for the monitoring of direct thrombin inhibitors. Semin Thromb Hemost 28:425–430

    Article  PubMed  CAS  Google Scholar 

  99. Despotis GJ, Hogue CW, Saleem R et al (2001) The relationship between hirudin and activated clotting time: implications for patients with heparin-induced thrombocytopenia undergoing cardiac surgery. Anesth Analg 93:28–32

    Article  PubMed  CAS  Google Scholar 

  100. Cheneau E, Canos D, Kuchulakanti PK et al (2004) Value of monitoring activated clotting time when bivalirudin is used as the sole anticoagulation agent for percutaneous coronary intervention. Am J Cardiol 94:789–792

    Article  PubMed  CAS  Google Scholar 

  101. Nowak G (2003) The ecarin clotting time, a universal method to quantify direct thrombin inhibitors. Pathophysiol Haemost Thromb 33:173–183

    Article  PubMed  CAS  Google Scholar 

  102. Carroll RC, Chavez JJ, Simmons JW et al (2006) Measurement of patients’ bivalirudin plasma levels by a thrombelastograph ecarin clotting time assay: a comparison to a standard activated clotting time. Anesth Analg 102:1316–1319

    Article  PubMed  CAS  Google Scholar 

  103. Casserly IP, Kereiakes DJ, Gray WA et al (2004) Point-of-care ecarin clotting time versus activated clotting time in correlation with bivalirudin concentration. Thromb Res 113:115–121

    Article  PubMed  CAS  Google Scholar 

  104. Lehman C, Thompson C. (2007) Instrumentation for the coagulation laboratory. Laboratory hemostasis: a practical guide for pathologists. Springer, New York, pp 41–55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Steinhubl MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dosh, K., Steinhubl, S. (2010). Monitoring of Antithrombotic Therapies in Interventional Cardiology. In: Askari, A., Lincoff, A. (eds) Antithrombotic Drug Therapy in Cardiovascular Disease. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-235-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-235-3_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-234-6

  • Online ISBN: 978-1-60327-235-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics