Skip to main content

Heavy Metal Transport and Detoxification by Crustacean Epithelial Lysosomes

  • Chapter
  • First Online:
Book cover Epithelial Transport Physiology

Abstract

Lysosomes are multi-functional organelles that aid in the disassembly of large organic molecules and store a variety of xenobiotics. Lysosomes, and vacuolar components of the endo-membrane system, play apparently ubiquitous sequestration and detoxification roles for heavy metals in cells of many organisms. X-ray microprobe analysis of metal-containing granules (concretions) in these organelles from many animal phyla suggest that monovalent, divalent, and trivalent metal cations can be stored in these compartments in conjunction with anionic elements such as phosphorus and sulfur. There is also evidence that thiol-containing compounds such as glutathione and metallothionein, which bind metals in the cytoplasm with high affinity, may also be translocated across lysosomal membranes for metal storage. Few studies have examined the nature of the sequestration and detoxification processes for heavy metals displayed by invertebrate lysosomes or other endo-membrane components. This review summarizes recent investigations focused on lysosomal function in crustacean hepatopancreatic absorptive epithelia. It describes the carrier-mediated transport processes that occur on lysosomal membranes for accumulating metals from the cytoplasm and how these metal transporters are linked with the uptake of multivalent anions that may precipitate concretions within the organelle at appropriate ion concentrations and pH conditions. In addition, preliminary data describing the potential role of the Organic Anion Transporter (OAT) in transporting glutathione with its associated metal load from cytoplasm to lysosomal interior are described. A model summarizing proposed coupling between cationic metal and polyvalent anion transports and how they might be linked with concretion formation and metal detoxification is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahearn HRH, Ahearn GA, Gomme J. Effects of cadmium on integumentary uptake of 3H-L-histidine in the marine polychaete worm, Nereis succinea. J. Exp. Biol. 2000; 203: 2877–2885.

    CAS  PubMed  Google Scholar 

  2. Peppler JE, Ahearn GA. Effect of heavy metals on the uptake of 3H-L-histidine by the polychaete Nereis succinea. Comp. Biochem. Physiol. Part C 2003; 136(2):181–189.

    Google Scholar 

  3. Verbost PM, Van Rooij J, Flik G, Lock RAC, Bonga SEW. The movement of cadmium through freshwater trout branchial epithelium and its interference with calcium transport. J. Exp. Biol. 1989; 145: 185–197.

    CAS  Google Scholar 

  4. Bury NR, Grosell M, Grover AK, Wood CM. ATP-dependent silver transport across the basolateral membrane of rainbow trout gills. Toxicol. Appl. Pharmacol. 1999; 159: 1–8.

    Article  CAS  PubMed  Google Scholar 

  5. Bury NR, Walker PA, Glover CN. Nutritive metal uptake in teleost fish. J. Exp. Biol. 2003; 206: 11–23.

    Article  CAS  PubMed  Google Scholar 

  6. Grosell M, Wood CM. Copper uptake across rainbow trout gills: mechanisms of apical entry. J. Exp. Biol. 2002; 205: 1179–1188.

    CAS  PubMed  Google Scholar 

  7. Conrad EM, Ahearn GA. 3H-L-histidine and 65Zn2+ are co-transported by a dipeptide transport system in lobster (Homarus americanus) intestine. J. Exp. Biol. 2005; 208: 287–296.

    Article  CAS  PubMed  Google Scholar 

  8. Conrad EM, Ahearn GA. Transepithelial transport of zinc and L-histidine across perfused intestine of American lobster, Homarus americanus. J. Comp. Physiol. B. 2007; 177: 297–307.

    Article  CAS  PubMed  Google Scholar 

  9. Viarengo A. Heavy metals in marine invertebrates: Mechanisms of regulation and toxicity at the cellular level. Rev. Aquatic Sci. 1989; 1: 295–317.

    CAS  Google Scholar 

  10. Klein MJ, Ahearn GA. Calcium transport processes of lobster hepatopancreatic mitochondria. J. Exp. Zool. 1999; 283: 147–159.

    Article  CAS  Google Scholar 

  11. Chavez-Crooker P, Garrido N, Ahearn GA. Copper transport by lobster hepatopancreatic epithelial cells separated by centrifugal elutriation: measurements with the fluorescent dye, Phen Green. J. Exp. Biol. 2001; 204: 1433–1444.

    CAS  PubMed  Google Scholar 

  12. Chavez-Crooker P, Garrido N, Pozo P, Ahearn GA. Copper transport by lobster (Homarus americanus) hepatopancreatic lysosomes. Comp. Biochem. Physiol. Part C. 2003; 135(2): 107–118.

    Google Scholar 

  13. Mandal PK, Mandal A, Ahearn GA 65Zn2+ transport by lobster hepatopancreatic lysosomal membrane vesicles. J. Exp. Zool. 2006; 305A: 203–214.

    Article  CAS  Google Scholar 

  14. Mandal PK, Mandal A, Ahearn GA. Physiological characterization of 45Ca2+ and 65Zn2+ transport by lobster hepatopancreatic endoplasmic reticulum. J. Exp. Zool. 2005; 303A: 515–526.

    Article  CAS  Google Scholar 

  15. Brown BE. The form and function of metal-containing “granules” in invertebrate tissues. Biol. Rev. 1982; 57: 621–667.

    Article  CAS  Google Scholar 

  16. Mason AZ, Simkiss K. Sites of mineral deposition in metal-accumulating cells. Exp. Cell Res. 1982; 139:383–391.

    Article  CAS  PubMed  Google Scholar 

  17. Al-Mohanna SY, Nott JA. The accumulation of metals in the hepatopancreas of the shrimp, Penaeus semisulcatus de Haan (Crustacea: Decapoda) during the moult cycle. Proc. Confr. Mar. Environ. Pollution, 1985; pp. 195–209.

    Google Scholar 

  18. Coombs T, George SG. Mechanisms of immobilization and detoxification of metals in marine organisms. In: Physiology and behaviour of marine organisms (McLusky, D. S. and Berry, A. J., eds.), 1978; pp. 179–187, Pergamon Press, New York.

    Google Scholar 

  19. George SG, Pirie BJS, Cheyne AR, Coombs TL, Grant PT. Detoxification of metals by marine bivalves: an ultrastructural study on the compartmentation of copper and zinc in the oyster Ostrea edulis. Mar. Biol. 1978; 45: 147–156.

    Article  CAS  Google Scholar 

  20. Mauri M, Orlando E. Experimental study on renal concretions in the wedge shell Donax trunculus L. J. Exp. Mar. Biol. UK. 1982; 63: 47–57.

    Article  Google Scholar 

  21. Mason AZ, Simkiss K, Ryan KP. The ultrastructural localization of metals in specimens of Littorina littorea collected from clean and polluted sites. J. Exp. Mar. Biol. UK. 1984; 64: 699–720.

    Article  CAS  Google Scholar 

  22. Hopkin SP. Ecophysiology of metals in terrestrial invertebrates. 1989; London, Elsevier Applied Science.

    Google Scholar 

  23. Pisoni RL, Thoene JG. The transport systems of mammalian lysosomes. Biochim. Biophys. Acta 1991; 1071: 351–373.

    CAS  PubMed  Google Scholar 

  24. Chou HF, Vadgama J, Jonas AJ. Lysosomal transport of small molecules. Biochem. Med. Metab. Biol. 1992; 48: 179–193.

    Article  CAS  PubMed  Google Scholar 

  25. Suzuki M, Gitlin JD. Intracellular localization of the Menkes and Wilson’s disease proteins and their role in intracellular copper transport. Pediatrics Int. 1999; 41:436–442.

    Article  CAS  Google Scholar 

  26. Rees EM, Lee J, Thiele DJ. Mobilization of intracellular copper stores by the Ctr2 vacuolar copper transporter. J. Biol. Chem. 2004; 279(52) 54221–54229.

    Article  CAS  PubMed  Google Scholar 

  27. Palmiter RD, Cole TB, Findley SD. ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. EMBO J. 1996a; 15:1784–1791.

    CAS  PubMed  Google Scholar 

  28. Palmiter RD, Cole TB, Findley SD. ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc. Natl. Acad. Sci. USA 1996b; 93: 14934–14939.

    Article  CAS  PubMed  Google Scholar 

  29. Gaither LA, Eide DJ. Eukaryotic zinc transporters and their regulation. Biometals. 2001; 14: 251–270.

    Article  CAS  PubMed  Google Scholar 

  30. Liuzzi JP, Cousins RJ. Mammalian zinc transporters. Ann. Rev. Nutr. 2004; 24: 151–172.

    Article  CAS  Google Scholar 

  31. Wang A, Cortax N, Edelman IS. Mg-dependent, Zn-ATPase: Enzymatic characteristics, ion specificities, and tissue distribution. J. Membr. Biol. 2001; 181: 11–20.

    CAS  PubMed  Google Scholar 

  32. Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS. P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. The Plant Cell. 2004; 16: 1327–1339.

    Article  CAS  PubMed  Google Scholar 

  33. MacDiarmid CW, Milanick MA, Eide DJ. Biochemical properties of vacuolar zinc transport systems of Saccharomyces cerevisiae. J. Biol. Chem. 2002; 277: 39187–39194.

    Article  CAS  PubMed  Google Scholar 

  34. Havelaar AC, de Gast IL, Snijders S, Beerens CEMT, Mancini GMS, Verheijen FW. Characterization of a heavy metal ion transporter in the lysosomal membrane. FEBS Lett. 1998; 436: 223–227.

    Article  CAS  PubMed  Google Scholar 

  35. Truong-Tran AQ, Ruffin RE, Zalewski PD. Visualization of labile zinc in apoptosis of primary airway epithelial cells and cell lines. Am. J. Phyisol. Lung Cell Mol. Physiol. 2000; 279: L1172–L1183.

    CAS  Google Scholar 

  36. Truong-Tran AQ, Carter J, Ruffin R, Zalewski PD. New insights into the role of zinc in the respiratory epithelium. Immun. Cell Biol. 2001; 70: 170–177.

    Article  Google Scholar 

  37. Beyersmann D, Haase H. Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals. 2001; 14: 331–341.

    Article  CAS  PubMed  Google Scholar 

  38. Maret W. Cellular zinc and redox states converge in the metallothionein/thionein pair. J. Nutr. 2003; 133: 1460S–1462S.

    CAS  PubMed  Google Scholar 

  39. Chavez-Crooker P, Garrido N, Ahearn GA. Copper transport by lobster (Homarus americanus) hepatopancreatic mitochondria. J. Exp. Biol. 2002; 205: 405–413.

    CAS  PubMed  Google Scholar 

  40. Hopfer U, Nelson K, Perrotto J, Isselbacher KJ. Glucose transport in isolated brush border membrane from rat small intestine. J. Biol. Chem. 1973; 248: 25–32.

    CAS  PubMed  Google Scholar 

  41. Bers DM, Patton CW, Nuccitelli R. A practical guide to the preparation of Ca2+ buffers. Methods Cell Biol. 1994; 40: 3–29.

    Article  CAS  PubMed  Google Scholar 

  42. Sterling KM, Mandal, PK, Roggenbeck, BA, Ahearn, GA, Gerencser, GA, and Ahearn, GA. Heavy metal detoxification in crustacean epithelial lysosomes: role of anions in the compartmentalization process. J. Exp. Biol. 2007; 210: 3484–3493.

    Article  CAS  PubMed  Google Scholar 

  43. Ahearn GA, Mandal PK, Mandal A. Mechanisms of heavy metal sequestration and detoxification in crustaceans: a review. J. Comp. Physiol. B 2004; 174: 439–452.

    Article  CAS  PubMed  Google Scholar 

  44. Brouwer M, Schlenk D, Ringwood AH, Brouwer-Hoexum T. Metal-specific induction of metallothionein isoforms in the blue crab Callinectes sapidus in response to single- and mixed-metal exposure. Arch. Biochem. Physiol. 1992; 294(2): 461–468.

    Article  CAS  Google Scholar 

  45. Syring RA, Brouwer-Hoexum T, Brouwer M. Cloning and sequencing of cDNAs encoding for a novel copper-specific metallothionein and two cadmium-inducible metallothioneins from the blue crab Callinectes sapidus. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2000; 125: 325–332

    CAS  PubMed  Google Scholar 

  46. Zalups R, Barfuss, DW. Renal organic anion transport system: A mechanism for the basolateral uptake of mercury–thiol conjugates along the pars recta of the proximal tubule. Toxicol. Appl. Pharmacol. 2002; 182: 234–243.

    Article  CAS  PubMed  Google Scholar 

  47. Thamotharan M, Lombardo YB, Bawani SZ, Adibi SA. An active mechanism for completion of the final stage of protein degradation in the liver, lysosomal transport of dipeptides. J. Biol. Chem. 1997; 272:11786–11790.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work reported herein from the author’s laboratory was supported by National Science Foundation grant number IBN04-21986.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory A. Ahearn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ahearn, G.A., Sterling, K.M., Mandal, P.K., Roggenbeck, B. (2010). Heavy Metal Transport and Detoxification by Crustacean Epithelial Lysosomes. In: Gerencser, G. (eds) Epithelial Transport Physiology. Humana Press. https://doi.org/10.1007/978-1-60327-229-2_3

Download citation

Publish with us

Policies and ethics