Skip to main content

Sulfate and Phosphate Transporters in Mammalian Renal and Gastrointestinal Systems

  • Chapter
  • First Online:
Epithelial Transport Physiology

Abstract

This chapter will summarize the most recent data available for sulfate and phosphate transport in mammalian renal and gastrointestinal systems. Dietary derived sulfate and phosphate are absorbed in the intestines and their circulating levels are controlled by renal tubular mechanisms. Such processes are facilitated by sulfate and phosphate transporters that exist in the epithelial cells of the kidneys and intestines. Sulfate transporters belong to two gene families, the Na+-coupled sulfate transporters (SLC13) and the sulfate anion exchangers (SLC26). Phosphate transporters belong to three gene families, Type I (SLC17), Type II (SLC34), and Type III (SLC20) of which all members are Na+-coupled phosphate transporters. Tissue distribution for these transporters is diverse, with some being restricted to either renal or intestinal tissues and with others showing more broad tissue distribution. Various modes of regulation affect the expression of these genes and the proteins they encode in their respective tissues. Lessons from knock-out mice reveal the physiological (and pathophysiological) roles these proteins play in the body and their contributions to sulfate and phosphate homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murer H, Hernando N, Forster I, Biber J. Proximal tubular phosphate reabsorption: molecular mechanisms. Physiological Reviews 2000;80:1373–409.

    CAS  PubMed  Google Scholar 

  2. Markovich D. Physiological roles and regulation of mammalian sulfate transporters. Physiological Reviews 2001;81:1499–533.

    CAS  PubMed  Google Scholar 

  3. Mulder GJ. Sulfate availability in vivo. In: Mulder GJ, ed. Sulfation of Drugs and Related Compounds. Boca Raton, FL: CRC; 1981:32–52.

    Google Scholar 

  4. Murer H. Transport of sulfate and phosphate in small intestine and renal proximal tubule: methods and basic properties. Comparative biochemistry and physiology A, Comparative Physiology 1988;90:749–55.

    CAS  PubMed  Google Scholar 

  5. Tallgren LG. Inorganic sulphates in relation to the serum thyroxine level and in renal failure. Acta Medica Scandinavica Supplementum 1980;640:1–100.

    CAS  PubMed  Google Scholar 

  6. Murer H, Markovich D, Biber J. Renal and small intestinal sodium-dependent symporters of phosphate and sulphate. The Journal of Experimental Biology 1994;196:167–81.

    CAS  PubMed  Google Scholar 

  7. Hastbacka J, de la Chapelle A, Mahtani MM, et al. The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell 1994;78:1073–87.

    CAS  PubMed  Google Scholar 

  8. Taketani Y, Segawa H, Chikamori M, et al. Regulation of Type II Renal Na+-dependent Inorganic Phosphate Transporters by 1,25-Dihydroxyvitamin D3: Identification of a vitamin d-responsive element in the human NaPi-3 gene. Journal of Biological Chemistry 1998;273:14575–81.

    CAS  PubMed  Google Scholar 

  9. Moseley RH, Hoglund P, Wu GD, et al. Downregulated in adenoma gene encodes a chloride transporter defective in congenital chloride diarrhea. American Journal of Physiology 1999;276:G185–92.

    CAS  PubMed  Google Scholar 

  10. Markovich D, Murer H. The SLC13 gene family of sodium sulphate/carboxylate cotransporters. Pflugers Archiv: European Journal of Physiology 2004;447:594–602.

    CAS  PubMed  Google Scholar 

  11. Dawson PA, Markovich D. Pathogenetics of the human SLC26 transporters. Current Medicinal Chemistr 2005;12:385–96.

    CAS  Google Scholar 

  12. Markovich D. Sulfate transport by SLC26 transporters. Novartis Foundation Symposium 2006;273:42–51; discussion -8, 261–4.

    Google Scholar 

  13. Markovich D, Forgo J, Stange G, Biber J, Murer H. Expression cloning of rat renal Na+/SO4(2-) cotransport. Proceedings of the National Academy of Sciences of the United States of America 1993;90:8073–7.

    CAS  PubMed  Google Scholar 

  14. Beck L, Markovich D. The mouse Na(+)-sulfate cotransporter gene Nas1. Cloning, tissue distribution, gene structure, chromosomal assignment, and transcriptional regulation by vitamin D. Journal of Biological Chemistry 2000;275:11880–90.

    CAS  PubMed  Google Scholar 

  15. Lee A, Beck L, Markovich D. The human renal sodium sulfate cotransporter (SLC13A1; hNaSi-1) cDNA and gene: organization, chromosomal localization, and functional characterization. Genomics 2000;70:354–63.

    CAS  PubMed  Google Scholar 

  16. Lotscher M, Custer M, Quabius ES, Kaissling B, Murer H, Biber J. Immunolocalization of Na/SO4-cotransport (NaSi-1) in rat kidney. Pflugers Archiv European Journal of Physiology 1996;432:373–8.

    CAS  PubMed  Google Scholar 

  17. Markovich D, Wang H, Puttaparthi K, et al. Chronic K depletion inhibits renal brush border membrane Na/sulfate cotransport. Kidney International 1999;55:244–51.

    CAS  PubMed  Google Scholar 

  18. von Heijne G. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. Journal of Molecular Biology 1992;225:487–94.

    Google Scholar 

  19. Pajor AM, Sun N, Bai L, Markovich D, Sule P. The substrate recognition domain in the Na+/dicarboxylate and Na+/sulfate cotransporters is located in the carboxy-terminal portion of the protein. Biochimica et Biophysica Acta 1998;1370:98–106.

    CAS  PubMed  Google Scholar 

  20. Griffith DA, Pajor AM. Acidic residues involved in cation and substrate interactions in the Na+/dicarboxylate cotransporter, NaDC-1. Biochemistry 1999;38:7524–31.

    CAS  PubMed  Google Scholar 

  21. Busch AE, Waldegger S, Herzer T, et al. Electrogenic cotransport of Na+ and sulfate in Xenopus oocytes expressing the cloned Na+SO4(2-) transport protein NaSi-1. Journal of Biological Chemistry 1994;269:12407–9.

    CAS  PubMed  Google Scholar 

  22. Besseghir K, Roch-Ramel F. Renal excretion of drugs and other xenobiotics. Renal Physiology 1987;10:221–41.

    CAS  PubMed  Google Scholar 

  23. Murer H, Manganel M, Roch-Ramel F. Tubular transport of monocarboxylates, Krebs cycle intermediates and inorganic sulphate. In: Winhager E, ed. Handbook of Physiology. Oxford: Oxford University Press; 1992:2165–88.

    Google Scholar 

  24. Markovich D, Murer H, Biber J, Sakhaee K, Pak C, Levi M. Dietary sulfate regulates the expression of the renal brush border Na/Si cotransporter NaSi-1. Journal of the American Society of Nephrology : JASN 1998;9:1568–73.

    CAS  PubMed  Google Scholar 

  25. Sagawa K, DuBois DC, Almon RR, Murer H, Morris ME. Cellular mechanisms of renal adaptation of sodium dependent sulfate cotransport to altered dietary sulfate in rats. The Journal of Pharmacology and Experimental Therapeutics 1998;287:1056–62.

    CAS  PubMed  Google Scholar 

  26. Levi M, McDonald LA, Preisig PA, Alpern RJ. Chronic K depletion stimulates rat renal brush-border membrane Na-citrate cotransporter. The American Journal of Physiology 1991;261:F767–73.

    CAS  PubMed  Google Scholar 

  27. Frick A, Durasin I. Regulation of the renal transport of inorganic sulfate: Effects of metabolic changes in arterial blood pH. Pflugers Archiv : European Journal of Physiology 1986;407:541–6.

    CAS  PubMed  Google Scholar 

  28. Puttaparthi K, Markovich D, Halaihel N, et al. Metabolic acidosis regulates rat renal Na-Si cotransport activity. The American Journal of Physiology 1999;276:C1398–404.

    CAS  PubMed  Google Scholar 

  29. Renfro J, Clark N, Metts R, Lynch M. Glucocorticoid inhibition of Na/sulfate transport in chick renal brush border membranes. American Journal of Physiology 1989;256:1176–83.

    Google Scholar 

  30. Sagawa K, Murer H, Morris ME. Effect of experimentally induced hypothyroidism on sulfate renal transport in rats. The American Journal of Physiology 1999;276:F164–71.

    CAS  PubMed  Google Scholar 

  31. Fernandes I, Hampson G, Cahours X, et al. Abnormal sulfate metabolism in vitamin D-deficient rats. The Journal of Clinical Investigation 1997;100:2196–203.

    CAS  PubMed  Google Scholar 

  32. Sagawa K, Han B, DuBois DC, Murer H, Almon RR, Morris ME. Age- and growth hormone-induced alterations in renal sulfate transport. The Journal of Pharmacology and Experimental Therapeutics 1999;290:1182–7.

    CAS  PubMed  Google Scholar 

  33. Sagawa K, Benincosa LJ, Murer H, Morris ME. Ibuprofen-induced changes in sulfate renal transport. The Journal of Pharmacology and Experimental Therapeutics 1998;287:1092–7.

    CAS  PubMed  Google Scholar 

  34. Markovich D, Fogelis TS. Ontogeny of renal sulfate transporters: postnatal mRNA and protein expression. Pediatric Nephrology (Berlin, Germany) 1999; 13:806–11.

    CAS  Google Scholar 

  35. Fernandes I, Beliveau R, Friedlander G, Silve C. NaPO(4) cotransport Type III (PiT1) expression in human embryonic kidney cells and regulation by PTH. The American Journal of Physiology 1999;277:F543–51.

    CAS  PubMed  Google Scholar 

  36. Lee HJ, Sagawa K, Shi W, Murer H, Morris ME. Hormonal regulation of sodium/sulfate co-transport in renal epithelial cells. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine (New York, NY) 2000;225:49–57.

    Google Scholar 

  37. Fernandes I, Laouari D, Tutt P, Hampson G, Friedlander G, Silve C. Sulfate homeostasis, NaSi-1 cotransporter, and SAT-1 exchanger expression in chronic renal failure in rats. Kidney International 2001;59:210–21.

    CAS  PubMed  Google Scholar 

  38. Markovich D, Werner A, Murer H. Expression cloning with Xenopus oocytes. In: Hildebrandt F, Igarashi, P, ed. Techniques in Molecular Medicine. Heidelberg: Springer Verlag; 1999:310–8.

    Google Scholar 

  39. Dawson PA, Markovich D. Regulation of the mouse Nas1 promoter by vitamin D and thyroid hormone. Pflugers Arch 2002;444:353–9.

    CAS  PubMed  Google Scholar 

  40. Lee A, Markovich D. Characterization of the human renal Na(+)-sulphate cotransporter gene ( NAS1) promoter. Pflugers Arch 2004;448:490–9.

    CAS  PubMed  Google Scholar 

  41. Markovich D. Molecular regulation and membrane trafficking of mammalian renal phosphate and sulphate transporters. European Journal of Cell Biology 2000;79:531–8.

    CAS  PubMed  Google Scholar 

  42. Markovich D, Knight D. Renal Na-Si cotransporter NaSi-1 is inhibited by heavy metals. The American Journal of Physiology 1998;274:F283–9.

    CAS  PubMed  Google Scholar 

  43. Dawson PA, Beck L, Markovich D. Hyposulfatemia, growth retardation, reduced fertility and seizures in mice lacking a functional NaSi-1 gene. Proceedings of the National Academy Sciences USA 2003;100:13704–9.

    CAS  Google Scholar 

  44. Dawson PA, Steane SE, Markovich D. Impaired memory and olfactory performance in NaSi-1 sulphate transporter deficient mice. Behavioural Brain Research 2005;159:15–20, in press.

    Google Scholar 

  45. Dawson PA, Steane SE, Markovich D. Behavioural abnormalities of the hyposulphataemic Nas1 knock-out mouse. Behavioural Brain Research 2004;154:457–63.

    CAS  PubMed  Google Scholar 

  46. Markovich D, Regeer RR, Kunzelmann K, Dawson PA. Functional characterization and genomic organization of the human Na(+)-sulfate cotransporter hNaS2 gene (SLC13A4). Biochemical and Biophysical Research Communications 2005;326:729–34.

    CAS  PubMed  Google Scholar 

  47. Girard JP, Baekkevold ES, Feliu J, Brandtzaeg P, Amalric F. Molecular cloning and functional analysis of SUT-1, a sulfate transporter from human high endothelial venules. Proceedings of the National Academy of Sciences of the United States of America 1999;96:12772–7.

    CAS  PubMed  Google Scholar 

  48. Dawson PA, Pirlo KJ, Steane SE, et al. The rat Na+-sulfate cotransporter rNaS2: functional characterization, tissue distribution, and gene (slc13a4) structure. Pflugers Arch 2005;450:262–8.

    CAS  PubMed  Google Scholar 

  49. Miyauchi S, Srinivas SR, Fei YJ, et al. Functional characteristics of NaS2, a placenta-specific Na+-coupled transporter for sulfate and oxyanions of the micronutrients selenium and chromium. Placenta 2006;27:550–9.

    CAS  PubMed  Google Scholar 

  50. Dawson PA, Pirlo KJ, Steane SE, Kunzelmann K, Chien YJ, Markovich D. Molecular cloning and characterization of the mouse Na+ sulfate cotransporter gene (Slc13a4): Structure and expression. Genes & Genetic Systems 2006;81:265–72.

    CAS  Google Scholar 

  51. Mount DB, Romero MF. The SLC26 gene family of multifunctional anion exchangers. Pflugers Arch 2004;447:710–21.

    CAS  PubMed  Google Scholar 

  52. Regeer RR, Lee A, Markovich D. Characterization of the human sulfate anion transporter (hsat-1) protein and gene (SAT1; SLC26A1). DNA and Cell Biology 2003;22:107–17.

    CAS  PubMed  Google Scholar 

  53. Lee A, Beck L, Markovich D. The mouse sulfate anion transporter gene Sat1 (Slc26a1): cloning, tissue distribution, gene structure, functional characterization, and transcriptional regulation thyroid hormone. DNA and Cell Biology 2003;22:19–31.

    CAS  PubMed  Google Scholar 

  54. Bissig M, Hagenbuch B, Stieger B, Koller T, Meier PJ. Functional expression cloning of the canalicular sulfate transport system of rat hepatocytes. The Journal of Biological Chemistry 1994;269:3017–21.

    CAS  PubMed  Google Scholar 

  55. Markovich D, Bissig M, Sorribas V, Hagenbuch B, Meier PJ, Murer H. Expression of rat renal sulfate transport systems in Xenopus laevis oocytes. Functional characterization and molecular identification. The Journal of Biological Chemistry 1994;269:3022–6.

    CAS  PubMed  Google Scholar 

  56. David C, Ullrich KJ. Substrate specificity of the luminal Na+-dependent sulphate transport system in the proximal renal tubule as compared to the contraluminal sulphate exchange system. Pflugers Archiv 1992;421:455–65.

    CAS  PubMed  Google Scholar 

  57. Karniski LP, Lotscher M, Fucentese M, Hilfiker H, Biber J, Murer H. Immunolocalization of sat-1 sulfate/oxalate/bicarbonate anion exchanger in the rat kidney. The American Journal Of Physiology 1998;275:F79–87.

    CAS  PubMed  Google Scholar 

  58. Meier P, Valantinas J, Hugentobler G, Rahm I. Bicarbonate sulfate exchange in canalicular rat liver plasma membrane vesicles. The American Journal of Physiology 1987;253:461–8.

    Google Scholar 

  59. Satoh H, Susaki M, Shukunami C, Iyama K, Negoro T, Hiraki Y. Functional analysis of diastrophic dysplasia sulfate transporter. Its involvement in growth regulation of chondrocytes mediated by sulfated proteoglycans. The Journal of Biological Chemistry 1998;273:12307–15.

    CAS  PubMed  Google Scholar 

  60. Kobayashi T, Sugimoto T, Saijoh K, Fukase M, Chihara K. Cloning of mouse diastrophic dysplasia sulfate transporter gene induced during osteoblast differentiation by bone morphogenetic protein-2. Gene 1997;198:341–9.

    PubMed  Google Scholar 

  61. Schweinfest C, Henderson K, Suster S, Kondoh N, Papas T. Identification of a colon mucosa gene that is down-regulated in colon adenomas and adenocarcinomas. Proceedings of the National Academy of Sciences of the United States of America 1993;90:4166–70.

    CAS  PubMed  Google Scholar 

  62. Byeon MK, Westerman MA, Maroulakou IG, et al. The down-regulated in adenoma (DRA) gene encodes an intestine-specific membrane glycoprotein. Oncogene 1996;12:387–96.

    CAS  PubMed  Google Scholar 

  63. Taguchi T, Testa JR, Papas TS, Schweinfest C. Localization of a candidate colon tumor-suppressor gene (DRA) to 7q22–q31.1 by fluorescence in situ hybridization. Genomics 1994;20:146–7.

    CAS  PubMed  Google Scholar 

  64. Byeon MK, Frankel A, Papas TS, Henderson KW, Schweinfest CW. Human DRA functions as a sulfate transporter in Sf9 insect cells. Protein Expression and Purification 1998;12:67–74.

    CAS  Google Scholar 

  65. Silberg DG, Wang W, Moseley RH, Traber PT. The down regulated in adenoma (dra) gene encodes an intestine-specific membrane sulfate transport protein. Journal of Biological Chemistry 1995;270:11897–902.

    CAS  PubMed  Google Scholar 

  66. Lohi H, Lamprecht G, Markovich D, et al. Isoforms of SLC26A6 mediate anion transport and have functional PDZ interaction domains. American Journal of Physiology Cell Physiology 2003;284:C769–C79.

    CAS  PubMed  Google Scholar 

  67. Holmberg C. Congenital chloride diarrhoea. Clin Gastroenterol 1986;15:583–602.

    CAS  PubMed  Google Scholar 

  68. Kere J, Lohi H, Hoglund P. Genetic Disorders of Membrane Transport III. Congenital chloride diarrhea. American Journal of Physiology 1999;276:G7–G13.

    CAS  Google Scholar 

  69. Hoglund P, Sistonen P, Norio R, et al. Fine mapping of the congenital chloride diarrhea gene by linkage disequilibrium. American Journal of Human Genetics 1995;57:95–102.

    CAS  PubMed  Google Scholar 

  70. Hoglund P, Haila S, Scherer SW, et al. Positional candidate genes for congenital chloride diarrhea suggested by high resolution physical mapping in chromosome region 7q31. Genome Research 1996;6:202–10.

    CAS  PubMed  Google Scholar 

  71. Haila S, Hoglund P, Scherer SW, et al. Genomic structure of the human congenital chloride diarrhea (CLD) gene. Gene 1998;214:87–93.

    CAS  PubMed  Google Scholar 

  72. Melvin JE, Park K, Richardson L, Schultheis PJ, Shull GE. Mouse down-regulated in adenoma (DRA) is an intestinal Cl(–)/HCO(3)(–) exchanger and is up-regulated in colon of mice lacking the NHE3 Na(+)/H(+) exchanger. Journal of Biological Chemistry 1999;274:22855–61.

    CAS  PubMed  Google Scholar 

  73. Lohi H, Kujala M, Kerkela E, Saarialho-Kere U, Kestila M, Kere J. Mapping of five new putative anion transporter genes in human and characterization of SLC26A6, A candidate gene for pancreatic anion exchanger. Genomics 2000;70:102–12.

    CAS  PubMed  Google Scholar 

  74. Waldegger S, Moschen I, Ramirez A, et al. Cloning and characterization of SLC26A6, a novel member of the solute carrier 26 gene family. Genomics 2001;72:43–50.

    CAS  PubMed  Google Scholar 

  75. Knauf F, Yang CL, Thomson RB, Mentone SA, Giebisch G, Aronson PS. Identification of a chloride-formate exchanger expressed on the brush border membrane of renal proximal tubule cells. Proceedings of the National Academy of Sciences of the United States of America 2001;98:9425–30.

    CAS  PubMed  Google Scholar 

  76. Wang Z, Petrovic S, Mann E, Soleimani M. Identification of an apical Cl(–)/HCO3(–) exchanger in the small intestine. American Journal of Physiology Gastrointestinal and Liver Physiology 2002;282:G573–9.

    CAS  PubMed  Google Scholar 

  77. Thomson RB, Wang T, Thomson BR, et al. Role of PDZK1 in membrane expression of renal brush border ion exchangers. Proceedings of the National Academy of Sciences of the United States of America 2005;102:13331–6.

    CAS  PubMed  Google Scholar 

  78. Xie Q, Welch R, Mercado A, Romero MF, Mount DB. Molecular characterization of the murine Slc26a6 anion exchanger: functional comparison with Slc26a1. American Journal of Physiology Renal Physiology 2002;283:F826–38.

    PubMed  Google Scholar 

  79. Chernova MN, Jiang L, Friedman DJ, et al. Functional comparison of mouse slc26a6 anion exchanger with human SLC26A6 polypeptide variants: differences in anion selectivity, regulation, and electrogenicity. The Journal of Biological Chemistry 2005;280:8564–80.

    CAS  PubMed  Google Scholar 

  80. Jiang Z, Grichtchenko, II, Boron WF, Aronson PS. Specificity of Anion Exchange Mediated by Mouse Slc26a6. The Journal of Biological Chemistry 2002;277:33963–7.

    CAS  PubMed  Google Scholar 

  81. Nozawa T, Sugiura S, Hashino Y, Tsuji A, Tamai I. Role of anion exchange transporter PAT1 (SLC26A6) in intestinal absorption of organic anions. Journal of Drug Targeting 2004;12:97–104.

    CAS  PubMed  Google Scholar 

  82. Ko SB, Shcheynikov N, Choi JY, et al. A molecular mechanism for aberrant CFTR-dependent HCO(3)(–) transport in cystic fibrosis. EMBO Journal 2002;21:5662–72.

    CAS  PubMed  Google Scholar 

  83. Shcheynikov N, Wang Y, Park M, et al. Coupling Modes and Stoichiometry of Cl-/HCO3- Exchange by slc26a3 and slc26a6. The Journal of General Physiology 2006;127:511–24.

    CAS  PubMed  Google Scholar 

  84. Jiang Z, Asplin JR, Evan AP, et al. Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6. Nature Genetics 2006;38:474–8.

    CAS  PubMed  Google Scholar 

  85. Wang Z, Wang T, Petrovic S, et al. Renal and intestinal transport defects in Slc26a6-null mice. American Journal of Physiology Cell Physiology 2005;288:C957–65.

    CAS  PubMed  Google Scholar 

  86. Gisler SM, Pribanic S, Bacic D, et al. PDZK1: I. a major scaffolder in brush borders of proximal tubular cells. Kidney International 2003;64:1733–45.

    CAS  PubMed  Google Scholar 

  87. Vincourt JB, Jullien D, Amalric F, Girard JP. Molecular and functional characterization of SLC26A11, a sodium-independent sulfate transporter from high endothelial venules. FASEB Journal 2003;17:890–2.

    CAS  PubMed  Google Scholar 

  88. Lohi H, Kujala M, Mäkelä S, et al. Functional characterization of three novel tissue-specific anion exchangers: SLC26A7, A8 and A9. Journal of Biological Chemistry 2002;277:14246–54.

    CAS  PubMed  Google Scholar 

  89. Toure A, Morin L, Pineau C, Becq F, Dorseuil O, Gacon G. Tat1, a novel sulfate transporter specifically expressed in human male germ cells and potentially linked to rhogtpase signaling. Journal of Biological Chemistry 2001;276:20309–15.

    CAS  PubMed  Google Scholar 

  90. Toure A, Lhuillier P, Gossen JA, et al. The testis anion transporter 1 (Slc26a8) is required for sperm terminal differentiation and male fertility in the mouse. Human Molecular Genetics 2007;16:1783–93.

    CAS  PubMed  Google Scholar 

  91. Murer H. Homer Smith Award. Cellular mechanisms in proximal tubular Pi reabsorption: some answers and more questions. Journal of the American Society of Nephrology : JASN 1992;2:1649–65.

    CAS  PubMed  Google Scholar 

  92. Reimer RJ, Edwards RH. Organic anion transport is the primary function of the SLC17/Type I phosphate transporter family. Pflugers Arch 2004;447:629–35.

    CAS  PubMed  Google Scholar 

  93. Magagnin S, Werner A, Markovich D, et al. Expression cloning of human and rat renal cortex Na/Pi cotransport. Proceedings of the National Academy of Sciences of the United States of America 1993;90:5979–83.

    CAS  PubMed  Google Scholar 

  94. Hilfiker H, Hattenhauer O, Traebert M, Forster I, Murer H, Biber J. Characterization of a murine Type II sodium-phosphate cotransporter expressed in mammalian small intestine. Proceedings of the National Academy of Sciences of the United States of America 1998;95:14564–9.

    CAS  PubMed  Google Scholar 

  95. Murer H, Forster I, Biber J. The sodium phosphate cotransporter family SLC34. Pflugers Arch 2004;447:763–7.

    CAS  PubMed  Google Scholar 

  96. Collins JF, Bai L, Ghishan FK. The SLC20 family of proteins: dual functions as sodium-phosphate cotransporters and viral receptors. Pflugers Arch 2004 447:647–52.

    CAS  PubMed  Google Scholar 

  97. Werner A, Moore ML, Mantei N, Biber J, Semenza G, Murer H. Cloning and expression of cDNA for a Na/Pi cotransport system of kidney cortex. Proceedings of the National Academy of Sciences of the United States of America 1991;88:9608–12.

    CAS  PubMed  Google Scholar 

  98. Miyamoto K, Tatsumi S, Yamamoto H, et al. Chromosome assignments of genes for human Na(+)-dependent phosphate co-transporters NaPi-3 and NPT-1. Tokushima Journal of Experimental Medicine 1995;42:5–9.

    CAS  Google Scholar 

  99. Busch AE, Schuster A, Waldegger S, et al. Expression of a renal Type I sodium/phosphate transporter (NaPi-1) induces a conductance in Xenopus oocytes permeable for organic and inorganic anions. Proceedings of the National Academy of Sciences of the United States of America 1996;93:5347–51.

    CAS  PubMed  Google Scholar 

  100. Uchino H, Tamai I, Yamashita K, et al. p-aminohippuric acid transport at renal apical membrane mediated by human inorganic phosphate transporter NPT1. Biochemical and Biophysical Research Communications 2000;270:254–9.

    CAS  PubMed  Google Scholar 

  101. Yabuuchi H, Tamai I, Morita K, et al. Hepatic sinusoidal membrane transport of anionic drugs mediated by anion transporter Npt1. The Journal of Pharmacology and Experimental Therapeutics 1998;286:1391–6.

    CAS  PubMed  Google Scholar 

  102. Biber J, Custer M, Werner A, Kaissling B, Murer H. Localization of NaPi-1, a Na/Pi cotransporter, in rabbit kidney proximal tubules. II. Localization by immunohistochemistry. Pflugers Archiv European Journal of Physiology 1993;424:210–5.

    CAS  PubMed  Google Scholar 

  103. Custer M, Meier F, Schlatter E, et al. Localization of NaPi-1, a Na-Pi cotransporter, in rabbit kidney proximal tubules. I. mRNA localization by reverse transcription/polymerase chain reaction. Pflugers Archiv European Journal of Physiology 1993;424:203–9.

    CAS  PubMed  Google Scholar 

  104. Ruddy DA, Kronmal GS, Lee VK, et al. A 1.1-Mb transcript map of the hereditary hemochromatosis locus. Genome Research 1997;7:441–56.

    CAS  PubMed  Google Scholar 

  105. Shibui A, Tsunoda T, Seki N, Suzuki Y, Sugane K, Sugano S. Isolation and chromosomal mapping of a novel human gene showing homology to Na+/PO4 cotransporter. Journal of Human Genetics 1999;44:190–2.

    CAS  PubMed  Google Scholar 

  106. Cheret C, Doyen A, Yaniv M, Pontoglio M. Hepatocyte nuclear factor 1 alpha controls renal expression of the Npt1-Npt4 anionic transporter locus. Journal of Molecular Biology 2002;322:929–41.

    CAS  PubMed  Google Scholar 

  107. Murer H, Evers J, Kinne R. Polarity of proximal tubular epithelial cells in relation to transepithelial transport. Current Problems in Clinical Biochemistry 1976;6:173–89.

    CAS  PubMed  Google Scholar 

  108. Custer M, Lötscher M, Biber J, Murer H, Kaissling B. Expression of Na-Pi cotransport in rat kidney: localization by RT-PCR and immunohistochemistry. The American Journal of Physiology 1994;266:F767–F74.

    CAS  PubMed  Google Scholar 

  109. Mulroney SE, Woda CB, Halaihel N, et al. Central control of renal sodium-phosphate (NaPi-2) transporters. American Journal of Physiology Renal Physiology 2004;286:F647–52.

    CAS  PubMed  Google Scholar 

  110. Khadeer MA, Tang Z, Tenenhouse HS, et al. Na+-dependent phosphate transporters in the murine osteoclast: cellular distribution and protein interactions. American Journal of Physiology Cell Physiology 2003;284:C1633–44.

    CAS  PubMed  Google Scholar 

  111. Lundquist P, Murer H, Biber J. Type II Na+-Pi cotransporters in osteoblast mineral formation: regulation by inorganic phosphate. Cellular Physiology and biochemistry 2007;19:43–56.

    CAS  PubMed  Google Scholar 

  112. Segawa H, Kaneko I, Takahashi A, et al. Growth-related renal Type II Na/Pi cotransporter. Journal of Biological Chemistry 2002;277:19665–72.

    CAS  PubMed  Google Scholar 

  113. Murer H, Hernando N, Forster I, Biber J. Regulation of Na/Pi transporter in the proximal tubule. Annual Review of Physiology 2003;65:531–42.

    CAS  PubMed  Google Scholar 

  114. Tenenhouse HS. Regulation of phosphorus homeostasis by the Type IIa na/phosphate cotransporter. Annual Review of Nutrition 2005;25:197–214.

    CAS  PubMed  Google Scholar 

  115. Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS. Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proceedings of the National Academy of Sciences of the United States of America 1998;95:5372–7.

    CAS  PubMed  Google Scholar 

  116. Bergwitz C, Roslin N, Tieder M, et al. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. American Journal of Human Genetics 2006;78:179–92.

    CAS  PubMed  Google Scholar 

  117. Ichikawa S, Sorenson A, Imel E, Friedman N, Gertner J, Econs M. Intronic deletions in the SLC34A3 gene cause hereditary hypophosphatemic rickets with hypercalciuria. Journal of Clinical Endocrinology and Metabolism 2006;91:4022–7.

    CAS  PubMed  Google Scholar 

  118. Lorenz-Depiereux B, Benet-Pages A, Eckstein G, et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. American Journal of Human Genetics 2006;78:193–201.

    CAS  PubMed  Google Scholar 

  119. Radanovic T WC, Murer H, Biber J. Regulation of intestinal phosphate transport. I. Segmental expression and adaptation to low-P(i) diet of the Type IIb Na(+)-P(i) cotransporter in mouse small intestine. American Journal of Physiology Gastrointestinal and Liver Physiology 2005;288:G496–500. .

    CAS  PubMed  Google Scholar 

  120. Stauber A, Radanovic T, Stange G, Murer H, Wagner C, Biber J. Regulation of intestinal phosphate transport. II. Metabolic acidosis stimulates Na(+)-dependent phosphate absorption and expression of the Na(+)-P(i) cotransporter NaPi-IIb in small intestine. American Journal of Physiology Gastrointestinal and Liver Physiology 2005;288:G501–6.

    CAS  PubMed  Google Scholar 

  121. Frei P, Gao B, Hagenbuch B, et al. Identification and localization of sodium-phosphate cotransporters in hepatocytes and cholangiocytes of rat liver. American Journal of Physiology Gastrointestinal and Liver Physiology 2005;288:G771–8.

    CAS  PubMed  Google Scholar 

  122. Homann V, Rosin-Steiner S, Stratmann T, Arnold WH, Gaengler P, Kinne RK. Sodium-phosphate cotransporter in human salivary glands: molecular evidence for the involvement of NPT2b in acinar phosphate secretion and ductal phosphate reabsorption. Archives of Oral Biology 2005;50:759–68.

    CAS  PubMed  Google Scholar 

  123. Alcalde AI, Sarasa M, Raldua D, et al. Role of thyroid hormone in regulation of renal phosphate transport in young and aged rats. Endocrinology 1999;140:1544–51.

    CAS  PubMed  Google Scholar 

  124. Beers KW, Thompson MA, Chini EN, Dousa TP. beta-Estradiol inhibits Na+-P(i) cotransport across renal brush border membranes from ovarectomized rats. Biochemical and Biophysical Research Communications 1996;221:442–5.

    CAS  PubMed  Google Scholar 

  125. Brandis M, Harmeyer J, Kaune R, Mohrmann M, Murer H, Zimolo Z. Phosphate transport in brush-border membranes from control and rachitic pig kidney and small intestine. The Journal of Physiology 1987;384:479–90.

    CAS  PubMed  Google Scholar 

  126. Loffing J, Lotscher M, Kaissling B, et al. Renal Na/H exchanger NHE-3 and Na-PO4 cotransporter NaPi-2 protein expression in glucocorticoid excess and deficient states. Journal of the American Society of Nephrology 1998;9:1560–7.*

    CAS  PubMed  Google Scholar 

  127. Murer H, Biber J. A molecular view of proximal tubular inorganic phosphate (Pi) reabsorption and of its regulation. Pflugers Archiv : European Journal of Physiology 1997;433:379–89.

    CAS  PubMed  Google Scholar 

  128. Caverzasio J, Bonjour JP. Growth factors and renal regulation of phosphate transport. Pediatric Nephrology (Berlin, Germany) 1993;7:802–6.

    CAS  Google Scholar 

  129. Markovich D, Verri T, Sorribas V, Forgo J, Biber J, Murer H. Regulation of opossum kidney (OK) cell Na/Pi cotransport by Pi deprivation involves mRNA stability. Pflugers Archiv European Journal of Physiology 1995;430:459–63.

    CAS  PubMed  Google Scholar 

  130. Murer H, Forster I, Hernando N, Lambert G, Traebert M, Biber J. Posttranscriptional regulation of the proximal tubule NaPi-II transporter in response to PTH and dietary P(i). The American Journal of Physiology 1999;277:F676–84.

    CAS  PubMed  Google Scholar 

  131. Murer H, Biber J. Renal sodium-phosphate cotransport. Current Opinion in Nephrology and Hypertension 1994;3:504–10.

    CAS  PubMed  Google Scholar 

  132. Lotscher M, Wilson P, Nguyen S, et al. New aspects of adaptation of rat renal Na-Pi cotransporter to alterations in dietary phosphate. Kidney International 1996;49:1012–8.

    CAS  PubMed  Google Scholar 

  133. Forster IC, Kohler K, Biber J, Murer H. Forging the link between structure and function of electrogenic cotransporters: the renal Type IIa Na+/Pi cotransporter as a case study. Progress in Biophysics and Molecular Biology 2002;80:69–108.

    CAS  PubMed  Google Scholar 

  134. Forster IC, Hernando N, Biber J, Murer H. Proximal tubular handling of phosphate: A molecular perspective. Kidney International 2006;70:1548–59.

    CAS  PubMed  Google Scholar 

  135. Busch AE, Wagner CA, Schuster A, et al. Properties of electrogenic Pi transport by a human renal brush border Na+/Pi transporter. Journal of the American Society of Nephrology JASN 1995;6:1547–51.

    CAS  PubMed  Google Scholar 

  136. Xu H, Inouye M, Missey T, Collins JF, Ghishan FK. Functional characterization of the human intestinal NaPi-IIb cotransporter in hamster fibroblasts and Xenopus oocytes. Biochimica et Biophysica Acta 2002;1567:97–105.

    CAS  PubMed  Google Scholar 

  137. Virkki LV, Biber J, Murer H, Forster IC. Phosphate transporters: a tale of two solute carrier families. American Journal of Physiology Renal Physiology 2007;293:F643–54.

    CAS  PubMed  Google Scholar 

  138. Lambert G, Traebert M, Hernando N, Biber J, Murer H. Studies on the topology of the renal Type II NaPi-cotransporter. Pflugers Archiv : European Journal of Physiology 1999;437:972–8.

    CAS  PubMed  Google Scholar 

  139. Kohler K, Forster IC, Lambert G, Biber J, Murer H. The functional unit of the renal Type IIa Na+/Pi cotransporter is a monomer. Journal of Biological Chemistry 2000;275:26113–20.

    CAS  PubMed  Google Scholar 

  140. Levi M, Kempson SA, Lotscher M, Biber J, Murer H. Molecular regulation of renal phosphate transport. The Journal of Membrane Biology 1996;154:1–9.

    CAS  PubMed  Google Scholar 

  141. Moz Y, Silver J, Naveh-Many T. Characterization of cis-acting element in renal NaPi-2 cotransporter mRNA that determines mRNA stability. American Journal of Physiology Renal Physiology 2003;284:F663–70.

    CAS  PubMed  Google Scholar 

  142. Biber J, Gisler SM, Hernando N, Wagner CA, Murer H. PDZ interactions and proximal tubular phosphate reabsorption. American Journal of Physiology Renal Physiology 2004;287:F871–5.

    CAS  PubMed  Google Scholar 

  143. Shenolikar S, Voltz JW, Minkoff CM, Wade JB, Weinman EJ. Targeted disruption of the mouse NHERF-1 gene promotes internalization of proximal tubule sodium-phosphate cotransporter Type IIa and renal phosphate wasting. Proceedings of the National Academy of Sciences of the United States of America 2002;99:11470–5.

    CAS  PubMed  Google Scholar 

  144. Hernando N, Deliot N, Gisler SM, et al. PDZ-domain interactions and apical expression of Type IIa Na/P(i) cotransporters. Proceedings of the National Academy of Sciences of the United States of America 2002;99:11957–62.

    CAS  Google Scholar 

  145. Katai K, Miyamoto K, Kishida S, et al. Regulation of intestinal Na+-dependent phosphate co-transporters by a low-phosphate diet and 1,25-dihydroxyvitamin D3. The Biochemical Journal 1999; 343 Pt 3:705–12.

    CAS  PubMed  Google Scholar 

  146. Xu H, Collins JF, Bai L, Kiela PR, Ghishan FK. Regulation of the human sodium-phosphate cotransporter NaP(i)-IIb gene promoter by epidermal growth factor. American Journal of Physiology Cell Physiology 2001;280:C628–36.

    CAS  PubMed  Google Scholar 

  147. Arima K, Hines ER, Kiela PR, Drees JB, Collins JF, Ghishan FK. Glucocorticoid regulation and glycosylation of mouse intestinal Type IIb Na-P(i) cotransporter during ontogeny. American Journal of Physiology Gastrointestinal and Liver Physiology 2002;283:G426–34.

    CAS  PubMed  Google Scholar 

  148. Cross HS, Debiec H, Peterlik M. Mechanism and regulation of intestinal phosphate absorption. Mineral and Electrolyte Metabolism 1990;16:115–24.

    CAS  PubMed  Google Scholar 

  149. Madsen KL, Tavernini MM, Yachimec C, et al. Stanniocalcin: a novel protein regulating calcium and phosphate transport across mammalian intestine. The American Journal of Physiology 1998;274:G96–102.

    CAS  PubMed  Google Scholar 

  150. Johann SV, Gibbons JJ, O'Hara B. GLVR1, a receptor for gibbon ape leukemia virus, is homologous to a phosphate permease of Neurospora crassa and is expressed at high levels in the brain and thymus. Journal of Virology 1992;66:1635–40.

    CAS  PubMed  Google Scholar 

  151. Miller DG, Edwards RH, Miller AD. Cloning of the cellular receptor for amphotropic murine retroviruses reveals homology to that for gibbon ape leukemia virus. Proceedings of the National Academy of Sciences of the United States of America 1994;91:78–82.

    CAS  PubMed  Google Scholar 

  152. Kavanaugh MP, Miller DG, Zhang W, et al. Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters. Proceedings of the National Academy of Sciences of the United States of America 1994;91:7071–5.

    CAS  PubMed  Google Scholar 

  153. van Zeijl M, Johann SV, Closs E, et al. A human amphotropic retrovirus receptor is a second member of the gibbon ape leukemia virus receptor family. Proceedings of the National Academy of Sciences of the United States of America 1994;91:1168–72.

    PubMed  Google Scholar 

  154. Kavanaugh MP, Kabat D. Identification and characterization of a widely expressed phosphate transporter/retrovirus receptor family. Kidney International 1996;49:959–63.

    CAS  PubMed  Google Scholar 

  155. Olah Z, Lehel C, Anderson WB, Eiden MV, Wilson CA. The cellular receptor for gibbon ape leukemia virus is a novel high affinity sodium-dependent phosphate transporter. The Journal of Biological Chemistry 1994;269:25426–31.

    CAS  PubMed  Google Scholar 

  156. Chien ML, Foster JL, Douglas JL, Garcia JV. The amphotropic murine leukemia virus receptor gene encodes a 71-kilodalton protein that is induced by phosphate depletion. Journal of Virology 1997;71:4564–70.

    CAS  PubMed  Google Scholar 

  157. Suzuki A, Palmer G, Bonjour JP, Caverzasio J. Stimulation of sodium-dependent inorganic phosphate transport by activation of Gi/o-protein-coupled receptors by epinephrine in MC3T3-E1 osteoblast-like cells. Bone 2001;28:589–94.

    CAS  PubMed  Google Scholar 

  158. Suzuki A, Palmer G, Bonjour JP, Caverzasio J. Stimulation of sodium-dependent phosphate transport and signaling mechanisms induced by basic fibroblast growth factor in MC3T3-E1 osteoblast-like cells. Journal of Bone and Mineral Research : The Official Journal of the American Society for Bone and Mineral Research 2000;15:95–102.

    CAS  Google Scholar 

  159. Zhen X, Bonjour JP, Caverzasio J. Platelet-derived growth factor stimulates sodium-dependent Pi transport in osteoblastic cells via phospholipase Cgamma and phosphatidylinositol 3' -kinase. Journal of Bone and Mineral Research : The Official Journal of the American Society for Bone and Mineral Research 1997;12:36–44.

    CAS  Google Scholar 

  160. Zoidis E, Ghirlanda-Keller C, Gosteli-Peter M, Zapf J, Schmid C. Regulation of phosphate (Pi) transport and NaPi-III transporter (Pit-1) mRNA in rat osteoblasts. The Journal of Endocrinology 2004;181:531–40.

    CAS  Google Scholar 

  161. Wang D, Canaff L, Davidson D, et al. Alterations in the sensing and transport of phosphate and calcium by differentiating chondrocytes. The Journal of Biological Chemistry 2001;276:33995–4005.

    CAS  PubMed  Google Scholar 

  162. Palmer G, Guicheux J, Bonjour JP, Caverzasio J. Transforming growth factor-beta stimulates inorganic phosphate transport and expression of the Type III phosphate transporter Glvr-1 in chondrogenic ATDC5 cells. Endocrinology 2000;141:2236–43.

    CAS  PubMed  Google Scholar 

  163. Jono S, McKee MD, Murry CE, et al. Phosphate regulation of vascular smooth muscle cell calcification. Circulation Research 2000;87:E10–7.

    CAS  PubMed  Google Scholar 

  164. Li X, Yang HY, Giachelli CM. Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification. Circulation Research 2006;98:905–12.

    CAS  PubMed  Google Scholar 

  165. Mizobuchi M, Ogata H, Hatamura I, et al. Up-regulation of Cbfa1 and Pit-1 in calcified artery of uraemic rats with severe hyperphosphataemia and secondary hyperparathyroidism. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association – European Renal Association 2006;21:911–6.

    CAS  Google Scholar 

  166. Cecil DL, Rose DM, Terkeltaub R, Liu-Bryan R. Role of interleukin-8 in PiT-1 expression and CXCR1-mediated inorganic phosphate uptake in chondrocytes. Arthritis and Rheumatism 2005;52:144–54.

    CAS  PubMed  Google Scholar 

  167. Tatsumi S, Segawa H, Morita K, et al. Molecular cloning and hormonal regulation of PiT-1, a sodium-dependent phosphate cotransporter from rat parathyroid glands. Endocrinology 1998;139:1692–9.

    CAS  PubMed  Google Scholar 

  168. Tenenhouse HS, Gauthier C, Martel J, Hesek FA, Coutermarsh BA, Friedman PA. Na+ -phosphate cotransport in mouse distal convoluted tubule cells: evidence for Glvr-1 and Ram-1 gene expression. Journal of Bone and Mineral Research : the Official Journal of the American Society for Bone and Mineral Research 1998;13:590–7.

    CAS  Google Scholar 

  169. Bai L, Collins JF, Ghishan FK. Cloning and characterization of a Type III Na-dependent phosphate cotransporter from mouse intestine. American Journal of Physiology Cell Physiology 2000;279:C1135–43.

    CAS  PubMed  Google Scholar 

  170. Salaun C, Marechal V, Heard JM. Transport-deficient Pit2 phosphate transporters still modify cell surface oligomers structure in response to inorganic phosphate. Journal of Molecular Biology 2004;340:39–47.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the author’s laboratory is supported by the Australian Research Council and National Health and Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Markovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Markovich, D. (2010). Sulfate and Phosphate Transporters in Mammalian Renal and Gastrointestinal Systems. In: Gerencser, G. (eds) Epithelial Transport Physiology. Humana Press. https://doi.org/10.1007/978-1-60327-229-2_8

Download citation

Publish with us

Policies and ethics