Skip to main content

Divalent Anion Transport in Crustacean and Molluscan Gastrointestinal Epithelia

  • Chapter
  • First Online:
Epithelial Transport Physiology

Abstract

A novel invertebrate gastrointestinal transport mechanism has been shown to couple chloride/sulfate exchange in an electrogenic fashion. In the lobster, Homarus americanus, the hepatopancreas, or digestive gland, exists as an outpocketing of the digestive tract, representing a single cell layer separating the gut lumen and an open circulatory system comprised of hemolymph. Investigations utilizing independently prepared brush-border and basolateral membrane vesicles revealed discrete antiport systems which possess the capacity to bring about a transcellular secretion of sulfate. The luminal antiport system functions as a high affinity, one-to-one chloride/sulfate exchanger that is stimulated by an increase in luminal hydrogen ion concentration. Such a system would take advantage of the high chloride concentration of ingested seawater, as well as the high proton concentrations generated during digestion, which further suggests a potential regulation by resident sodium-proton exchangers. Exchange of one chloride for one divalent sulfate ion provides the driving force for electrogenic vectorial translocation. The basolateral antiport system was found to be electroneutral in nature, responsive to gradients of the dicarboxylic anion oxalate, while lacking in proton stimulation. No evidence of sodium/sulfate cotransport, commonly reported for the brush border of vertebrate renal and intestinal epithelia, was observed in either membrane preparation. The two antiporters together can account for the low hemolymph to seawater sulfate levels previously described in decapod crustaceans. A secretory pathway for sulfate based upon electrogenic chloride-antiport may appear among invertebrates partly in response to digestion taking place in a seawater environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maddrell, HP and Phillips, JE. Active transport of sulphate ions by the Malpighian tubules of larvae of the mosquito Aedes campestris. J. Exp. Biol., 1975; 62:367–378.

    CAS  Google Scholar 

  2. Maddrell, HP and Phillips, JE. Induction of sulphate transport and hormonal control of fluid secretion by Malpighian tubules of larvae of the mosquito Aedes taeniorhynchus. J. Exp. Biol., 1978; 72:181–202.

    CAS  Google Scholar 

  3. Smith, PL, Orella, SA and Field, M. Active sulfate absorption in rabbit ileum: dependence on sodium and chloride and effects of agents that alter chloride transport. J. Membr. Biol., 1981; 63:199–206.

    Article  CAS  PubMed  Google Scholar 

  4. Langridge-Smith, JE and Field, M. Sulfate transport in rabbit ileum: characterization of the serosal border anion exchange process. J. Membr. Biol., 1981; 63:207–214.

    Article  CAS  PubMed  Google Scholar 

  5. Langridge-Smith, JE, Sellin, JH and Field, M. Sodium influx across the rabbit ileal brush border membrane: sodium and proton dependence, and substrate specificities. J. Membr. Biol., 1983; 72:131–139.

    Article  CAS  PubMed  Google Scholar 

  6. Cardin, CJ, and Mason, J. Sulphate transport by rat ileum: effect of molybdate and other anions. Biochim. Biophys. Acta, 1975; 394:46–54.

    Article  CAS  PubMed  Google Scholar 

  7. Wolffram, S, Grenacher, B and Scharrer, E. Transport of selenate and sulphate across the intestinal brush-border membrane of pig jejunum by two common mechanisms. J. Exp. Physiol., 1988; 73:103–111.

    CAS  Google Scholar 

  8. Schron, CM, Knickelbein, RG, Aronson, PS, Della Puca, J and Dobbins, JW. pH gradient-stimulated sulfate transport by rabbit ileal brush-border membrane vesicles: evidence for S04-OH exchange. Am. J. Physiol., 1985; 249:G607–G613.

    CAS  Google Scholar 

  9. Knickelbein, RG., Aronson, PS and Dobbins, JW. Substrate and inhibitor specificity of anion exchangers on the brush border membrane of rabbit ileum. J. Member Biol., 1985; 88:199–204.

    Article  CAS  Google Scholar 

  10. Hagenbuch, B., Stange, G and Murer, H. Transport of sulphate in rat jejunal and rat proximal tubular basolateral membrane vesicles. Pflugers Arch, 1985; 405:202–208.

    Article  CAS  PubMed  Google Scholar 

  11. Schron, CM, Knickelbein, RG, Aronson, PS and Dobbins, JW. Evidence for carrier-mediated Cl-SO4 exchange in rabbit ileal basolateral membrane vesicles. Am. J. Physiol., 1987; 253:G404–G410.

    CAS  PubMed  Google Scholar 

  12. Knickelbein, RG and Dobbins, JW. Sulfate and oxalate exchange for bicarbonate across the basolateral membrane of rabbit ileum. Am. J. Physiol., 1990; 259: G807–G813.

    CAS  PubMed  Google Scholar 

  13. Hugentobler, G and Meier, PJ. Multispecific anion exchange in basolateral (sinusoidal) rat liver plasma membrane vesicles. Am. J. Physiol., 1986; 251:G656–G664.

    CAS  PubMed  Google Scholar 

  14. Meier, PJ, Valantinas, J, Hugentobler, G and Rahm, I. Bicarbonate sulfate exchange in canalicular rat liver plasma membrane vesicles. Am. J. Physiol., 1987; 253:G461–G468.

    CAS  PubMed  Google Scholar 

  15. Hugentobler, G, Fricker, G, Boyer, JL and Meier, PJ. Anion transport in basolateral (sinusoidal) liver plasma-membrane vesicles of the little skate (Raja erinacea). Biochem. J., 1987; 247:589–595.

    CAS  PubMed  Google Scholar 

  16. Lucke, H, Stange, G and Murer, H. Sulphate-ion/sodium-ion co-transport by brush-border membrane vesicles isolated from rat kidney cortex. Biochem. J., 1979; 182:223–229.

    CAS  PubMed  Google Scholar 

  17. Schneider, EG, Durham, JC and Sacktor, B. Sodium-dependent transport of inorganic sulfate by rabbit renal brush-border membrane vesicles. Effects of other ions. J. Biol., Chem., 1984; 259:14591–14599.

    CAS  Google Scholar 

  18. Turner, RJ. Sodium-dependent sulfate transport in renal outer cortical brush border membrane vesicles. Am. J. Physiol., 1984; 247:F793–F798.

    CAS  PubMed  Google Scholar 

  19. Brazy, PC. and Dennis, VW. Sulfate transport in rabbit proximal convoluted tubules: presence of anion exchange. Am. J. Physiol., 1981; 241:F300–F310.

    CAS  PubMed  Google Scholar 

  20. Pritchard, J B. Sulfate-bicarbonate exchange in brush-border membranes from rat renal cortex. Am. J. Physiol., 1987; 252:F346–F356.

    CAS  PubMed  Google Scholar 

  21. Talor, Z, Gold, RM., Yang, WC and Arruda, JAL. Anion exchanger is present in both luminal and basolateral renal membranes. Eur. J. Biochem., 1987; 164:695–702.

    Article  CAS  PubMed  Google Scholar 

  22. Pritchard, JB. and Renfro, JL. Renal sulfate transport at the basolateral membrane is mediated by anion exchange. Proc. Natl. Acad. Sci. (USA), 1983; 80:2603–2607.

    Article  CAS  Google Scholar 

  23. Low, I, Friedrich, T and Burckzhardt G. Properties of an anion exchanger in rat renal basolateral membrane vesicles. Am. J. Physiol., 1984; 246:F334–F342.

    CAS  PubMed  Google Scholar 

  24. Kuo, SH and Aronson, PS. Oxalate transport via the sulfate/HCO3 exchanger in rabbit renal basolateral membrane vesicles. J. Biol. Chem., 1988; 263:9710–9717.

    CAS  PubMed  Google Scholar 

  25. Renfro, JL and Pritchard, JB. H+-dependent sulfate secretion in the marine teleost renal tubule. Am. J. Physiol., 1982; 243:F150–F159.

    CAS  PubMed  Google Scholar 

  26. Renfro, JL and Pritchard, JB. Sulfate transport by flounder renal tubule brush border: presence of anion exchange. Am. J. Physiol., 1983; 244:F488–F496.

    CAS  PubMed  Google Scholar 

  27. Renfro, JL, Clark, NB, Metts, RE and Lynch, MA. Sulfate transport by chick renal tubule brush-border and basolateral membranes. Am. J. Physiol., 1987; 252: R85–R93.

    CAS  PubMed  Google Scholar 

  28. Loizzi, RF. Interpretation of crayfish hepatopancreatic function based on fine structural analysis of epithelial cell lines and muscle network. Z. Zellforsch, 1971; 113:420–440.

    Article  CAS  PubMed  Google Scholar 

  29. Van Weel, PB. Hepatopancreas? Comp. Biochem. Physiol., 1974; A47: 1–9.

    Article  Google Scholar 

  30. Gibson, R and Barker, PL. The decapod hepatopancreas. Oceanogr. Mar.Biol. Annu. Rev., 1979; 17:285–346.

    Google Scholar 

  31. Dall, W and Moriarty, DJW. Functional aspects of nutrition and digestion. In: Mantel LH, ed., The biology of crustacea. Internal anatomy and physiological regulation. Vol. 5, Academic Press, New York, 1983; 215–261.

    Google Scholar 

  32. Gifford, CA. Some aspects of osmotic and ionic regulation in the Blue crab Callinectes sapidus, and the Ghost crab, Ocypode albicans. Publ. Inst. Mar. Sci. Univ. Tex., 1962; 8:97–125.

    Google Scholar 

  33. Dall, W. Osmoregulation in the lobster Hornarus americanus. J. Fish Res. Board Can., 1970; 27:1123–1130.

    Google Scholar 

  34. Miller, DS and Hollida, CW. Organic cation secretion by Cancer borealis urinary bladder. Am. J. Physiol., 1987; 253:R153–R159.

    Google Scholar 

  35. Cattey, MA, Gerencser, GA and Ahearn GA. Electrogenic H+-regulated sulfate-chloride exchange in lobster hepatopancreatic brush-border membrane vesicles. Am. J. Physiol., 1992; 262:R255–R262.

    CAS  PubMed  Google Scholar 

  36. Gerencser, GA and Levin, R. Sodium-sulfate symport by Aplysia california gut. Zool. Sci., 2000; 17(5):27–32.

    Google Scholar 

  37. Gerencser, GA. Transport across the invertebrate intestine. In: R. Gilles, M. Gilles-Baillien, eds., Transport processes, iono- and osmoregulation. Springer, Berlin Heidelberg New York, 1985; 25–64.

    Google Scholar 

  38. Gerencser, GA, Cattey, MA and Ahearn, GA. Sulfate-oxalate exchange in lobster hepatopancreatic basolateral membrane vesicles. Am. J. Physiol., 1995; 38(3):R572–R577.

    Google Scholar 

  39. Gerencser, GA, Ahearn, GA and Cattey, MA. Sulfate/bicarbonate antiport by lobster hepatopancreatic basolateral membrane vesicles. J. Exp. Zool., 1999; 284:158–167.

    Article  CAS  Google Scholar 

  40. Gerencser, GA, Ahearn, GA, Robbins, F and Cattey, MA. Chloride transport by lobster hepatopancreas in facilitated by several anion antiport mechanisms. Comp. Biochem. Physiol., 2000; 125A:223–228.

    CAS  Google Scholar 

  41. Gerencser, GA, Burgin, C, Robbins, F and Ahearn, GA. The oxalate/sulfate antiporter in lobster hepatopancreas: internal and external binding constants. J. Exp. Biol., 2000; 203:1497–1502.

    CAS  PubMed  Google Scholar 

  42. Gerencser, GA, Ahearn, GA and Cattey, MA. Antiport-driven sulfate secretion in an invertebrate epithelium. J. Exp. Zool., 1996; 275:269–276.

    Article  CAS  PubMed  Google Scholar 

  43. Mugharbil, A, Knickelbein, RG, Aronson, PS and Dobbins, JW. Rabbit ileal brush-border membrane Cl-HCO3 exchanger is activated by an internal pH-sensitive modifier site. Am. J. Physiol., 1990; 259:G666–G670.

    CAS  PubMed  Google Scholar 

  44. Mason, MJ, Smith, JD, Garcia-Soto, JD and Grinstein, RJ. Grinstein Internal pH-sensitive site couples Cl−HC03 − exchange to Na+ -H+ antiport in lymphocytes. Am. J. Physiol., 1989; 256:C428–C433.

    CAS  PubMed  Google Scholar 

  45. Ahearn, GA, Gerencser, GA, Thamotharan, M, Behnke, RD and Lemme, TH. Invertebrate gut diverticula are nutrient absorptive organs. Am. J. Physiol., 1992; 26: R472–R481.

    Google Scholar 

  46. Lucke, H, Stange, G and Murer, H. Sulfate-sodium cotransport by brush-border membrane vesicles isolated from rat ileum. Gastroenterology, 1981; 80:22–30.

    CAS  PubMed  Google Scholar 

  47. Ahearn, GA, Franco, P and Clay, LP. Electrogenic 2 Na+/1 H+ exchange in crustaceans. J. Membr. Biol., 1990; 116:215–226.

    Article  CAS  PubMed  Google Scholar 

  48. Robertson, JD. Ionic regulation in some marine invertebrates. J. Exp. Biol., 1949; 26:182–200.

    CAS  PubMed  Google Scholar 

  49. Gerencser, GA, Robbins, F, Zhang, J and Ahearn, GA. Electrogenic proton regulated oxalate/chloride exchange by lobster hepatopancreatic brush border membrane vesicles. J. Exp. Biol., 2004; 207(4):571–578.

    Article  CAS  PubMed  Google Scholar 

  50. Gerencser, GA. Metabolic dependence of active sulfate transport in Aplysia californica intestine. Comp. Biochem. Physiol. A., 1979; 63:519–522.

    Article  Google Scholar 

  51. Tenehouse, HS, Lee, J, and Harvey, N. Renal brush border membrane Na-sulfate cotransport: stimulation by thyroid hormone. Am J. Physiol., 1991; 261: F420–F4326.

    Google Scholar 

  52. Gerencser, GA, Levin, R, Zhang, J. Sulfate absorption in Aplysia californica gut: thyroid hormone stimulation. Can. J. Zool., 2002; 80(6):964–966.

    CAS  Google Scholar 

  53. Gerencser, GA, Levin, R, and Robbins, F. Sulfate absorption in Aplysia californica gut: intracellular regulation by cyclic guanosine monophosphate. Can. J. Zool., 2001; 79:1–3.

    Google Scholar 

  54. Sidlowski, H, Frieden, B. T3 induces cGMP in tadpole. Biosci. Rep., 1982; 2:569–571.

    Article  CAS  PubMed  Google Scholar 

  55. Gerencser, GA, Loo, SY, Zhang, J. Thyroid hormone-induced sulfate absorption in Aplysia californica gut is mediated by protein synthesis. Can. J. Physiol. Pharm., 2003; 81(4):405–408.

    Article  CAS  Google Scholar 

  56. Gerencser, GA, Zhang, J, Levin, R. Sulfate absorption in Aplysia californica gut:glucocorticoid inhibition. Can. J. Zool., 2002; 80:2037–2040.

    Article  CAS  Google Scholar 

  57. Ahearn, GA and Murer, H. Functional roles of Na+ and H+ in SO2 −4 transport by rabbit ileal brush border membrane vesicles. J. Membr. Biol., 1984; 78: 177–186.

    Article  CAS  PubMed  Google Scholar 

  58. Berner, WR, Kinne, R, Murer, H. Phosphate transport into brush border membrane vesicles isolated from small intestine. Biochem. J., 1976; 160: 467–474.

    CAS  PubMed  Google Scholar 

  59. Sacktor, B, Cheng, L. Sodium gradient dependent phosphate transport in renal brush border membrane vesicles. Effect of an intravesicular to extravesicular proton gradient. J. biol. Chem., 1981; 256:8080–8084.

    CAS  PubMed  Google Scholar 

  60. Danisi, G and Murer, H. Inorganic phosphate in small intestine. In Handbook of Physiology, Vol. 2 Edited by Field, M and Frizzell, R. New York Oxford University Press. 1991; 232–336.

    Google Scholar 

  61. Gerencser, GA. Effects of amino acids on chloride transport in Aplysia intestine. Am. J. Physiol., 1981; 240:R61–R69.

    CAS  PubMed  Google Scholar 

  62. Gerencser, GA, Levin, R and Zhang J. Sodium phosphate symport by Aplysia californica gut. Zool. Sci., 2002; 19:163–166.

    Article  CAS  PubMed  Google Scholar 

  63. Tenenhouse, HS, Lee, J and Harvey, N. Renal brush border membrane Na – sulfate cotransport: Stimulation by thyroid hormone. Am. J. Physiol., 1991; 261:F420–F4326

    CAS  PubMed  Google Scholar 

  64. Taylor, Z, Gold, RM, Yang, WC and Arruda, JAL Anion exchanger is present in both luminal and basolateral renal membranes. Eur. J. Biochem., 1987; 261: F420–F4326.

    Google Scholar 

  65. Gerencser, GA, Levin, R and Zhang, J. Phosphate absorption of Aplysia californica gut: thyroid hormone stimulation. Can. J. Physiol. Pharm., 2002; 80(6):604–607.

    Article  CAS  Google Scholar 

  66. Gerencser, GA, Loo, SY, Robbins, FW and Zhang, J. Phosphate absorption in Aplysia californica gut is mediated by protein synthesis. Can. J. Physiol. Pharm., 2003; 81(4): 405–408.

    Article  CAS  Google Scholar 

  67. Gerencser, GA, Cornette, KM and Zhang, J. Thyroid-hormone-induced phosphate absorption in Aplysia californica gut is mediated by protein synthesis. Can. J. Physiol. Pharm., 2003; 81(4):409–412.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Eppley Foundation for Research, Inc. (G.A.G.) and by N.S.F. IBN 99-74569 (G.A.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. Gerencser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gerencser, G.A., Ahearn, G.A. (2010). Divalent Anion Transport in Crustacean and Molluscan Gastrointestinal Epithelia. In: Gerencser, G. (eds) Epithelial Transport Physiology. Humana Press. https://doi.org/10.1007/978-1-60327-229-2_2

Download citation

Publish with us

Policies and ethics