Skip to main content

Molecular Modeling of Biomembranes: A How-to Approach

  • Chapter
  • First Online:
Biomedical Applications of Biophysics

Part of the book series: Handbook of Modern Biophysics ((HBBT,volume 3))

Abstract

Computer Simulations have become an important complementary technique to experiment and analytical theory for scientific discoveries. Molecular Dynamics (MD) is one of the most abundant techniques of computer modeling, and is frequently used simulation methods in biomolecular applications. Its popularity may stem from its simplicity and versatile applicability. The fundamental underlying assumption of MD is that the system consists of particles that interact via the classical equations of motion, i.e., both quantum mechanical and relativistic effects are neglected. The exclusion of these effects, however, does not generally have a significant impact on the biomolecular questions being studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Study

  • Allen MP, Tildesley DJ. 1987. Computer simulation of liquids. Oxford: Clarendon Press.

    Google Scholar 

  • Frenkel D, Smit B. 1996. Understanding molecular simulation: from basic algorithms to applications. San Diego: Academic Press.

    Google Scholar 

  • Leach A. 1997. Molecular modelling: principles and applications. Essex: Addison Wesley.

    Google Scholar 

  • van Gunsteren WF, Billeter SR, Eising AA, Hünenberger P, Krüger AE, Mark WRP, Scott AE, Tironi IG. 1996. Biomolecular simulation: the GROMOS manual and user guide. Zürich: Vdf.

    Google Scholar 

  • Lindahl E, Hess B, van der Spoel D. 2001. GROMACS 3.0: a package for molecular simulation and trajectory analy-sis. J Mol Model 7(8):306-317.

    CAS  Google Scholar 

  • Hess B, Kutzner C, van der Spoel D, Lindahl E. 2008. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theor Comput 4(3):435-447.

    CAS  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson DJ, States DJ, Swaminathan S, Karplus M. 1983. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187-217.

    CAS  Google Scholar 

  • MacKerel Jr AD, Brooks III CL, Nilsson L, Roux B, Won Y, Karplus M. 1998. CHARMM: the energy function and its parameterization with an overview of the program. In The Encyclopedia of Computational Chemistry, Vol. 1, pp. 271-277. Ed. PvR Schleyer. Chichester: John Wiley & Sons.

    Google Scholar 

  • Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Koll-man PA. 1995. A second generation force field for the simulation of proteins, nucleic acids, and organic mole-cules. J Am Chem Soc 117(19):5179-5197.

    CAS  Google Scholar 

References

  1. Verlet L. 1967. Computer ‘experiments’ on classical fluids, I: thermodynamical properties of Lennard-Jonesmolecules. Phys Rev 159:98-103.

    CAS  Google Scholar 

  2. Allen MP, Tildesley DJ. 1987. Computer simulation of liquids. Oxford: Clarendon Press.

    Google Scholar 

  3. Frenkel D, Smit B. 1996. Understanding molecular simulation: from basic algorithms to applications. SanDiego: Academic Press.

    Google Scholar 

  4. Leach A. 1997. Molecular modelling: principles and applications. Essex: Addison Wesley.

    Google Scholar 

  5. Egberts E, Marrink S-J, Berendsen HJC. 1994. Molecular dynamics simulation of a phospholipid membrane.Eur Biophys J 22:423-436.

    CAS  Google Scholar 

  6. Tieleman DP, Marrink SJ, Berendsen HJC. 1997. A computer perspective of membranes: molecular dynamicsstudies of lipid bilayer systems. Biochim Biophys Acta 1331:235-270.

    CAS  PubMed  Google Scholar 

  7. Sum AK, Faller R, de Pablo JJ. 2003. Molecular simulation study of phospholipid bilayers and insights of theinteractions with disaccharides. Biophys J 85:2830-2844.

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Faller R, Marrink S-J. 2004. Simulation of domain formation in mixed DLPC-DSPC lipid bilayers. Langmuir 20:7686-7693.

    CAS  PubMed  Google Scholar 

  9. Lee BW, Faller R, Sum AK, Vattulainen I, Patra M, Karttunen M. 2004. Structural effects of small molecules on phospholipid bilayers investigated by molecular simulations. Fluid Phase Equilib 225:63-68.

    CAS  Google Scholar 

  10. Switzer J, Bennun S, Longo ML, Palazoglu A, Faller R. 2006. Karhunen-Loeve analysis for pattern description in phase separated lipid bilayer systems. J Chem Phys 124:234906.

    PubMed  Google Scholar 

  11. Cooke IR, Kremer K, Deserno M. 2005. Tunable generic model for fluid bilayer membranes. Phys Rev E 72:011506.

    Google Scholar 

  12. Moore PB, Lopez CF, Klein ML. 2001. Dynamical properties of a hydrated lipid bilayer from a multinanosec-ond molecular dynamics simulation. Biophys J 81:2484-2494.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Lopez CF, Nielsen SO, Moore PB, Shelley JC, Klein ML. 2002. Self-assembly of a phospholipid Langmuir monolayer using coarse-grained molecular dynamics simulations. J Phys Condens Matter 14:9431-9444.

    CAS  Google Scholar 

  14. Patra M, Karttunen M, Hyvönen MT, Falck E, Vattulainen I. 2004. Lipid bilayers driven to a wrong plane in molecular dynamics simulations by truncation of long-range electrostatic interactions. J Phys Chem B 108:4485-4494.

    CAS  Google Scholar 

  15. Feller SE, Pastor RW, Rojnuckarin A, Bogusz S, Brooks BR. 1996. Effect of electrostatic force truncation on interfacial and transport properties of water. J Phys Chem 100:17011-17020.

    CAS  Google Scholar 

  16. Anezo C, de Vries AH, Holtje H, Tieleman DP, Marrink SJ. 2003. Methodological issues in lipid bilayer simu-lations. J Phys Chem B 107:9424-9433.

    CAS  Google Scholar 

  17. Farago O. 2003. "Water-free" computer model for fluid bilayer membranes. J Chem Phys 119:596-605.

    CAS  Google Scholar 

  18. Marrink SJ, de Vries AH, Mark AE. 2004. Coarse grained model for semi-quantitative lipid simulation. J PhysChem B 108:750-760.

    CAS  Google Scholar 

  19. Stevens MJ. 2004. Coarse-grained simulations of lipid bilayers. J Chem Phys 121:11942-1198.

    CAS  PubMed  Google Scholar 

  20. Shelley JC, Shelley MY, Reeder RC, Bandyopadhyay S, Klein ML. 2001. A coarse grain model for phosphol-ipid simulations. J Phys Chem B 105:4464-4470.

    CAS  Google Scholar 

  21. Kaznessis YN, Kim ST, Larson RG. 2002. Simulations of zwitterionic and anionic phospholipid monolayers. Biophys J 82:1731-1742.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Alper HE, Bassolino D, Stouch TR. 1993. Computer simulation of a phospholipid monolayer-water system: the influence of long-range forces on water structure and dynamics. J Chem Phys 98:9798-9807.

    CAS  Google Scholar 

  23. Feller SE, Zhang YH, Pastor RW. 1995. Computer-simulation of liquid/liquid interfaces, II: surface-tension area dependence of a bilayer and a monolayer. J Chem Phys 103:10267-10276.

    CAS  Google Scholar 

  24. Heine DR, Rammohan AR, Balakrishnan J. 2007. Atomistic simulations of the interaction between lipid bilay-ers and substrates. Mol Simul 33:391-397.

    CAS  Google Scholar 

  25. Xing C, Faller R. 2008. Interactions of lipid bilayers with supports: a coarse-grained molecular simulationstudy. J Phys Chem B 112:7086-7094.

    CAS  PubMed  Google Scholar 

  26. Berendsen HJC, Postma JPM, van Gunsteren WF, Dinola A, Haak JR. 1984. Molecular dynamics with couplingto an external bath. J Chem Phys 81:3684-3690.

    CAS  Google Scholar 

  27. Essman U, Perela L, Berkowitz ML, Darden HLT, Pedersen LG. 1995. A smooth particle mesh Ewald method.J Chem Phys 103:8577-8592.

    Google Scholar 

  28. Mashl RJ, Scott HL, Subramaniam S, Jakobsson E. 2001. Molecular simulation of dioleoylphosphatidylcholine lipid bilayers at differing levels of hydration. Biophys J 81:3005-3015.

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Feller SE, Yin D, Pastor RW, MacKerel Jr. AD. 1997. Molecular dynamics simulation of unsaturated lipid bi-layers at low hydration: parameterization and comparison with diffraction studies. Biophys J 73:2269-2279.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Tieleman DP, Berendsen HJC. 1996. Molecular dynamics simulations of fully hydrated dipalmitoylphosphati-dylcholine bilayer with different macroscopic boundary conditions and parameters. J Chem Phys 105:4871-4880.

    CAS  Google Scholar 

  31. Balali-Mood K, Harroun TA, Bradshaw JP. 2003. Molecular dynamics simulations of a mixed DOPC/DOPGbilayer. Eur Phys J E 12:S135-S140.

    CAS  PubMed  Google Scholar 

  32. Dickey A, Faller R. 2008. Examining the contributions of lipid shape and headgroup charge on bilayer behav-ior. Biophys J 95:2636-2646.

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Berger O, Edholm O, Jahnig F. 1997. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphos-phatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J 72:2002-2013.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Pandit SA, Bostick D, Berkowitz ML. 2003. Mixed bilayer containing dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylserine: lipid complexation, ion binding, and electrostatics. Biophys J 85:3120-3131.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Niemela P, Hyvonen MT, Vattulainen I. 2004. Structure and dynamics of sphingomyelin bilayer: insight gained through systematic comparison to phosphatidylcholine. Biophys J 87:2976-2989.

    PubMed Central  PubMed  Google Scholar 

  36. Pandit SA, Jakobsson E, Scott HL. 2004. Simulation of the early stages of nano-domain formation in mixed bilayers of sphingomyelin, cholesterol, and dioleylphosphatidylcholine. Biophys J 87:3312-3322.

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Murzyn K, Rog T, Pasienkiewicz-Gierula M. 2005. Phosphatidylethanolamine-phosphatidylglycerol bilayer as a model of the inner bacterial membrane. Biophys J 88:1091-1103.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Leekumjorn S, Sum AK. 2006. Molecular simulation study of structural and dynamic properties of mixedDPPC/DPPE Bilayers. Biophys J 90:3951-3965.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Gurtovenko A, Patra M, Karttunen M, Vattulainen I. 2004. Cationic DMPC/DMTAP lipid bilayers: moleculardynamics study. Biophys J 86:3461-3472.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Falck E, Patra M, Karttunen M, Hyvonen MT, Vattulainen I. 2004. Lessons of slicing membranes: interplay of packing, free area and lateral diffusion in phospholipid/cholesterol bilayers. Biophys J 87:1076-1091.

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Pandit SA, Bostick D, Berkowitz ML. 2004. Complexation of phosphatidylcholine lipids with cholesterol. Bio-phys J 86:1345-1356.

    CAS  Google Scholar 

  42. Smondryev AM, Berkowitz ML. 2001. Molecular dynamics simulation of the structure of dimyristolphosphati-dylcholine bilayers with cholesterol, ergosterol and lanosterol. Biophys J 80:1649-1658.

    Google Scholar 

  43. Dickey AN, Yim W-S, Faller R. 2009. Using ergosterol to mitigate the deleterious effects of ethanol on bilayer structure. J Phys Chem B. 113:2388-2397.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. 1997. LINCS: a linear constraint solver for molecular simu-lations. J Comput Chem 18:1463-1472.

    CAS  Google Scholar 

  45. Müller-Plathe F, Brown D. 1991. Multi-colour algorithms in molecular simulation: vectorisation and paralleli-sation of internal forces and constraints. Comput Phys Commun 64:7-14.

    Google Scholar 

  46. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J. 1981. Interaction models for water in relation toprotein hydration. In Intermolecular forces, pp. 331-342. Ed. B Pullman. Dordrecht: Reidel.

    Google Scholar 

  47. Berendsen HJC, Grigera JR, Straatsma TP. 1987. The missing term in effective pair potentials. J Phys Chem 91:6269-6271.

    CAS  Google Scholar 

  48. Mackerel AD. 2004. Empirical force fields for biological macromolecules: overview and issues. J ComputChem 25:1584-1604.

    Google Scholar 

  49. Aman K, Lindahl E, Edholm O, Hakansson P, Westlund PO. 2003. Structure and dynamics of interfacial water in an L-alpha phase lipid bilayer from molecular dynamics simulations. Biophys J 84:102-115.

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Pasenkiewicz-Gierula M, Takaoka Y, Miyagawa H, Kitamura K, Kusumi A. 1999. Charge pairing of headgroups in phosphatidylcholine membranes: a molecular dynamics simulation study. Biophys J 76:1228-1240.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Tieleman DP, Berendsen HJC. 1996. Molecular dynamics simulations of a fully hydrated dipalmitoyl phos-phatidylcholine bilayer with different macroscopic boundary conditions and parameters. J Chem Phys 105:4871-4880.

    CAS  Google Scholar 

  52. Hofsass C, Lindahl E, Edholm O. 2003. Molecular dynamics simulations of phospholipid bilayers with choles-terol. Biophys J 84:2192-2206.

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Tu KC, Klein ML, Tobias DJ. 1998. Constant-pressure molecular dynamics investigation of cholesterol effectsin a dipalmitoylphosphatidylcholine bilayer. Biophys J 75:2147-2156.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Muller M, Katsov K, Schick M. 2006. Biological and synthetic membranes: what can be learned from a coarse-grained description? Phys Rep 434:113-176.

    Google Scholar 

  55. Shelley JC, Shelley MY, Reeder RC, Bandyopadhyay S, Moore PB, Klein ML. 2001. Simulations of phosphol-ipids using a coarse grain model. J Phys Chem B 105:9785-9792.

    CAS  Google Scholar 

  56. Shelley JC, Shelley MY, Reeder RC, Bandyopadhyay S, Klein ML. 2001. A coarse grain model for phosphol-ipid simulations. J Phys Chem B 105:4464-4470.

    CAS  Google Scholar 

  57. Nielsen SO, Lopez CF, Srinivas G, Klein ML. 2004. Coarse grain models and the computer simulation of softmaterials. J Phys Condens Matter 16:R481-R512.

    CAS  Google Scholar 

  58. Marrink SJ, Risselada J, Mark AE. 2005. Simulation of gel phase formation and melting in lipid bilayers usinga coarse grained model. Chem Phys Lipids 135:223-244.

    CAS  PubMed  Google Scholar 

  59. Marrink SJ, Mark AE. 2004. Molecular view of hexagonal phase formation in phospholipid membranes. Bio-phys J 87:3894-3900.

    CAS  Google Scholar 

  60. Lopez CF, Moore PB, Shelley JC, Shelley MY, Klein ML. 2002. Computer simulation studies of biomem-branes using a coarse grain model. Comput Phys Commun 147:1-6.

    Google Scholar 

  61. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH. 2007. The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812-7824.

    CAS  PubMed  Google Scholar 

  62. Bennun SV, Longo ML, Faller R. 2007. Phase and mixing behavior in two-component lipid bilayers: a molecu-lar dynamics study in DLPC/DSPC mixtures. J Phys Chem B 111:9504-9512.

    CAS  PubMed  Google Scholar 

  63. Marrink SJ, Mark AE. 2003. Molecular dynamics simulation of the formation, structure, and dynamics of smallphospholipid vesicles. J Am Chem Soc 125:15233-15242.

    CAS  PubMed  Google Scholar 

  64. Faller R, Marrink SJ. 2004. Simulation of domain formation in DLPC-DSPC mixed bilayers. Langmuir 20:7686-7693.

    CAS  PubMed  Google Scholar 

  65. Bennun SV, Longo, M., Faller R. Molecular scale structure in fluid-gel patterned bilayers: stability of interfacesand transmembrane distribution. To be submitted.

    Google Scholar 

  66. Bennun S, Longo ML, Faller R. 2007. The molecular scale structure in fluid-gel patterned bilayers: stability ofinterfaces and transmembrane distribution. Langmuir 23:12465-12468.

    CAS  PubMed  Google Scholar 

  67. Brannigan G, Brown FLH. 2004. Solvent-free simulations of fluid membrane bilayers. J Chem Phys 120:1059-1071.

    CAS  PubMed  Google Scholar 

  68. Noguchi H, Takasu M. 2001. Self-assembly of amphiphiles into vesicles: a Brownian dynamics simulation.Phys Rev E 64:041913.

    CAS  Google Scholar 

  69. Reynwar BJ, Illya G, Harmandaris VA, Müller MM, Kremer K, Deserno M. 2007. Aggregation and vesicula-tion of membrane proteins by curvature-mediated interactions. Nature 447:461-467.

    CAS  PubMed  Google Scholar 

  70. Harmandaris VA, Deserno M. 2006. A novel method for measuring the bending rigidity of model lipid mem-branes by simulating tethers. J Chem Phys 125:204905.

    PubMed  Google Scholar 

  71. Weeks JD, Chandler D, Andersen HC. 1971. Role of repulsive forces in determining the equilibrium structureof simple liquids. J Chem Phys 54:5237-5247.

    CAS  Google Scholar 

  72. Faller R, Kuhl TL. 2003. Modeling the binding of cholera-toxin to a lipid membrane by a non-additive two-dimensional hard disk model. Soft Mater 1:343-352.

    CAS  Google Scholar 

  73. Majewski J, Kuhl TL, Kjaer K, Smith GS. 2001. Packing of ganglioside-phospholipid monolayers: an x-raydiffraction and reflectivity study. Biophys J 81:2707-2715.

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Humphrey W, Dalke A, Schulten K. 1996. VMD—visual molecular dynamics. J Mol Graphics 14:33-38.

    CAS  Google Scholar 

  75. Sayle RA, Milner-White EJ. 1995. RASMOL: biomolecular graphics for all. Trends Biochem Sci 20:374-376.

    CAS  PubMed  Google Scholar 

  76. Pandit SA, Chiu S-W, Jakobsson E, Grama A, Scott HL. 2007. Cholesterol surrogates: a comparison of choles-terol and 16:0 ceramide in POPC bilayers. Biophys J 92:920-927.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Dickey AN, Faller R. 2007. How alcohol chain-length and concentration modulate hydrogen bond formation ina lipid bilayer. Biophys J 92:2366-2376.

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Dickey AN, Faller R. 2005. Investigating interactions of biomembranes and alcohols: a multiscale approach. JPolym Sci B 43:1025-1032.

    CAS  Google Scholar 

  79. Kranenburg M, Venturoli M, Smit B. 2003. Phase behavior and induced interdigitation in bilayers studied withdissipative particle dynamics. J Phys Chem B 107:11491-11501.

    CAS  Google Scholar 

  80. Miller CE, Majewski J, Gog T, Kuhl TL. 2005. Characterization of biological thin films at the solid-liquid in-terface by x-ray reflectivity. Phys Rev Lett 94:238104.

    CAS  PubMed  Google Scholar 

  81. Tieleman DP, Marrink SJ, Berendsen HJC. 1997. A computer perspective of membranes: molecular dynamicsstudies of lipid bilayer systems. Biochim Biophys Acta 1331:235-270.

    CAS  PubMed  Google Scholar 

  82. Davis JH. 1983. The description of membrane lipid conformation, order and dynamics by 2H-NMR. BiochimBiophys Acta 737:117-171.

    CAS  Google Scholar 

  83. Aittoniemi J, Róg T, Niemela P, Pasenkiewicz-Gierula M, Vattulainen I, Karttunen M. 2006. Sterol tilt: major determinant of sterol ordering capability in lipid membranes. J Phys Chem B Lett 110:25562-25564.

    CAS  Google Scholar 

  84. Lindahl E, Hess B, van der Spoel D. 2001. GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306-317.

    CAS  Google Scholar 

  85. Luzar A, Chandler D. 1996. Hydrogen-bond kinetics in liquid water. Nature 379:55-57.

    CAS  Google Scholar 

  86. Ollila S, Hyvonen MT, Vattulainen I. 2007. Polyunsaturation in lipid membranes: dynamic properties and lat-eral pressure profiles. J Phys Chem B 111:3139-3150.

    CAS  PubMed  Google Scholar 

  87. Chiu SW, Clark M, Balaji V, Subramaniam S, Scott HL, Jakobsson E. 1995. Incorporation of surface tensioninto molecular dynamics simulation of an interface: a fluid phase lipid bilayer membrane. Biophys J 69:1230-1245.

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Schmidt-Rohr K, Spiess HW. 1994. Multidimensional solid state NMR and polymers. New York: AcademicPress.

    Google Scholar 

  89. Dickey AN, Faller R. 2008. Behavioral differences between phosphatidic acid and phosphatidylcholine in the presence of the nicotinic acetylcholine receptor. Biophys J 95:2636-2646.

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Dickey AN. 2008. How bilayer composition affects the stability of a model yeast membrane and the behavior of lipids surrounding the nicotinic acetylcholine receptor. PhD dissertation. University of California Davis.

    Google Scholar 

  91. Wong BY, Faller R. 2007. Phase behavior and dynamic heterogeneities in lipids: a coarse-grained simulation study of DPPC-DPPE mixtures. Biochim Biophys Acta 1768:620-627.

    CAS  PubMed  Google Scholar 

  92. Sum AK, Faller R, de Pablo JJ. 2003. Molecular simulation study of phospholipid bilayers and insights of the interactions with disaccharides. Biophys J 85:2830-2844.

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Patra M, Salonen E, Terama E, Vattulainen I, Faller R, Lee BW, Holopainen J, Karttunen M. 2006. Under the influence of alcohol: the effect of ethanol and methanol on lipid bilayers. Biophys J 90:1121-1135.

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Crowe JH, Crowe LM, Carpenter JF, Rudolph AS, Wistrom CA, Spargo BJ, Anchordoguy TJ. 1988. Interac-tions of sugars with membranes. Biochim Biophys Acta 947:367-384.

    CAS  PubMed  Google Scholar 

  95. Crowe JH, Crowe LM, Carpenter JF, Wistrom CA. 1987. Stabilization of dry phospholipid bilayers and pro-teins by sugar. Biochem J 242:1-10.

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Crowe JH, Crowe LM, Oliver AE, Tsvetkova N, Wolkers W, Tablin F. 2001. The trehalose myth revisited: introduction to a symposium on stabilization of cells in the dry state. Cryobiology 43:89-105.

    CAS  PubMed  Google Scholar 

  97. Crowe JH, Crowe LM, Chapman D. 1984. Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223:701-703.

    CAS  PubMed  Google Scholar 

  98. Pereira CS, Lins RD, Chandrasekhar I, Carlos L, Freitas G, Hünenberger PH. 2004. Interaction of the disaccha-ride trehalose with a phospholipid bilayer: a molecular dynamics study. Biophys J 86:2273-2285.

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Ly HV, Block DE, Longo ML. 2002. Interfacial tension effect of ethanol on lipid bilayer rigidity, stability, and area/molecule: a micropipet aspiration approach. Langmuir 18:8988-8995.

    CAS  Google Scholar 

  100. Ly HV, Longo ML. 2004. The influence of short-chain alcohols on interfacial tension, mechanical properties, area/molecule, and permeability of fluid lipid bilayers. Biophys J 87:1013-1033.

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Bisson LF, Block DE. 2002. Ethanol tolerance in Saccharomyces. In Biodiversity and biotechnology of wine yeasts, pp. 85-98. Ed. M Ciani. Trivandrum, India: Research Signpost.

    Google Scholar 

  102. Cramer AC, Vlassides S, Block DE. 2002. Kinetic model for nitrogen-limited wine fermentations. Biotechnol Bioeng 77:49-60.

    CAS  PubMed  Google Scholar 

  103. Bisson LF. 1999. Stuck and sluggish fermentations. Am J Enol Vitic 50:107-119.

    CAS  Google Scholar 

  104. Cantor RS. 1997. The lateral pressure profile in membranes: a physical mechanism of general anesthesia. Bio-chemistry 36:2339-2344.

    CAS  Google Scholar 

  105. Terama E, Ollila OH, Salonen E, Rowat AC, Trandum C, Westh P, Patra M, Karttunen M, Vattulainen I. 2008. Influence of ethanol on lipid membranes: from lateral pressure profiles to dynamics and partitioning. J Phys Chem B 112:4131-4139.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Faller .

Editor information

Editors and Affiliations

2.1 Electronic Supplementary material

Figure 2.1.

Visualization of a POPA lipid bilayer [32]. Left: The system contains 128 lipids with 5443 water molecules. Middle: The POPA lipids without the water molecules. Right: Only the POPA headgroups are shown. Please visit http://extras.springer.com/ to view a high-resolution full-color version of this illustration. (PDF 2,842 KB)

Figure 2.2.

Electron density profiles of the POPA lipid bilayer from Figure 2.1. The bilayer center corresponds to a value of z = 0 nm. Please visit http://extras.springer.com/ to view a high-resolution full-color version of this illustration. (PDF 2,762 KB)

Figure 2.3.

An example of how the lipid acyl chains are numbered in calculating the order parameter. The POPA lipid shown here differs from the more commonly studied DPPC lipid in that the DPPC choline group is replaced with a hydrogen atom and the sn-2 tail contains a double bond and 18 atoms. Please visit http://extras.springer.com/ to view a high-resolution full-color version of this illustration. (PDF 2,772 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dickey, A.N., Faller, R. (2010). Molecular Modeling of Biomembranes: A How-to Approach. In: Jue, T. (eds) Biomedical Applications of Biophysics. Handbook of Modern Biophysics, vol 3. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-233-9_2

Download citation

Publish with us

Policies and ethics