Skip to main content

Immune Responses to Stem Cells and Cancer Stem Cells

  • Chapter
Regulatory Networks in Stem Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1287 Accesses

Abstract

The demonstrated capacity and potential of pluripotent stem cells to repair the damaged tissues holds great promise in development of novel cell replacement therapeutics for treating various chronic and degenerative diseases. However, previous reports show that stem cell therapy, in autologous and allogeneic settings, triggers immune responses to stem cells as shown by lymphocyte infiltration and inflammation. Therefore, an important issue to be addressed is how the host immune system responds to engrafted autologous stem cells or allogenous stem cells. In this chapter, we summarize progress in several related topics in this field, including some of our data, in five sections: (1) mechanisms regarding the immunogenicity of stem cells; (2) methods to inhibit immune rejection to allogeneic stem cells; (3) immune responses to cancer (tumor) stem cells; (4) role of CD4+CD25high Foxp3+ regulatory T cells in regulating anti-stem cell immune reactions; and (5) role of mesenchymal stem cells in regulating anti-stem cell immune responses. Improvement of our understanding on these aspects of immune system-stem cell interaction would definitely facilitate development of stem cell-based therapeutics for regenerative purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fairchild PJ, Cartland S, Nolan KF, Waldmann H. Embryonic stem cells and the challenge of transplantation tolerance. Trends Immunol. 2004;25(9):465–70.

    PubMed  CAS  Google Scholar 

  2. Jordan JD, Ming GL, Song H. Adult neurogenesis as a potential therapy for neurodegenerative diseases. Discov Med. 2006;6(34):144–7.

    PubMed  Google Scholar 

  3. Gangaram-Panday ST, Faas MM, de Vos P. Towards stem-cell therapy in the endocrine pancreas. Trends Mol Med. 2007.

    Google Scholar 

  4. Sachinidis A, Fleischmann BK, Kolossov E, Wartenberg M, Sauer H, Hescheler J. Cardiac specific differentiation of mouse embryonic stem cells. Cardiovasc Res. 2003;58(2):278–91.

    PubMed  CAS  Google Scholar 

  5. Priddle H, Jones DR, Burridge PW, Patient R. Hematopoiesis from human embryonic stem cells: overcoming the immune barrier in stem cell therapies. Stem Cells. 2006;24(4):815–24.

    PubMed  Google Scholar 

  6. van der Bogt KE, Swijnenburg RJ, Cao F, Wu JC. Molecular imaging of human embryonic stem cells: keeping an eye on differentiation, tumorigenicity and immunogenicity. Cell Cycle. 2006;5(23):2748–52.

    PubMed  Google Scholar 

  7. Faulkner L. Disease management: the new tool for cost containment and quality care: health policy division. NGA Center for Best Practices; 2003.

    Google Scholar 

  8. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154–6.

    PubMed  CAS  Google Scholar 

  9. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78(12):7634–8.

    PubMed  CAS  Google Scholar 

  10. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    PubMed  CAS  Google Scholar 

  11. Young HE, Black AC, Jr. Adult stem cells. Anat Rec A Discov Mol Cell Evol Biol. 2004;276(1):75–102.

    PubMed  Google Scholar 

  12. Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 1965;37:614–36.

    PubMed  CAS  Google Scholar 

  13. Kiel MJ, Morrison SJ. Maintaining hematopoietic stem cells in the vascular niche. Immunity. 2006;25(6):862–4.

    PubMed  CAS  Google Scholar 

  14. Moraleda JM, Blanquer M, Bleda P, et al. Adult stem cell therapy: dream or reality? Transpl Immunol. 2006;17(1):74–7.

    PubMed  CAS  Google Scholar 

  15. De Coppi P, Bartsch G, Jr., Siddiqui MM, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25(1):100–6.

    PubMed  Google Scholar 

  16. Shizuru JA, Negrin RS, Weissman IL. Hematopoietic stem and progenitor cells: clinical and preclinical regeneration of the hematolymphoid system. Annu Rev Med. 2005;56:509–38.

    PubMed  CAS  Google Scholar 

  17. Cerny J, Quesenberry PJ. Chromatin remodeling and stem cell theory of relativity. J Cell Physiol. 2004;201(1):1–16.

    PubMed  CAS  Google Scholar 

  18. Herzog EL, Chai L, Krause DS. Plasticity of marrow-derived stem cells. Blood. 2003;102(10):3483–93.

    PubMed  CAS  Google Scholar 

  19. Goodell MA, Rosenzweig M, Kim H, et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med. 1997;3(12):1337–45.

    PubMed  CAS  Google Scholar 

  20. Challen GA, Little MH. A side order of stem cells: the SP phenotype. Stem Cells. 2006;24(1):3–12.

    PubMed  Google Scholar 

  21. Le Blanc K, Ringden O. Mesenchymal stem cells: properties and role in clinical bone marrow transplantation. Curr Opin Immunol. 2006;18(5):586–91.

    PubMed  CAS  Google Scholar 

  22. Yang ZJ, Wechsler-Reya RJ. Hit em where they live: targeting the cancer stem cell niche. Cancer Cell. 2007;11(1):3–5.

    PubMed  CAS  Google Scholar 

  23. Li F, Tiede B, Massague J, Kang Y. Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res. 2007;17(1):3–14.

    PubMed  CAS  Google Scholar 

  24. Soria B, Roche E, Berna G, Leon-Quinto T, Reig JA, Martin F. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes. 2000;49(2):157–62.

    PubMed  CAS  Google Scholar 

  25. Klug MG, Soonpaa MH, Koh GY, Field LJ. Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. J Clin Invest. 1996;98(1):216–24.

    PubMed  CAS  Google Scholar 

  26. Min JY, Yang Y, Converso KL, et al. Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J Appl Physiol. 2002;92(1):288–96.

    PubMed  Google Scholar 

  27. Kim JH, Auerbach JM, Rodriguez-Gomez JA, et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature. 2002;418(6893):50–6.

    PubMed  CAS  Google Scholar 

  28. Bradley JA, Bolton EM, Pedersen RA. Stem cell medicine encounters the immune system. Nat Rev Immunol. 2002;2(11): 859–71.

    PubMed  CAS  Google Scholar 

  29. Nussbaum J, Minami E, Laflamme MA, et al. Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J. 2007;21(7):1345–57.

    PubMed  CAS  Google Scholar 

  30. Swijnenburg RJ, Tanaka M, Vogel H, et al. Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation. 2005;112(9 Suppl):I166–72.

    PubMed  Google Scholar 

  31. Modo M, Rezaie P, Heuschling P, Patel S, Male DK, Hodges H. Transplantation of neural stem cells in a rat model of stroke: assessment of short-term graft survival and acute host immunological response. Brain Res. 2002;958(1):70–82.

    PubMed  CAS  Google Scholar 

  32. Zheng XS, Yang XF, Liu WG, Pan DS, Hu WW, Li G. Transplantation of neural stem cells into the traumatized brain induces lymphocyte infiltration. Brain Inj. 2007;21(3):275–8.

    PubMed  Google Scholar 

  33. Kofidis T, deBruin JL, Tanaka M, et al. They are not stealthy in the heart: embryonic stem cells trigger cell infiltration, humoral and T-lymphocyte-based host immune response. Eur J Cardiothorac Surg. 2005;28(3):461–6.

    PubMed  Google Scholar 

  34. Fandrich F, Dresske B, Bader M, Schulze M. Embryonic stem cells share immune-privileged features relevant for tolerance induction. J Mol Med. 2002;80(6):343–50.

    PubMed  Google Scholar 

  35. Li L, Baroja ML, Majumdar A, et al. Human embryonic stem cells possess immune-privileged properties. Stem Cells. 2004;22(4):448–56.

    PubMed  CAS  Google Scholar 

  36. Burt RK, Verda L, Kim DA, Oyama Y, Luo K, Link C. Embryonic stem cells as an alternate marrow donor source: engraftment without graft-versus-host disease. J Exp Med. 2004;199(7): 895–904.

    PubMed  CAS  Google Scholar 

  37. Streilein JW. Unraveling immune privilege. Science. 1995;270(5239):1158–9.

    PubMed  CAS  Google Scholar 

  38. O’Connell J, Bennett MW, O’Sullivan GC, Collins JK, Shanahan F. The Fas counterattack: cancer as a site of immune privilege. Immunol Today. 1999;20(1):46–52.

    PubMed  Google Scholar 

  39. Kennea NL, Stratou C, Naparus A, Fisk NM, Mehmet H. Functional intrinsic and extrinsic apoptotic pathways in human fetal mesenchymal stem cells. Cell Death Differ. 2005;12(11): 1439–41.

    PubMed  CAS  Google Scholar 

  40. Drukker M, Benvenisty N. The immunogenicity of human embryonic stem-derived cells. Trends Biotechnol. 2004;22(3):136–41.

    PubMed  CAS  Google Scholar 

  41. Drukker M, Katz G, Urbach A, et al. Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci U S A. 2002;99(15):9864–9.

    PubMed  CAS  Google Scholar 

  42. Draper JS, Pigott C, Thomson JA, Andrews PW. Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat. 2002;200(Pt 3):249–58.

    PubMed  CAS  Google Scholar 

  43. Magliocca JF, Held IK, Odorico JS. Undifferentiated murine embryonic stem cells cannot induce portal tolerance but may possess immune privilege secondary to reduced major histocompatibility complex antigen expression. Stem Cells Dev. 2006;15(5): 707–17.

    PubMed  CAS  Google Scholar 

  44. Yang XF, Mirkovic D, Zhang S, et al. Processing sites are different in the generation of HLA-A2.1-restricted, T cell reactive tumor antigen epitopes and viral epitopes. Int J Immunopathol Pharmacol. 2006;19(4):853–70.

    PubMed  CAS  Google Scholar 

  45. Yang F, Chen IH, Xiong Z, Yan Y, Wang H, Yang XF. Model of stimulation-responsive splicing and strategies in identification of immunogenic isoforms of tumor antigens and autoantigens. Clin Immunol. 2006;121(2):121–33.

    PubMed  CAS  Google Scholar 

  46. Mullally A, Ritz J. Beyond HLA: the significance of genomic variation for allogeneic hematopoietic stem cell transplantation. Blood. 2007;109(4):1355–62.

    PubMed  CAS  Google Scholar 

  47. Oh SK, Kim HS, Park YB, et al. Methods for expansion of human embryonic stem cells. Stem Cells. 2005;23(5):605–9.

    PubMed  CAS  Google Scholar 

  48. Heng BC, Haider HK, Sim EK, Cao T, Tong GQ, Ng SC. Comments about possible use of human embryonic stem cell-derived cardiomyocytes to direct autologous adult stem cells into the cardiomyogenic lineage. Acta Cardiol. 2005;60(1):7–12.

    PubMed  Google Scholar 

  49. Mitalipov SM. Genomic imprinting in primate embryos and embryonic stem cells. Reprod Fertil Dev. 2006;18(8):817–21.

    PubMed  CAS  Google Scholar 

  50. Miyake K. Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin Immunol. 2007;19(1):3–10.

    PubMed  CAS  Google Scholar 

  51. Matzinger P. The danger model: a renewed sense of self. Science 2002;296(5566):301–5.

    PubMed  CAS  Google Scholar 

  52. Rock KL, York IA, Goldberg AL. Post-proteasomal antigen processing for major histocompatibility complex class I presentation. Nat Immunol. 2004;5(7):670–7.

    PubMed  CAS  Google Scholar 

  53. Kloetzel PM. Generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPPII. Nat Immunol. 2004;5(7):661–9.

    PubMed  CAS  Google Scholar 

  54. Geier E, Pfeifer G, Wilm M, et al. A giant protease with potential to substitute for some functions of the proteasome. Science. 1999;283(5404):978–81.

    PubMed  CAS  Google Scholar 

  55. Luckey CJ, King GM, Marto JA, et al. Proteasomes can either generate or destroy MHC class I epitopes: evidence for nonproteasomal epitope generation in the cytosol. J Immunol. 1998;161(1):112–21.

    PubMed  CAS  Google Scholar 

  56. Yang F, Yang XF. New concepts in tumor antigens: their significance in future immunotherapies for tumors. Cell Mol Immunol. 2005;2(5):331–41.

    PubMed  CAS  Google Scholar 

  57. Altuvia Y, Margalit H. Sequence signals for generation of antigenic peptides by the proteasome: implications for proteasomal cleavage mechanism. J Mol Biol. 2000;295(4):879–90.

    PubMed  CAS  Google Scholar 

  58. Uebel S, Kraas W, Kienle S, Wiesmuller KH, Jung G, Tampe R. Recognition principle of the TAP transporter disclosed by combinatorial peptide libraries. Proc Natl Acad Sci U S A. 1997;94(17):8976–81.

    PubMed  CAS  Google Scholar 

  59. Daniel S, Brusic V, Caillat-Zucman S, et al. Relationship between peptide selectivities of human transporters associated with antigen processing and HLA class I molecules. J Immunol. 1998;161(2):617–24.

    PubMed  CAS  Google Scholar 

  60. Yotnda P, Firat H, Garcia-Pons F, et al. Cytotoxic T cell response against the chimeric p210 BCR-ABL protein in patients with chronic myelogenous leukemia. J Clin Invest. 1998;101(10):2290–6.

    PubMed  CAS  Google Scholar 

  61. Pinilla-Ibarz J, Cathcart K, Scheinberg DA. CML vaccines as a paradigm of the specific immunotherapy of cancer. Blood Rev. 2000;14(2):111–20.

    PubMed  CAS  Google Scholar 

  62. Zorn E, Orsini E, Wu CJ, Stein B, Chillemi A, Canning C, et al. A CD4+ T cell clone selected from a CML patient after donor lymphocyte infusion recognizes BCR-ABL breakpoint peptides but not tumor cells. Transplantation. 2001;71(8):1131–7.

    PubMed  CAS  Google Scholar 

  63. Clark RE, Dodi IA, Hill SC, et al. Direct evidence that leukemic cells present HLA-associated immunogenic peptides derived from the BCR-ABL b3a2 fusion protein. Blood. 2001;98(10): 2887–93.

    PubMed  CAS  Google Scholar 

  64. Zinkernagel RM, Hengartner H. Regulation of the immune response by antigen. Science. 2001;293(5528):251–3.

    PubMed  CAS  Google Scholar 

  65. Shlomchik MJ, Craft JE, Mamula MJ. From T to B and back again: positive feedback in systemic autoimmune disease. Nat Rev Immunol. 2001;1(2):147–53.

    PubMed  CAS  Google Scholar 

  66. Sahin U, Tureci O, Schmitt H, et al. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci U S A. 1995;92(25):11810–3.

    PubMed  CAS  Google Scholar 

  67. Preuss KD, Zwick C, Bormann C, Neumann F, Pfreundschuh M. Analysis of the B-cell repertoire against antigens expressed by human neoplasms. Immunol Rev. 2002;188:43–50.

    PubMed  CAS  Google Scholar 

  68. Yan Y, Phan L, Yang F, et al. A novel mechanism of alternative promoter and splicing regulates the epitope generation of tumor antigen CML66-L. J Immunol. 2004;172(1):651–60.

    PubMed  CAS  Google Scholar 

  69. De Smet C, De Backer O, Faraoni I, Lurquin C, Brasseur F, Boon T. The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide demethylation. Proc Natl Acad Sci U S A. 1996;93(14):7149–53.

    PubMed  Google Scholar 

  70. Gure AO, Wei IJ, Old LJ, Chen YT. The SSX gene family: characterization of 9 complete genes. Int J Cancer. 2002;101(5):448–53.

    PubMed  CAS  Google Scholar 

  71. Chen Y. SEREX review. Cancer Immunity 2004; http://www. cancerimmunity.org/SEREX/.

  72. Yang XF, Wu CJ, Chen L, et al. CML28 is a broadly immunogenic antigen, which is overexpressed in tumor cells. Cancer Res. 2002;62(19):5517–22.

    PubMed  CAS  Google Scholar 

  73. Ng B, Yang F, Huston DP, et al. Increased noncanonical splicing of autoantigen transcripts provides the structural basis for expression of untolerized epitopes. J Allergy Clin Immunol. 2004;114(6):1463–70.

    PubMed  CAS  Google Scholar 

  74. Xiong Z, Shaibani A, Li YP, et al. Alternative splicing factor ASF/SF2 is down regulated in inflamed muscle. J Clin Pathol. 2006;59(8):855–61.

    PubMed  CAS  Google Scholar 

  75. Wu CJ, Yang XF, McLaughlin S, et al. Detection of a potent humoral response associated with immune-induced remission of chronic myelogenous leukemia. J Clin Invest. 2000;106(5): 705–14.

    PubMed  CAS  Google Scholar 

  76. Yang XF, Wu CJ, McLaughlin S, et al. CML66, a broadly immunogenic tumor antigen, elicits a humoral immune response associated with remission of chronic myelogenous leukemia. Proc Natl Acad Sci U S A. 2001;98(13):7492–7.

    PubMed  CAS  Google Scholar 

  77. Xiong Z, Liu E, Yan Y, et al. An unconventional antigen translated by a novel internal ribosome entry site elicits antitumor humoral immune reactions. J Immunol. 2006;177(7):4907–16.

    PubMed  CAS  Google Scholar 

  78. Xiong Z, Liu E, Yan Y, Silver RT, Yang F, Chen IH, et al. A novel unconventional antigen, MPD5, elicits anti-tumor humoral immune responses in a subset of patients with polycythemia vera. Int J Immunopathol Pharmacol. 2007;20(2):375–82.

    Google Scholar 

  79. Xiong Z, Yan Y, Liu E, et al. Novel tumor antigens elicit anti-tumor humoral immune reactions in a subset of patients with polycythemia vera. Clin Immunol. 2007;122(3):279–87.

    PubMed  CAS  Google Scholar 

  80. Grusby MJ, Auchincloss H, Jr., Lee R, et al. Mice lacking major histocompatibility complex class I and class II molecules. Proc Natl Acad Sci U S A. 1993;90(9):3913–7.

    PubMed  CAS  Google Scholar 

  81. Munsie MJ, Michalska AE, O’Brien CM, Trounson AO, Pera MF, Mountford PS. Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr Biol. 2000;10(16):989–92.

    PubMed  CAS  Google Scholar 

  82. Hwang WS, Ryu YJ, Park JH, et al. Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocyst. Science 2004;303(5664):1669–74.

    PubMed  CAS  Google Scholar 

  83. Lanza RP, Chung HY, Yoo JJ, et al. Generation of histocompatible tissues using nuclear transplantation. Nat Biotechnol. 2002;20(7):689–96.

    PubMed  CAS  Google Scholar 

  84. Morse MC, Bleau G, Dabhi VM, et al. The COI mitochondrial gene encodes a minor histocompatibility antigen presented by H2-M3. J Immunol. 1996;156(9):3301–7.

    PubMed  CAS  Google Scholar 

  85. Simpson E, Roopenian D. Minor histocompatibility antigens. Curr Opin Immunol. 1997;9(5):655–61.

    PubMed  CAS  Google Scholar 

  86. Li M, Pevny L, Lovell-Badge R, Smith A. Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr Biol. 1998;8(17):971–4.

    PubMed  CAS  Google Scholar 

  87. Steptoe RJ, Ritchie JM, Harrison LC. Transfer of hematopoietic stem cells encoding autoantigen prevents autoimmune diabetes. J Clin Invest. 2003;111(9):1357–63.

    PubMed  CAS  Google Scholar 

  88. Shevach EM. Certified professionals: CD4(+)CD25(+) suppressor T cells. J Exp Med. 2001;193(11):F41–6.

    PubMed  CAS  Google Scholar 

  89. Zorn E. CD4+CD25+ regulatory T cells in human hematopoietic cell transplantation. Semin Cancer Biol. 2006;16(2):150–9.

    PubMed  CAS  Google Scholar 

  90. Yan Y, Chen Y, Yang F, et al. HLA-A2.1-restricted T cells react to SEREX-defined tumor antigen CML66L and are suppressed by CD4+CD25+ regulatory T cells. Int J Immunopathol Pharmacol. 2007;20(1):75–89.

    PubMed  CAS  Google Scholar 

  91. Hambach L, Goulmy E. Immunotherapy of cancer through targeting of minor histocompatibility antigens. Curr Opin Immunol. 2005;17(2):202–10.

    PubMed  CAS  Google Scholar 

  92. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8.

    PubMed  CAS  Google Scholar 

  93. Al-Hajj M, Clarke MF. Self-renewal and solid tumor stem cells. Oncogene. 2004;23(43):7274–82.

    PubMed  CAS  Google Scholar 

  94. Hemmati HD, Nakano I, Lazareff JA, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A. 2003;100(25):15178–83.

    PubMed  CAS  Google Scholar 

  95. Lou H, Dean M. Targeted therapy for cancer stem cells: the patched pathway and ABC transporters. Oncogene. 2007;26(9): 1357–60.

    PubMed  CAS  Google Scholar 

  96. Tunici P, Irvin D, Liu G, et al. Brain tumor stem cells: new targets for clinical treatments? Neurosurg Focus. 2006;20(4):E27.

    PubMed  Google Scholar 

  97. Yilmaz OH, Valdez R, Theisen BK, et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature. 2006;441(7092):475–82.

    PubMed  CAS  Google Scholar 

  98. Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21(2):137–48.

    PubMed  CAS  Google Scholar 

  99. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329–60.

    PubMed  CAS  Google Scholar 

  100. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991–8.

    PubMed  CAS  Google Scholar 

  101. Schreiber RD. Cancer vaccines 2004 opening address: the molecular and cellular basis of cancer immunosurveillance and immunoediting. Cancer Immun. 2005;5 Suppl 1:1.

    PubMed  Google Scholar 

  102. Schreiber H. Tumor immunology. 5th ed. Philadelphia: Lippincott-Raven Publishers; 2003.

    Google Scholar 

  103. Ke X, Zhao L, Gao Z, et al. Higher rates of t(11;18) in Chinese patients with transformed type of MALT lymphoma suggest novel pathways for progression of the disease. Leuk Lymphoma. 2007;48(11):2157–66.

    PubMed  CAS  Google Scholar 

  104. Grandics P. The cancer stem cell: evidence for its origin as an injured autoreactive T cell. Mol Cancer. 2006;5:6.

    PubMed  Google Scholar 

  105. van der Bruggen P, Traversari C, Chomez P, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991;254(5038):1643–7.

    PubMed  Google Scholar 

  106. Boon T, van der Bruggen P. Human tumor antigens recognized by T lymphocytes. J Exp Med. 1996;183(3):725–9.

    PubMed  CAS  Google Scholar 

  107. Boon T, Van den Eynde, BJ. Cancer vaccines: Cancer antigens. Shared tumor-specific antigens. In: Rosenberg S, editor. Principles and practice of the biologic therapy of cancer. 3rd ed. Philadelphia,: Lippincott Williams and Wilkins; 2000. pp. 493–504.

    Google Scholar 

  108. Traversari C, van der Bruggen P, Luescher IF, et al. A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J Exp Med. 1992;176(5):1453–7.

    PubMed  CAS  Google Scholar 

  109. Sahin U, Tureci O, Pfreundschuh M. Serological identification of human tumor antigens. Curr Opin Immunol. 1997;9(5): 709–16.

    PubMed  CAS  Google Scholar 

  110. Tureci O, Sahin U, Pfreundschuh M. Serological analysis of human tumor antigens: molecular definition and implications. Mol Med Today. 1997;3(8):342–9.

    PubMed  CAS  Google Scholar 

  111. Rosenberg SA. Development of effective immunotherapy for the treatment of patients with cancer. J Am Coll Surg. 2004;198(5):685–96.

    PubMed  Google Scholar 

  112. Shastri N, Schwab S, Serwold T. Producing nature’s gene-chips: the generation of peptides for display by MHC class I molecules. Annu Rev Immunol. 2002;20:463–93.

    PubMed  CAS  Google Scholar 

  113. Scanlan MJ, Jager D. Challenges to the development of antigen-specific breast cancer vaccines. Breast Cancer Res. 2001;3(2): 95–8.

    PubMed  CAS  Google Scholar 

  114. Scanlan MJ, Simpson AJ, Old LJ.. The cancer/testis genes: review, standardization, and commentary. Cancer Immun. 2004;4:1.

    PubMed  Google Scholar 

  115. Xiong Z, Liu E, Yan Y, Silver RT, Zhang S, Yang Y, et al. Novel unconventional and conventional antigens elicit anti-tumor humoral immune reactions in a subset of patients with polycythemia vera. Blood 2005;Submission.

    Google Scholar 

  116. Wang RF, Rosenberg SA. Human tumor antigens recognized by T lymphocytes: implications for cancer therapy. J Leukoc Biol. 1996;60(3):296–309.

    PubMed  CAS  Google Scholar 

  117. Schirmbeck R, Riedl P, Fissolo N, Lemonnier FA, Bertoletti A, Reimann J. Translation from cryptic reading frames of DNA vaccines generates an extended repertoire of immunogenic, MHC class I-restricted epitopes. J Immunol. 2005;174(8): 4647–56.

    PubMed  CAS  Google Scholar 

  118. Wang RF, Johnston SL, Zeng G, Topalian SL, Schwartzentruber DJ, Rosenberg SA. A breast and melanoma-shared tumor antigen: T cell responses to antigenic peptides translated from different open reading frames. J Immunol. 1998;161(7):3598–606.

    PubMed  CAS  Google Scholar 

  119. Mandic M, Almunia C, Vicel S, et al. The alternative open reading frame of LAGE-1 gives rise to multiple promiscuous HLA-DR-restricted epitopes recognized by T-helper 1-type tumor-reactive CD4+ T cells. Cancer Res. 2003;63(19):6506–15.

    PubMed  CAS  Google Scholar 

  120. Slager EH, Borghi M, van der Minne CE, et al. CD4+ Th2 cell recognition of HLA-DR-restricted epitopes derived from CAMEL: a tumor antigen translated in an alternative open reading frame. J Immunol. 2003;170(3):1490–7.

    PubMed  CAS  Google Scholar 

  121. Copland M, Fraser AR, Harrison SJ, Holyoake TL. Targeting the silent minority: emerging immunotherapeutic strategies for eradication of malignant stem cells in chronic myeloid leukaemia. Cancer Immunol Immunother. 2005;54(4):297–306.

    PubMed  CAS  Google Scholar 

  122. Miller JF, Basten A. Mechanisms of tolerance to self. Curr Opin Immunol. 1996;8(6):815–21.

    PubMed  CAS  Google Scholar 

  123. Totsuka T, Kanai T, Makita S, et al. Regulation of murine chronic colitis by CD4+CD25- programmed death-1+ T cells. Eur J Immunol. 2005;35(6):1773–85.

    PubMed  CAS  Google Scholar 

  124. Bach JF. Regulatory T cells under scrutiny. Nat Rev Immunol. 2003;3(3):189–98.

    PubMed  Google Scholar 

  125. Bienvenu B, Martin B, Auffray C, Cordier C, Becourt C, Lucas B. Peripheral CD8+CD25+ T lymphocytes from MHC class II-deficient mice exhibit regulatory activity. J Immunol. 2005;175(1):246–53.

    PubMed  CAS  Google Scholar 

  126. Cosmi L, Liotta F, Lazzeri E, et al. Human CD8+CD25+ thymocytes share phenotypic and functional features with CD4+CD25+ regulatory thymocytes. Blood 2003;102(12): 4107–14.

    PubMed  CAS  Google Scholar 

  127. Zhang ZX, Young K, Zhang L. CD3+CD4-CD8- alphabeta-TCR+ T cell as immune regulatory cell. J Mol Med. 2001;79(8): 419–27.

    PubMed  CAS  Google Scholar 

  128. Schwartz RH. Natural regulatory T cells and self-tolerance. Nat Immunol. 2005;6(4):327–30.

    PubMed  CAS  Google Scholar 

  129. Fontenot JD, Rudensky AY. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol. 2005;6(4):331–7.

    PubMed  CAS  Google Scholar 

  130. von Boehmer H. Mechanisms of suppression by suppressor T cells. Nat Immunol. 2005;6(4):338–44.

    Google Scholar 

  131. Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol. 2005;6(4):345–52.

    PubMed  CAS  Google Scholar 

  132. Jiang H, Chess L. An integrated view of suppressor T cell subsets in immunoregulation. J Clin Invest. 2004;114(9):1198–208.

    PubMed  CAS  Google Scholar 

  133. Horwitz D, Gray JD, Zheng SG. The potential of human regulatory T cells generated ex vivo as a treatment for lupus and other chronic inflammatory diseases. Arthritis Res. 2002;4(4):241–6.

    PubMed  Google Scholar 

  134. Akbari O, Stock P, DeKruyff RH, Umetsu DT. Role of regulatory T cells in allergy and asthma. Curr Opin Immunol. 2003;15(6):627–33.

    PubMed  CAS  Google Scholar 

  135. Taylor PA, Lees CJ, Blazar BR. The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood. 2002;99(10): 3493–9.

    PubMed  CAS  Google Scholar 

  136. Taams LS, Akbar AN. Peripheral generation and function of CD4+CD25+ regulatory T cells. Curr Top Microbiol Immunol. 2005;293:115–31.

    PubMed  CAS  Google Scholar 

  137. Wraith DC, Nicolson KS, Whitley NT. Regulatory CD4+ T cells and the control of autoimmune disease. Curr Opin Immunol. 2004;16(6):695–701.

    PubMed  CAS  Google Scholar 

  138. Mills KH. Regulatory T cells: friend or foe in immunity to infection? Nat Rev Immunol. 2004;4(11):841–55.

    PubMed  CAS  Google Scholar 

  139. Goleva E, Cardona ID, Ou LS, Leung DY. Factors that regulate naturally occurring T regulatory cell-mediated suppression. J Allergy Clin Immunol. 2005;116(5):1094–100.

    PubMed  CAS  Google Scholar 

  140. Fantini MC, Dominitzki S, Rizzo A, Neurath MF, Becker C. In vitro generation of CD4+CD25+ regulatory cells from murine naive T cells. Nat Protoc. 2007;2(7):1789–94.

    PubMed  CAS  Google Scholar 

  141. Akdis M, Blaser K, Akdis CA. T regulatory cells in allergy: novel concepts in the pathogenesis, prevention, and treatment of allergic diseases. J Allergy Clin Immunol. 2005;116(5):961–8; quiz 9.

    PubMed  CAS  Google Scholar 

  142. Wing K, Fehervari Z, Sakaguchi S. Emerging possibilities in the development and function of regulatory T cells. Int Immunol. 2006;18(7):991–1000.

    PubMed  CAS  Google Scholar 

  143. Ochs HD, Ziegler SF, Torgerson TR. FOXP3 acts as a rheostat of the immune response. Immunol Rev. 2005;203:156–64.

    PubMed  CAS  Google Scholar 

  144. Kanamaru F, Youngnak P, Hashiguchi M, et al. Costimulation via glucocorticoid-induced TNF receptor in both conventional and CD25+ regulatory CD4+ T cells. J Immunol. 2004;172(12):7306–14.

    PubMed  CAS  Google Scholar 

  145. Ruprecht CR, Gattorno M, Ferlito F, et al. Coexpression of CD25 and CD27 identifies FoxP3+ regulatory T cells in inflamed synovia. J Exp Med. 2005;201(11):1793–803.

    PubMed  CAS  Google Scholar 

  146. Deaglio S, Dwyer KM, Gao W, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med.;204(6):1257–65.

    Google Scholar 

  147. Suffia I, Reckling SK, Salay G, Belkaid Y. A role for CD103 in the retention of CD4+CD25+ Treg and control of Leishmania major infection. J Immunol. 2005;174(9):5444–55.

    PubMed  CAS  Google Scholar 

  148. Liu W, Putnam AL, Xu-Yu Z, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med. 2006;203(7):1701–11.

    PubMed  CAS  Google Scholar 

  149. Oberg HH, Wesch D, Grussel S, Rose-John S, Kabelitz D. Differential expression of CD126 and CD130 mediates different STAT-3 phosphorylation in CD4+CD25- and CD25high regulatory T cells. Int Immunol. 2006;18(4):555–63.

    PubMed  CAS  Google Scholar 

  150. Iellem A, Mariani M, Lang R, et al. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp Med. 2001;194(6):847–53.

    PubMed  CAS  Google Scholar 

  151. Hoffmann P, Eder R, Kunz-Schughart LA, Andreesen R, Edinger M. Large-scale in vitro expansion of polyclonal human CD4(+)CD25high regulatory T cells. Blood. 2004;104(3): 895–903.

    PubMed  CAS  Google Scholar 

  152. Annunziato F, Cosmi L, Liotta F, et al. Phenotype, localization, and mechanism of suppression of CD4(+)CD25(+) human thymocytes. J Exp Med. 2002;196(3):379–87.

    PubMed  CAS  Google Scholar 

  153. Maggi E, Cosmi L, Liotta F, Romagnani P, Romagnani S, Annunziato F. Thymic regulatory T cells. Autoimmun Rev. 2005;4(8):579–86.

    PubMed  CAS  Google Scholar 

  154. Holm TL, Nielsen J, Claesson MH. CD4+CD25+ regulatory T cells: I. Phenotype and physiology. Apmis. 2004;112(10):629–41.

    PubMed  CAS  Google Scholar 

  155. Yi H, Zhen Y, Jiang L, Zheng J, Zhao Y. The phenotypic characterization of naturally occurring regulatory CD4+CD25+ T cells. Cell Mol Immunol. 2006;3(3):189–95.

    PubMed  CAS  Google Scholar 

  156. Roncarolo MG, Battaglia M. Regulatory T-cell immunotherapy for tolerance to self antigens and alloantigens in humans. Nat Rev Immunol. 2007;7(8):585–98.

    PubMed  CAS  Google Scholar 

  157. Setoguchi R, Hori S, Takahashi T, Sakaguchi S. Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med. 2005;201(5):723–35.

    PubMed  CAS  Google Scholar 

  158. Kumar V. Homeostatic control of immunity by TCR peptide-specific Tregs. J Clin Invest. 2004;114(9):1222–6.

    PubMed  CAS  Google Scholar 

  159. Camara NO, Sebille F, Lechler RI. Human CD4+CD25+ regulatory cells have marked and sustained effects on CD8+ T cell activation. Eur J Immunol. 2003;33(12):3473–83.

    PubMed  CAS  Google Scholar 

  160. Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B. Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res. 2003;9(2):606–12.

    PubMed  Google Scholar 

  161. Janssens W, Carlier V, Wu B, VanderElst L, Jacquemin MG, Saint-Remy JM. CD4+CD25+ T cells lyse antigen-presenting B cells by Fas-Fas ligand interaction in an epitope-specific manner. J Immunol. 2003;171(9):4604–12.

    PubMed  CAS  Google Scholar 

  162. Lewkowicz P, Lewkowicz N, Sasiak A, Tchorzewski H. Lipopolysaccharide-activated CD4+CD25+ T regulatory cells inhibit neutrophil function and promote their apoptosis and death. J Immunol. 2006;177(10):7155–63.

    PubMed  CAS  Google Scholar 

  163. Gondek DC, Lu LF, Quezada SA, Sakaguchi S, Noelle RJ. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol. 2005;174(4):1783–6.

    PubMed  CAS  Google Scholar 

  164. Grossman WJ, Verbsky JW, Barchet W, Colonna M, Atkinson JP, Ley TJ. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity. 2004;21(4): 589–601.

    PubMed  CAS  Google Scholar 

  165. Kitazawa Y, Fujino M, Wang Q, et al. Involvement of the programmed death-1/programmed death-1 ligand pathway in CD4+CD25+ regulatory T-cell activity to suppress alloimmune responses. Transplantation. 2007;83(6):774–82.

    PubMed  CAS  Google Scholar 

  166. Yang XF. Immunology of stem cells and cancer stem cells. Cell Mol Immunol. 2007;4(3):161–71.

    PubMed  CAS  Google Scholar 

  167. Bluestone JA, Tang Q. Therapeutic vaccination using CD4+CD25+ antigen-specific regulatory T cells. Proc Natl Acad Sci U S A. 2004;101 Suppl 2:14622–6.

    PubMed  CAS  Google Scholar 

  168. Wu CJ, Biernacki M, Kutok JL, et al. Graft-versus-leukemia target antigens in chronic myelogenous leukemia are expressed on myeloid progenitor cells. Clin Cancer Res. 2005;11(12): 4504–11.

    PubMed  CAS  Google Scholar 

  169. Yang XF. Factors regulating apoptosis and homeostasis of CD4+CD25highFOXP3+ regulatory T cells are new therapeutic targets. Front Biosci. 2008;13:1472–99.

    PubMed  CAS  Google Scholar 

  170. Chen X, Armstrong MA, Li G. Mesenchymal stem cells in immunoregulation. Immunol Cell Biol. 2006;84(5):413–21.

    PubMed  CAS  Google Scholar 

  171. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    PubMed  CAS  Google Scholar 

  172. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418(6893):41–9.

    PubMed  CAS  Google Scholar 

  173. Krampera M, Pasini A, Pizzolo G, Cosmi L, Romagnani S, Annunziato F. Regenerative and immunomodulatory potential of mesenchymal stem cells. Curr Opin Pharmacol. 2006;6(4): 435–41.

    PubMed  CAS  Google Scholar 

  174. Beyer Nardi N, da Silva Meirelles L. Mesenchymal stem cells: isolation, in vitro expansion and characterization. Handb Exp Pharmacol. 2006(174):249–82.

    PubMed  Google Scholar 

  175. Tremain N, Korkko J, Ibberson D, Kopen GC, DiGirolamo C, Phinney DG. MicroSAGE analysis of 2,353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages. Stem Cells. 2001;19(5):408–18.

    PubMed  CAS  Google Scholar 

  176. Phinney DG, Kopen G, Isaacson RL, Prockop DJ. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J Cell Biochem. 1999;72(4):570–85.

    PubMed  CAS  Google Scholar 

  177. Devine SM, Bartholomew AM, Mahmud N, et al. Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol. 2001;29(2):244–55.

    PubMed  CAS  Google Scholar 

  178. Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol. 2000;109(1):235–42.

    PubMed  CAS  Google Scholar 

  179. in’;t Anker PS, Noort WA, Scherjon SA, et al. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica. 2003;88(8):845–52.

    Google Scholar 

  180. Lee RH, Kim B, Choi I, et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem. 2004;14(4–6): 311–24.

    PubMed  CAS  Google Scholar 

  181. Shih DT, Lee DC, Chen SC, et al. Isolation and characterization of neurogenic mesenchymal stem cells in human scalp tissue. Stem Cells. 2005;23(7):1012–20.

    PubMed  CAS  Google Scholar 

  182. Trubiani O, Di Primio R, Traini T, et al. Morphological and cytofluorimetric analysis of adult mesenchymal stem cells expanded ex vivo from periodontal ligament. Int J Immunopathol Pharmacol. 2005;18(2):213–21.

    PubMed  CAS  Google Scholar 

  183. In’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells. 2004;22(7):1338–45.

    Google Scholar 

  184. Uccelli A, Moretta L, Pistoia V. Immunoregulatory function of mesenchymal stem cells. Eur J Immunol. 2006;36(10):2566–73.

    PubMed  CAS  Google Scholar 

  185. Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99(10): 3838–43.

    PubMed  Google Scholar 

  186. Krampera M, Glennie S, Dyson J, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood. 2003;101(9):3722–9.

    PubMed  CAS  Google Scholar 

  187. Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol. 2002;30(1):42–8.

    PubMed  Google Scholar 

  188. Lazarus HM, Koc ON, Devine SM, et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant. 2005;11(5):389–98.

    PubMed  Google Scholar 

  189. Le Blanc K, Rasmusson I, Sundberg B, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004;363(9419):1439–41.

    PubMed  Google Scholar 

  190. Zappia E, Casazza S, Pedemonte E, et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood. 2005;106(5):1755–61.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Feng Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yang, XF., Wang, H. (2009). Immune Responses to Stem Cells and Cancer Stem Cells. In: Rajasekhar, V.K., Vemuri, M.C. (eds) Regulatory Networks in Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-60327-227-8_38

Download citation

Publish with us

Policies and ethics