Skip to main content

Therapeutic Approaches to Target Cancer Stem Cells

  • Chapter
Regulatory Networks in Stem Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Cancer stem cells (CSCs) have been identified in hematologic malignancies as well as a number of solid tumors. Among solid tumors, the isolation and characterization of the tumorigenicity and signaling pathways of CSCs have been studied most thoroughly in brain and breast cancers. These tumor types share similar normal stem cell and oncogenic regulatory pathways and will be the focus of this review. Efforts to eliminate the CSCs within solid tumors provide a new paradigm for therapy, one that may include standard cytotoxic treatments to target the rapidly proliferating bulk of the tumor and other agents to target the CSCs, which may underlie tumorigenesis and treatment resistance. In addition, because a number of oncogenic pathways may be activated in CSCs, targeting multiple, rather than single, sites of self-renewal and differentiation is likely to be the most efficacious. Proposed treatments designed to target CSCs, singly or in combination, include differentiation therapy, targeting the aberrant signaling pathways in the CSC and the CSC microenvironment (“stem cell niche”) and targeting the mechanisms of CSC treatment resistance. Additional research into the biology of CSCs in individual tumors, testing of proposed therapies in animal tumor systems, and carefully designed human clinical trials are needed to demonstrate the efficacy and safety of targeting CSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vescovi AL, Galli R, Reynolds BA. Brain tumour stem cells. Nat Rev Cancer. 2006;6:425–35.

    Article  PubMed  CAS  Google Scholar 

  2. Oliver TG, Read TA, Kessler JD, Mehmeti A, Wells JF, Huynh TT, et al. Loss of patched and disruption of granule cell development in a pre-neoplastic stage of medulloblastoma. Development. 2005;132:2425–39.

    Article  PubMed  CAS  Google Scholar 

  3. Lee A, Kessler JD, Read TA, Kaiser C, Corbeil D, Huttner WB, Johnson JE, Wechsler-Reya RJ. Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci. 2005;8:723–9.

    Article  PubMed  CAS  Google Scholar 

  4. Dahlstrand J, Collins VP, Lendahl U. Expression of the class VI intermediate filament nestin in human central nervous system tumors. Cancer Res. 1992;52:5334–41.

    PubMed  CAS  Google Scholar 

  5. Uchida K, Mukai M, Okano H, Kawase T. Possible oncogenicity of subventricular zone neural stem cells: case report. Neurosurgery. 2004;55:977–8.

    Article  PubMed  Google Scholar 

  6. Strojnik T, Røsland GV, Sakariassen PO, Kavalar R, Lah T. Neural stem cell markers, nestin and musashi proteins, in the progression of human glioma: correlation of nestin with prognosis of patient survival. Surg Neurol. 2007;68:133–44.

    Article  PubMed  Google Scholar 

  7. Castriconi R, Dondero A, Negri F, Bellora F, Nozza P, Carnemolla B, et al. Both CD133+ and CD 133 medulloblastoma cell lines express ligands for triggering NK receptors and are susceptible to NK-mediated cytotoxicity. Eur J Immun. 2007;37:3190–6.

    Article  CAS  Google Scholar 

  8. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255:1707–10.

    Article  PubMed  CAS  Google Scholar 

  9. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.

    PubMed  CAS  Google Scholar 

  10. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A. 2003;100:15178–83.

    Article  PubMed  CAS  Google Scholar 

  11. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.

    Article  PubMed  CAS  Google Scholar 

  12. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res.2004;64:7011–21.

    Article  PubMed  CAS  Google Scholar 

  13. Barami K. Biology of the subventricular zone in relation to gliomagenesis. J Clin Neurosci. 2007;14:1143–9.

    Article  PubMed  CAS  Google Scholar 

  14. Medrano S, Burns-Cusato M, Atienza MB, Rahimi D, Scrable H. Regenerative capacity of neural precursors in the adult mammalian brain is under the control of p53. Neurobiol Aging. 2007 [Epub ahead of print].

    Google Scholar 

  15. De Witt Hamer PC, Van Tilborg AAG, Eijk PP, Sminia P, Troost D, Van Noorden CJF, et al. The genomic profile of human malignant glioma is altered early in primary cell culture and preserved in spheroids. Oncogene. 2008;27:2091–6.

    Article  PubMed  Google Scholar 

  16. Lee J, Kotliarova S, Koliarov Y, Li A, Su Q, Donin NM, et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 2006;9:391–403.

    Article  PubMed  CAS  Google Scholar 

  17. Kordon EC, Smith GH. An entire functional mammary gland may comprise the progeny from a single cell. Development. 1998;125:1921–30.

    PubMed  CAS  Google Scholar 

  18. Stingl J, Eirew P, Ricketson I, et al. Purification and unique properties of mammary epithelial stem cells. Nature. 2006;439:993–7.

    PubMed  CAS  Google Scholar 

  19. Dontu G, Abdallah WM, Foley JM, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003;17:1253–70.

    Article  PubMed  CAS  Google Scholar 

  20. Ginestier C, Hur M, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant breast stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–67.

    Article  PubMed  CAS  Google Scholar 

  21. Dirks PB. Brain tumour stem cells: the undercurrents of human brain cancer and their relationship to neural stem cells. Phil Trans R Soc B. 2008;363:139–52.

    Article  PubMed  CAS  Google Scholar 

  22. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.

    Article  PubMed  CAS  Google Scholar 

  23. Purow BW, Haque RM, Noel MW, Su Q, Burdick MJ, Lee J, et al. Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res. 2005;65:2353–63.

    Article  PubMed  CAS  Google Scholar 

  24. Ignatova TN, Kukekov VG, Laywell ED, Saslov ON, Vrionis FD, Steindler DA. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia. 2002:39:193–206.

    Article  PubMed  Google Scholar 

  25. Shih AH, Holland EC. Notch signaling enhances nestin expression in gliomas. Neoplasia. 2006;8:1072–82.

    Article  PubMed  CAS  Google Scholar 

  26. Fan X, Mikolaenko I, Elhassan I, Ni X, Wang Y, Ball D, Brat DJ, Perry A, Eberhart CG. Notch1 and notch2 have opposite effects on embryonal brain tumor growth. Cancer Res. 2004;64: 7787–93.

    Article  PubMed  CAS  Google Scholar 

  27. Dahmane N, Ruiz-iAltaba A. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 1999;126:3089–3100.

    PubMed  Google Scholar 

  28. Leung C, Lingbeek M, Shakhova O, Liu J, Tanger E, Saremaslani P, et al. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature. 2004;428: 337–41.

    Article  PubMed  CAS  Google Scholar 

  29. Romer JT, Kimura H, Magdaleno S, Sasai K, Fuller C, Baines H, et al. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/-)p53(-/-) mice. Cancer Cell. 2004;6:229–40.

    Article  PubMed  CAS  Google Scholar 

  30. Ahn S, Joyner AL. In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature. 2005;437:894–7.

    Article  PubMed  CAS  Google Scholar 

  31. Dahmane N, Sanchez P, Gitton Y, Palma V, Sun T, Beyna M, et al. The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development. 2001;24:5201–12.

    Google Scholar 

  32. Bar EE, Chaudhry A, Lin A, Fan X, Schreck K, Matsui W, et al. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells. 2007;25:2524–33.

    Article  PubMed  CAS  Google Scholar 

  33. Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 2004;6:R605–15.

    Article  PubMed  CAS  Google Scholar 

  34. Brennan K, Brown AM. Is there a role for Notch signalling in human breast cancer? Breast Cancer Res. 2003;5:69–75.

    Article  PubMed  CAS  Google Scholar 

  35. Pece S, Serresi M, Santolini E, et al. Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J Cell Biol. 2004;167:215–21.

    Article  PubMed  CAS  Google Scholar 

  36. Liu S, Dontu G, Mantle ID, et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006;66:6063–71.

    Article  PubMed  CAS  Google Scholar 

  37. Li Y, Welm B, Podsypanina K, et al. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci U S A. 2003;100:15853–8.

    Article  PubMed  CAS  Google Scholar 

  38. Wang D, DuBois RN. Cyclooxygenase 2-derived prostaglandin E2 regulates the angiogenic switch. Proc Natl Acad Sci U S A. 2004;101:415–6.

    Article  PubMed  CAS  Google Scholar 

  39. Panigrahi AR, Pinder SE, Chan SY, Paish EC, Robertson JF, Ellis IO. The role of PTEN and its signalling pathways, including AKT, in breast cancer; an assessment of relationships with other prognostic factors and with outcome. J Pathol. 2004;204: 93–100.

    Article  PubMed  CAS  Google Scholar 

  40. Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev. 2001;15: 1913–25.

    Article  PubMed  CAS  Google Scholar 

  41. Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 2006;66:7843–8.

    Article  PubMed  CAS  Google Scholar 

  42. Payne HR, Lemmon V. Glial cells of the O-2A lineage bind preferentially to N-cadherin and develop distinct morphologies. Dev Biol. 1993;159:595–607.

    Article  PubMed  CAS  Google Scholar 

  43. Satoh J, Kuroda Y. Beta-catenin expression in human neural cell lines following exposure to cytokines and growth factors. Neuropathology. 2000;20:113–23.

    Article  PubMed  CAS  Google Scholar 

  44. Hoelzinger DB, Demuth T, Berens ME. Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J Natl Cancer Inst. 2007;99:1583–9.

    Article  PubMed  CAS  Google Scholar 

  45. Savarese TM, Low HP, Baik I, Strohsnitter WC, Hsieh CC. Normal breast stem cells, malignant breast stem cells, and the perinatal origin of breast cancer. Stem Cell Rev. 2006;2:103–10.

    Article  PubMed  CAS  Google Scholar 

  46. Filip S, Mokry J, English D. Stem cell plasticity and carcinogenesis. Neoplasma/ 2006;53:87–91.

    CAS  Google Scholar 

  47. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444: 756–60.

    Article  PubMed  CAS  Google Scholar 

  48. Woodward WA, Chen MS, Behbod F, Alfaro MP, Buchholz TA, Rosen JM. WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci U S A. 2007;104:618–23.

    Article  PubMed  CAS  Google Scholar 

  49. Costello RT, Mallet F, Gaugler B, Sainty D, Arnoulet C, Gastaut JA, et al. Human acute myeloid leukemia CD34+/CD38- progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Res. 2000;60:4403–11.

    PubMed  CAS  Google Scholar 

  50. Zhou S, Morris JJ, Barnes Y, Lan L, Schuetz JD, Sorrentino BP. Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc Natl Acad Sci U S A. 2002;99:12339–44.

    Article  PubMed  CAS  Google Scholar 

  51. Donnenberg VS, Donnenberg AD. Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol. 2005;45:872–7.

    Article  PubMed  CAS  Google Scholar 

  52. Wismeth C, Hau P, Fabel K, Baumgart U, Hirschmann B, Koch H, et al. Maintenance therapy with 13-cis retinoid acid in high-grade glioma at complete response after first-line multimodal therapy – a phase-II study. J Neurooncol. 2004;68:79–86.

    Article  PubMed  Google Scholar 

  53. Phuphanich S, Scott C, Fischbach AJ, Langer C, Yung WKA. All-trans-retinoic acid: a phase II radiation therapy oncology group study (RTOG 91-13) in patients with recurrent malignant astrocytoma. J Neurooncol. 1997;34:193–200.

    Article  PubMed  CAS  Google Scholar 

  54. Kaba SE, Kyritsis AP, Conrad C, Gleason MJ, Newman R, Levin VA, et al. The treatment of recurrent cerebral gliomas with all-trans-retinoic acid (tretinoin). N Neurooncol. 1997;34:145–51.

    Article  CAS  Google Scholar 

  55. Chang Q, Chen Z, You J, McNutt MA, Zhang T, Han Z, et al. All-trans-retinoic acid induces cell growth arrest in a human medulloblastoma cell line. J Neurooncol. 2007;84:263–7.

    Article  PubMed  CAS  Google Scholar 

  56. Yin D, Ong JM, Hu J, Desmond JC, Kawamata N, Konda BM, et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor: effects on gene expression and growth of glioma cells in vitro and in vivo. Clin Cancer Res. 2007;13:1045–52.

    Article  PubMed  CAS  Google Scholar 

  57. Galanis E, Jaeckle KA, Maurer MJ, Reid JM, Ames MM, Giannini C, et al. N047B: NCCTG phase II trial of vorinostat (suberoylanilide hydroxamic acid) in recurrent glioblastoma multiforme (GBM). J Clin Oncol. 2007;25 suppl:18S.

    Google Scholar 

  58. Fan X, Matsui W, Khaki L, Stearns D, Chun J, Li Y-M, et al. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res. 2006;66:7445–52.

    Article  PubMed  CAS  Google Scholar 

  59. Nickoloff BJ, Osborne BA, Miele L. Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene. 2003;2:6598–608.

    Article  Google Scholar 

  60. Berman DM, Karhadkar SS, Hallahan AR, Pritchard JI, Eberhart CG, Watkins DN, et al. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science. 2002;297:1559–61.

    Article  PubMed  CAS  Google Scholar 

  61. Sasai K, Romer JT, Kimura H, Eberhart DE, Rice DS, Curran T. Medulloblastomas derived from Cxcr6 mutant mice respond to treatment with a smoothened inhibitor. Cancer Res. 2007;67: 3871–7.

    Article  PubMed  CAS  Google Scholar 

  62. Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ, et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med. 2005;353:2012–24.

    Article  PubMed  CAS  Google Scholar 

  63. Wen PY, Yung WKA, Lamborn KR, Dahia PL, Wang Y, Peng B, et al. Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99-08. Clin Cancer Res. 2006;12:4899–907.

    Article  PubMed  CAS  Google Scholar 

  64. Korkaya H, Paulson A, Iovino F, Wicha MS. Her2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 2008 [Epub ahead of print]

    Google Scholar 

  65. Shah K, Bureau E, Kim DE, Yang K, Tang Y, Weissleder R, et al. Glioma therapy and real-time imaging of neural precursor cell migration and tumor regression. Ann Neurol. 2005;1:34–41.

    Article  Google Scholar 

  66. Wu A, Wiesner S, Xiao J, Ericson K, Chen W, Hall WA, Low WC, Ohlfest JR. Expression of MHC I and NK ligands on human CD133+ glioma cells: possible targets of immunotherapy. J Neurooncol. 2007;83:121–31.

    Article  PubMed  CAS  Google Scholar 

  67. Jiang H, Gomez-Manzano C, Aoki H, Alonso MM, Kondo S, McCormick F, et al. Examination of the therapeutic potential of Delta-24-RGD in brain tumor stem cells: role of autophagic cell death. J Natl Cancer Inst. 2007;99:1410–4.

    Article  PubMed  CAS  Google Scholar 

  68. Stommel JM, Kimmelman AC, Ying H, Nabioullin R, Ponugoti AH, Wiedemeyer R, et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science. 2007;318:287–90.

    Article  PubMed  CAS  Google Scholar 

  69. Park DM, Li J, Okamoto H, Akeju O, Kim SH, Lubensky I, et al. N-CoR pathway targeting induces glioblastoma derived cancer stem cell differentiation. Cell Cycle. 2007;6:467–70.

    Article  PubMed  CAS  Google Scholar 

  70. Haque A, Das A, Hajiaghamohseni LM, Younger A, Banik NL, Ray SK. Induction of apoptosis and immune response by all-trans retinoic acid plus interferon-gamma in human malignant glioblastoma T98G and U87MG cells. Cancer Immunol Immunother. 2007;56:615–25.

    Article  PubMed  CAS  Google Scholar 

  71. Karmakar S, Banik NL, Ray SK. Combination of all-trans retinoic acid and paclitaxel-induced differentiation and apoptosis in human glioblastoma U87MG xenografts in nude mice. Cancer. 2008;112:596–607.

    Article  PubMed  CAS  Google Scholar 

  72. Wang MY, Lu KV, Zhu S, Dia EQ, Vivanco I, Shackleford GM, et al. Mammalian target of rapamycin inhibition promotes response to epidermal growth factor receptor kinase inhibitors in PTEN-deficient and PTEN-intact glioblastoma cells. Cancer Res. 2006;66:7864–9.

    Article  PubMed  CAS  Google Scholar 

  73. Doherty L, Gigas DC, Kesari S, Drappatz J, Kim R, Zimmerman J, et al. Pilot study of the combination of EGFR and mTOR inhibitors in recurrent malignant gliomas. Neurology. 2006;67: 156–8.

    Article  PubMed  CAS  Google Scholar 

  74. Tanaka K, Sasayama T, Mizukawa K, Kawamura A, Kondoh T, Hosoda K, et al. Specific mTOR inhibitor rapamycin enhances cytotoxicity induced by alkylating agent 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea (ACNU) in human U251 malignant glioma cells. J Neurooncol. 2007;84:233–44.

    Article  PubMed  CAS  Google Scholar 

  75. Desjardins A, Quinn JA, Vredenburgh JJ, Sathornsumetee S, Friedman AH, Herndon JE, et al. Phase II study of imatinib mesylate and hydroxyurea for recurrent grade III malignant gliomas. J Neurooncol. 2007;83:53–60.

    Article  PubMed  CAS  Google Scholar 

  76. Prados MD, Lamborn KR, Chang S, Burton E, Butowski N, Malec M, et al. Phase 1 study of erlotinib HCl alone and combined with temozolomide in patients with stable or recurrent malignant glioma. Neuro Oncol. 2006;8:67–78.

    Article  PubMed  CAS  Google Scholar 

  77. Krishnan S, Brown PD, Ballman KV, Fiveash JB, Uhm JH, Giannini C, et al. Phase I trial of erlotinib with radiation therapy in patients with glioblastoma multiforme: results of North Central Cancer Treatment Group Protocol N0177. Int J Radiation Oncology Biol Phys. 2006;65:1192–9.

    Article  CAS  Google Scholar 

  78. Vredenburgh JJ, Desjardins A, Herndon JE 2nd, Marcello J, Reardon DA, Quinn JA, et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol. 2007;25: 4722–9.

    Article  PubMed  CAS  Google Scholar 

  79. Yu F, Yao H, Zhu P, et al. let-7 Regulates Self Renewal and Tumorigenicity of Breast Cancer Cells. Cell. 2007;131:1109–23.

    Article  PubMed  CAS  Google Scholar 

  80. Li X, Creighton C, Wong H, et al. Decrease in tumorigenic breast cancer stem cells in primary breast cancers with neoadjuvant lapatinib. San Antonio Breast Cancer Symposium. San Antonio, TX, 2007.

    Google Scholar 

  81. Al-Hajj M, Becker MW, Wicha M, Weissman I, Clarke MF. Therapeutic implications of cancer stem cells. Curr Opin Genet Dev. 2004;14:43–7.

    Article  PubMed  CAS  Google Scholar 

  82. Ballman KV, Buckner JC, Brown PD, Giannini C, Flynn PF, LaPlant BR, et al. The relationship between six-month progression-free survival and 12-month overall survival end points for phase II trials in patients with glioblastoma multiforme. Neuro Oncol. 2007;9:29–38.

    Article  PubMed  CAS  Google Scholar 

  83. Chen W, Delaloye S, Silverman DH, Geist C, Czernin J, Sayre J, et al. Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol. 2007;25:4714–21.

    Article  PubMed  CAS  Google Scholar 

  84. Manganas LN, Zhang X, Li Y, Hazel RD, Smith SD, Wagshul ME, et al. Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science. 2007;318:980–5.

    Article  PubMed  CAS  Google Scholar 

  85. Boman BM, Wicha MS, Fields JZ, Runquist OA. Symmetric division of cancer stem cells-a key mechanism in tumor growth that should be targeted in future therapeutic approaches. Clin Pharmacol Ther. 2007;81:893–8.

    Article  PubMed  CAS  Google Scholar 

  86. Clarke RB, Anderson E, Howell A, Potten CS. Regulation of human breast epithelial stem cells. Cell Prolif. 2003;36 Suppl 1:45–58.

    Article  PubMed  CAS  Google Scholar 

  87. Wang Z, Zhang Y, Banerjee S, Li Y, Sarkar FH. Notch-1 down-regulation by curcumin is associated with the inhibition of cell growth and the induction of apoptosis in pancreatic cancer cells. Cancer. 2006;106:2503–13.

    Article  PubMed  CAS  Google Scholar 

  88. Jaiswal AS, Marlow BP, Gupta N, Narayan S. Beta-catenin-mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells. Oncogene. 2002;21: 8414–27.

    Article  PubMed  CAS  Google Scholar 

  89. Pahlke G, Ngiewih Y, Kern M, Jakobs S, Marko D, Eisenbrand G. Impact of quercetin and EGCG on key elements of the Wnt pathway in human colon carcinoma cells. J Agric Food Chem. 2006;54:7075–82.

    Article  PubMed  CAS  Google Scholar 

  90. Nagler A, Riklis I, Kletter Y, Tatarsky I, Fabian I. Effect of 1,25 dihydroxyvitamin D3 and retinoic acid on normal human pluripotent (CFU-mix), erythroid (BFU-E), and myeloid (CFU-C) progenitor cell growth and differentiation patterns. Exp Hematol. 1986;14:60–5.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa R. Rogers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rogers, L.R., Wicha, M. (2009). Therapeutic Approaches to Target Cancer Stem Cells. In: Rajasekhar, V.K., Vemuri, M.C. (eds) Regulatory Networks in Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-60327-227-8_41

Download citation

Publish with us

Policies and ethics