Skip to main content

Hepatic Stem Cells and Liver Development

  • Chapter
Regulatory Networks in Stem Cells

Abstract

The liver consists of many cell types with specialized functions. Hepatocytes are among the main players in the organ, and therefore are the most vulnerable cells to damage. Since they are not everlasting cells, they need to be replenished throughout life. Although the capacity of hepatocytes to contribute to their own maintenance has long been recognized, recent studies have indicated the presence of both intrahepatic and extrahepatic stem/progenitor cell populations that serve to maintain the normal organ and to regenerate damaged parenchyma in response to a variety of insults. The intrahepatic compartment most likely derives primarily from the biliary tree, particularly the most proximal branches, that is, the canals of Hering and smallest ductules. The extrahepatic compartment is at least in part derived from diverse populations of cells from the bone marrow. Embryonic stem cells (ES) are considered as a part of the extrahepatic compartment. Due to their pluripotent capabilities, ES cell–derived cells form a potential future source of hepatocytes, to replace or restore hepatic tissues that have been damaged by disease or injury. Progressing knowledge about stem cells in the liver would allow a better understanding of the mechanisms of hepatic homeostasis and regeneration. Although a human stem cell–derived cell type equivalent to primary hepatocytes does not yet exist, the promising results obtained with extrahepatic stem cells would open the way to cell-based therapy for liver diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee WM. Acute liver failure. N Engl J Med. 1993;329:1862–72.

    Article  PubMed  CAS  Google Scholar 

  2. Michalopoulos GK. Liver regeneration. J Cell Physiol. 2007;213(2):286–300.

    Article  PubMed  CAS  Google Scholar 

  3. Michalopoulos GK, DeFrances MC. Liver regeneration. Science. 1997;276:60–66.

    Article  PubMed  CAS  Google Scholar 

  4. Fisher RA, Strom SC. Human hepatocyte transplantation: worldwide results. Transplantation. 2006;82:441–449.

    Article  PubMed  Google Scholar 

  5. Eleazar JA, Memeo L, Jhang JS, Mansukhani MM, Chin S, Park SM, Lefkowitch JH, et al. Progenitor cell expansion: an important source of hepatocyte regeneration in chronic hepatitis. J Hepatol. 2004;41:983–91.

    Article  PubMed  Google Scholar 

  6. Fotiadu A, Tzioufa V, Vrettou E, Koufogiannis D, Papadimitriou CS, Hytiroglou P. Progenitor cell activation in chronic viralhepatitis. Liver Int. 2004;24:268–74.

    Article  PubMed  Google Scholar 

  7. Paku S, Schnur J, Nagy P, Thorgeirsson SS. Origin and structural evolution of the early proliferating oval cells in rat liver. Am J Pathol. 2001;158:1313–23.

    Article  PubMed  CAS  Google Scholar 

  8. Farber E. Similarities in the sequence of early histological changes induced in the liver of the rat by ethionine, 2- acetylamino-fluorene, and 3’-methyl-4-dimethylaminoazobenzene. Cancer Res. 1956;16:142–8.

    PubMed  CAS  Google Scholar 

  9. Quintana-Bustamante O, Alvarez-Barrientos A, Kofman AV, Fabregat I, Bueren JA, Theise ND, Segovia JC. Hematopoietic mobilization in mice increases the presence of bone marrow-derived hepatocytes via in vivo cell fusion. Hepatology. 2006;43:108–16.

    Article  PubMed  Google Scholar 

  10. Kollet O, Shivtiel S, Chen YQ, Suriawinata J, Thung SN, Dabeva MD, Kahn J, et al. HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J Clin Invest. 2003;112:160–9.

    PubMed  CAS  Google Scholar 

  11. Soto-Gutierrez A, Navarro-Alvarez N, Rivas-Carrillo JD, Chen Y, Yamatsuji T, Tanaka N, Kobayashi N. Differentiation of human embryonic stem cells to hepatocytes using deleted variant of HGF and poly-amino-urethane-coated nonwoven polytetrafluoroethylene fabric. Cell Transplant. 2006;15:335–41.

    Article  PubMed  Google Scholar 

  12. Gouon-Evans V, Boussemart L, Gadue P, Nierhoff D, Koehler CI, Kubo A, Shafritz DA, et al. BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nat Biotechnol. 2006;24:1402–11.

    Article  PubMed  CAS  Google Scholar 

  13. Soto-Gutierrez A, Kobayashi N, Rivas-Carrillo JD, Navarro-Alvarez N, Zhao D, Okitsu T, Noguchi H, et al. Reversal of mouse hepatic failure using an implanted liver-assist device containing ES cell-derived hepatocytes. Nat Biotechnol. 2006;24: 1412–9.

    Article  PubMed  CAS  Google Scholar 

  14. Schachinger V, Assmus B, Honold J, Lehmann R, Hofmann WK, Martin H, Dimmeler S, et al. Normalization of coronary blood flow in the infarct-related artery after intracoronary progenitor cell therapy: intracoronary Doppler substudy of the TOPCARE-AMI trial. Clin Res Cardiol. 2006;95:13–22.

    Article  PubMed  CAS  Google Scholar 

  15. Assmus B, Schachinger V, Teupe C, Britten M, Lehmann R, Dobert N, Grunwald F, et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation. 2002;106:3009–17.

    Article  PubMed  Google Scholar 

  16. Tse HF, Kwong YL, Chan JK, Lo G, Ho CL, Lau CP. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet. 2003;361:47–9.

    Article  PubMed  Google Scholar 

  17. Morrison SJ, Shah NM, Anderson DJ. Regulatory mechanisms in stem cell biology. Cell. 1997;88:287–98.

    Article  PubMed  CAS  Google Scholar 

  18. Potten CS, Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development. 1990;110:1001–20.

    PubMed  CAS  Google Scholar 

  19. Lechler T, Fuchs E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature. 2005;437:275–80.

    Article  PubMed  CAS  Google Scholar 

  20. Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell. 2004;116:769–78.

    Article  PubMed  CAS  Google Scholar 

  21. Watt FM, Hogan BL. Out of Eden: stem cells and their niches. Science. 2000;287:1427–30.

    Article  PubMed  CAS  Google Scholar 

  22. Wurmser AE, Palmer TD, Gage FH. Neuroscience. Cellular interactions in the stem cell niche. Science. 2004;304:1253–5.

    Article  PubMed  CAS  Google Scholar 

  23. Whetton AD, Graham GJ. Homing and mobilization in the stem cell niche. Trends Cell Biol. 1999;9:233–38.

    Article  PubMed  CAS  Google Scholar 

  24. Yasoshima M, Tsuneyama K, Harada K, Sasaki M, Gershwin ME, Nakanuma Y. Immunohistochemical analysis of cell-matrix adhesion molecules and their ligands in the portal tracts of primary biliary cirrhosis. J Pathol. 2000;190:93–9.

    Article  PubMed  CAS  Google Scholar 

  25. Botchkarev VA, Botchkareva NV, Peters EM, Paus R. Epithelial growth control by neurotrophins: leads and lessons from the hair follicle. Prog Brain Res. 2004;146:493–513.

    Article  PubMed  CAS  Google Scholar 

  26. Wells JM, Melton DA. Vertebrate endoderm development. Annu Rev Cell Dev Biol. 1999;15:393–410.

    Article  PubMed  CAS  Google Scholar 

  27. Zhao R, Duncan SA. Embryonic development of the liver. Hepatology. 2005;41:956–67.

    Article  PubMed  CAS  Google Scholar 

  28. Jung J, Zheng M, Goldfarb M, Zaret KS. Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science. 1999;284:1998–2003.

    Article  PubMed  CAS  Google Scholar 

  29. Bossard P, Zaret KS. Repressive and restrictive mesodermal interactions with gut endoderm: possible relation to Meckel’s Diverticulum. Development. 2000;127:4915–23.

    PubMed  CAS  Google Scholar 

  30. Berg T, Rountree CB, Lee L, Estrada J, Sala FG, Choe A, Veltmaat JM, et al. Fibroblast growth factor 10 is critical for liver growth during embryogenesis and controls hepatoblast survival via beta-catenin activation. Hepatology. 2007;46(4):1187–97.

    Article  PubMed  CAS  Google Scholar 

  31. Steiling H, Wustefeld T, Bugnon P, Brauchle M, Fassler R, Teupser D, Thiery J, et al. Fibroblast growth factor receptor signalling is crucial for liver homeostasis and regeneration. Oncogene. 2003;22:4380–8.

    Article  PubMed  CAS  Google Scholar 

  32. Micsenyi A, Tan X, Sneddon T, Luo JH, Michalopoulos GK, Monga SP. Beta-catenin is temporally regulated during normal liver development. Gastroenterology. 2004;126:1134–46.

    Article  PubMed  CAS  Google Scholar 

  33. Dong PD, Munson CA, Norton W, Crosnier C, Pan X, Gong Z, Neumann CJ, et al. Fgf10 regulates hepatopancreatic ductal system patterning and differentiation. Nat Genet. 2007;39:397–402.

    Article  PubMed  CAS  Google Scholar 

  34. Sala FG, Curtis JL, Veltmaat JM, Del Moral PM, Le LT, Fairbanks TJ, Warburton D, et al. Fibroblast growth factor 10 is required for survival and proliferation but not differentiation of intestinal epithelial progenitor cells during murine colon development. Dev Biol. 2006;299:373–85.

    Article  PubMed  CAS  Google Scholar 

  35. Nyeng P, Norgaard GA, Kobberup S, Jensen J. FGF10 signaling controls stomach morphogenesis. Dev Biol. 2007;303:295–310.

    Article  PubMed  CAS  Google Scholar 

  36. Rossi JD, NR. Hogan, BL. Zaret, KS. Distinct mesodermal signals, including BMPs from the septum transversum mesenquyme, are require in combination for hepatogenesis from the endoderm. Genes Dev. 2001;15:1998–2001.

    Article  PubMed  CAS  Google Scholar 

  37. Lee CS, Friedman JR, Fulmer JT, Kaestner KH. The initiation of liver development is dependent on Foxa transcription factors. Nature. 2005;435:944–7.

    Article  PubMed  CAS  Google Scholar 

  38. Bossard P, Zaret KS. GATA transcription factors as potentiators of gut endoderm differentiation. Development. 1998;125:4909–17.

    PubMed  CAS  Google Scholar 

  39. Holtzinger A, Evans T. Gata4 regulates the formation of multiple organs. Development. 2005;132:4005–14.

    Article  PubMed  CAS  Google Scholar 

  40. Brill S, Zvibel I, Reid LM. Maturation-dependent changes in the regulation of liver-specific gene expression in embryonal versus adult primary liver cultures. Differentiation. 1995;59:95–102.

    Article  PubMed  CAS  Google Scholar 

  41. Tee LB, Kirilak Y, Huang WH, Smith PG, Morgan RH, Yeoh GC. Dual phenotypic expression of hepatocytes and bile ductular markers in developing and preneoplastic rat liver. Carcinogenesis. 1996;17:251–9.

    Article  PubMed  CAS  Google Scholar 

  42. Costa RH, Kalinichenko VV, Holterman AX, Wang X. Transcription factors in liver development, differentiation, and regeneration. Hepatology. 2003;38:1331–47.

    PubMed  CAS  Google Scholar 

  43. Zaret KS. Regulatory phases of early liver development: paradigms of organogenesis. Nat Rev Genet. 2002;3:499–512.

    Article  PubMed  CAS  Google Scholar 

  44. Lemaigre FP. Development of the biliary tract. Mech Dev. 2003;120:81–7.

    Article  PubMed  CAS  Google Scholar 

  45. Kodama Y, Hijikata M, Kageyama R, Shimotohno K, Chiba T. The role of notch signaling in the development of intrahepatic bile ducts. Gastroenterology. 2004;127:1775–86.

    Article  PubMed  CAS  Google Scholar 

  46. Tanimizu N, Miyajima A. Notch signaling controls hepatoblast differentiation by altering the expression of liver-enriched transcription factors. J Cell Sci. 2004;117:3165–74.

    Article  PubMed  CAS  Google Scholar 

  47. Clotman F, Lemaigre FP. Control of hepatic differentiation by activin/TGFbeta signaling. Cell Cycle. 2006;5:168–71.

    Article  PubMed  CAS  Google Scholar 

  48. Clotman F, Jacquemin P, Plumb-Rudewiez N, Pierreux CE, Van der Smissen P, Dietz HC, Courtoy PJ, et al. Control of liver cell fate decision by a gradient of TGF beta signaling modulated by Onecut transcription factors. Genes Dev. 2005;19:1849–54.

    Article  PubMed  CAS  Google Scholar 

  49. Blouin MJ, Lamy I, Loranger A, Noel M, Corlu A, Guguen-Guillouzo C, Marceau N. Specialization switch in differentiating embryonic rat liver progenitor cells in response to sodium butyrate. Exp Cell Res. 1995;217:22–30.

    Article  PubMed  CAS  Google Scholar 

  50. Van Eyken P, Sciot R, Desmet V. Intrahepatic bile duct development in the rat: a cytokeratin-immunohistochemical study. Lab Invest. 1988;59:52–9.

    PubMed  Google Scholar 

  51. Steiner JW, Perz ZM, Taichman LB. Cell population dynamics in the liver. a review of quantitative morphological techniques applied to the study of physiological and pathological growth. Exp Mol Pathol. 1966;5:146–81.

    Article  PubMed  CAS  Google Scholar 

  52. Bucher N. Regeneration of the liver and kidney. Boston: Little, Brown and Co., 1971.

    Google Scholar 

  53. Hashimoto M, Sanjo K. Functional capacity of the liver after two-thirds partial hepatectomy in the rat. Surgery. 1997;121:690–7.

    Article  PubMed  CAS  Google Scholar 

  54. Grisham J. A morphologic study of deoxyribonucleic acid synthesis and cell proliferation in regenerating rat liver; autoradiography with thymidine-H3. Cancer Res. 1962;22:842–9.

    PubMed  CAS  Google Scholar 

  55. Stocker EWH, Brau G. Capacity of regeneration in liver epithelia of juvenile, repeated partially hepatectomized rats. Autoradiographic studies after continous infusion of 3H-thymidine (author’s transl). Virchows Archiv. 1973;14:93–103.

    CAS  Google Scholar 

  56. Overturf K, al-Dhalimy M, Ou CN, Finegold M, Grompe M. Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes. Am J Pathol. 1997;151: 1273–80.

    PubMed  CAS  Google Scholar 

  57. Rudolph KL, Chang S, Millard M, Schreiber-Agus N, DePinho RA. Inhibition of experimental liver cirrhosis in mice by telomerase gene delivery. Science. 2000;287:1253–8.

    Article  PubMed  CAS  Google Scholar 

  58. Shafritz DA, Oertel M, Menthena A, Nierhoff D, Dabeva MD. Liver stem cells and prospects for liver reconstitution by transplanted cells. Hepatology. 2006;43:S89–98.

    Article  PubMed  CAS  Google Scholar 

  59. Hohme S, Hengstler JG, Brulport M, Schafer M, Bauer A, Gebhardt R, Drasdo D. Mathematical modelling of liver regeneration after intoxication with CCl(4). Chem Biol Interact. 2007;168: 74–93.

    Article  PubMed  CAS  Google Scholar 

  60. Sell S. Heterogeneity and plasticity of hepatocyte lineage cells. Hepatology. 2001;33:738–50.

    Article  PubMed  CAS  Google Scholar 

  61. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 2001;105:369–77.

    Article  PubMed  CAS  Google Scholar 

  62. Wilson JW, Leduc EH. Role of cholangioles in restoration of the liver of the mouse after dietary injury. J Pathol Bacteriol. 1958;76:441–9.

    Article  PubMed  CAS  Google Scholar 

  63. Abelev GI, Eraiser TL. Cellular aspects of alpha-fetoprotein reexpression in tumors. Semin Cancer Biol. 1999;9:95–107.

    Article  PubMed  CAS  Google Scholar 

  64. Shiojiri N, Takeshita K, Yamasaki H, Iwata T. Suppression of C/EBP alpha expression in biliary cell differentiation from hepatoblasts during mouse liver development. J Hepatol. 2004;41: 790–8.

    Article  PubMed  CAS  Google Scholar 

  65. Rogler LE. Selective bipotential differentiation of mouse embryonic hepatoblasts in vitro. Am J Pathol. 1997;150:591–602.

    PubMed  CAS  Google Scholar 

  66. Suskind DL, Muench MO. Searching for common stem cells of the hepatic and hematopoietic systems in the human fetal liver: CD34+ cytokeratin 7/8+ cells express markers for stellate cells. J Hepatol. 2004;40:261–8.

    Article  PubMed  CAS  Google Scholar 

  67. Fiegel HC, Bruns H, Hoper C, Lioznov MV, Kluth D. Cell growth and differentiation of different hepatic cells isolated from fetal rat liver in vitro. Tissue Eng. 2006;12:123–30.

    Article  PubMed  CAS  Google Scholar 

  68. Tanimizu N, Nishikawa M, Saito H, Tsujimura T, Miyajima A. Isolation of hepatoblasts based on the expression of Dlk/Pref-1. J Cell Sci. 2003;116:1775–86.

    Article  PubMed  CAS  Google Scholar 

  69. Nitou M, Sugiyama Y, Ishikawa K, Shiojiri N. Purification of fetal mouse hepatoblasts by magnetic beads coated with monoclonal anti-e-cadherin antibodies and their in vitro culture. Exp Cell Res. 2002;279:330–43.

    Article  PubMed  CAS  Google Scholar 

  70. Krupczak-Hollis K, Wang X, Kalinichenko VV, Gusarova GA, Wang IC, Dennewitz MB, Yoder HM, et al. The mouse Forkhead Box m1 transcription factor is essential for hepatoblast mitosis and development of intrahepatic bile ducts and vessels during liver morphogenesis. Dev Biol. 2004;276:74–88.

    Article  PubMed  CAS  Google Scholar 

  71. Stamp L, Crosby HA, Hawes SM, Strain AJ, Pera MF. A novel cell-surface marker found on human embryonic hepatoblasts and a subpopulation of hepatic biliary epithelial cells. Stem Cells. 2005;23:103–12.

    Article  PubMed  CAS  Google Scholar 

  72. Holic N, Suzuki T, Corlu A, Couchie D, Chobert MN, Guguen-Guillouzo C, Laperche Y. Differential expression of the rat gamma-glutamyl transpeptidase gene promoters along with differentiation of hepatoblasts into biliary or hepatocytic lineage. Am J Pathol. 2000;157:537–48.

    Article  PubMed  CAS  Google Scholar 

  73. Kamiya A, Inoue Y, Gonzalez FJ. Role of the hepatocyte nuclear factor 4alpha in control of the pregnane X receptor during fetal liver development. Hepatology. 2003;37:1375–84.

    Article  PubMed  CAS  Google Scholar 

  74. Peiler G, Bockmann B, Nakhei H, Ryffel GU. Inhibitor of the tissue-specific transcription factor HNF4, a potential regulator in early Xenopus development. Mol Cell Biol. 2000;20:8676–83.

    Article  PubMed  CAS  Google Scholar 

  75. Nakayama M, Matsumoto K, Tatsumi N, Yanai M, Yokouchi Y. Id3 is important for proliferation and differentiation of the hepatoblasts during the chick liver development. Mech Dev. 2006;123:580–90.

    Article  PubMed  CAS  Google Scholar 

  76. Watanabe T, Nakagawa K, Ohata S, Kitagawa D, Nishitai G, Seo J, Tanemura S, et al. SEK1/MKK4-mediated SAPK/JNK signaling participates in embryonic hepatoblast proliferation via a pathway different from NF-kappaB-induced anti-apoptosis. Dev Biol. 2002;250:332–47.

    Article  PubMed  CAS  Google Scholar 

  77. Sosa-Pineda B, Wigle JT, Oliver G. Hepatocyte migration during liver development requires Prox1. Nat Genet. 2000;25:254–5.

    Article  PubMed  CAS  Google Scholar 

  78. Dudas J, Elmaouhoub A, Mansuroglu T, Batusic D, Tron K, Saile B, Papoutsi M, et al. Prospero-related homeobox 1 (Prox1) is a stable hepatocyte marker during liver development, injury and regeneration, and is absent from “oval cells”. Histochem Cell Biol. 2006;126:549–62.

    Article  PubMed  CAS  Google Scholar 

  79. Dudas J, Papoutsi M, Hecht M, Elmaouhoub A, Saile B, Christ B, Tomarev SI, et al. The homeobox transcription factor Prox1 is highly conserved in embryonic hepatoblasts and in adult and transformed hepatocytes, but is absent from bile duct epithelium. Anat Embryol (Berl). 2004;208:359–66.

    Article  CAS  Google Scholar 

  80. Ganiatsas S, Kwee L, Fujiwara Y, Perkins A, Ikeda T, Labow MA, Zon LI. SEK1 deficiency reveals mitogen-activated protein kinase cascade crossregulation and leads to abnormal hepatogenesis. Proc Natl Acad Sci U S A. 1998;95:6881–6.

    Article  PubMed  CAS  Google Scholar 

  81. Ader T, Norel R, Levoci L, Rogler LE. Transcriptional profiling implicates TGFbeta/BMP and Notch signaling pathways in ductular differentiation of fetal murine hepatoblasts. Mech Dev. 2006;123:177–94.

    Article  PubMed  CAS  Google Scholar 

  82. Nierhoff D, Ogawa A, Oertel M, Chen YQ, Shafritz DA. Purification and characterization of mouse fetal liver epithelial cells with high in vivo repopulation capacity. Hepatology. 2005;42:130–9.

    Article  PubMed  Google Scholar 

  83. Nierhoff D, Levoci L, Schulte S, Goeser T, Rogler LE, Shafritz DA. New cell surface markers for murine fetal hepatic stem cells identified through high density complementary DNA microarrays. Hepatology. 2007;46:535–47.

    Article  PubMed  CAS  Google Scholar 

  84. Oertel M, Menthena A, Dabeva MD, Shafritz DA. Cell competition leads to a high level of normal liver reconstitution by transplanted fetal liver stem/progenitor cells. Gastroenterology. 2006;130:507–20; quiz 590.

    Article  PubMed  Google Scholar 

  85. Dabeva MD, Petkov PM, Sandhu J, Oren R, Laconi E, Hurston E, Shafritz DA. Proliferation and differentiation of fetal liver epithelial progenitor cells after transplantation into adult rat liver. Am J Pathol. 2000;156:2017–31.

    Article  PubMed  CAS  Google Scholar 

  86. Sandhu JS, Petkov PM, Dabeva MD, Shafritz DA. Stem cell properties and repopulation of the rat liver by fetal liver epithelial progenitor cells. Am J Pathol. 2001;159:1323–34.

    Article  PubMed  CAS  Google Scholar 

  87. Zaret KS. Liver specification and early morphogenesis. Mech Dev. 2000;92:83–8.

    Article  PubMed  CAS  Google Scholar 

  88. Blakolmer K, Jaskiewicz K, Dunsford HA, Robson SC. Hematopoietic stem cell markers are expressed by ductal plate and bile duct cells in developing human liver. Hepatology. 1995;21:1510–6.

    Article  PubMed  CAS  Google Scholar 

  89. Fiegel HC, Park JJ, Lioznov MV, Martin A, Jaeschke-Melli S, Kaufmann PM, Fehse B, et al. Characterization of cell types during rat liver development. Hepatology. 2003;37:148–54.

    Article  PubMed  Google Scholar 

  90. Petersen BE, Grossbard B, Hatch H, Pi L, Deng J, Scott EW. Mouse A6-positive hepatic oval cells also express several hematopoietic stem cell markers. Hepatology. 2003;37:632–40.

    Article  PubMed  Google Scholar 

  91. Masson NM, Currie IS, Terrace JD, Garden OJ, Parks RW, Ross JA. Hepatic progenitor cells in human fetal liver express the oval cell marker Thy-1. Am J Physiol Gastrointest Liver Physiol. 2006;291:G45–54.

    Article  PubMed  CAS  Google Scholar 

  92. Oertel M, Menthena A, Chen YQ, Shafritz DA. Comparison of hepatic properties and transplantation of Thy-1(+) and Thy-1(-) cells isolated from embryonic day 14 rat fetal liver. Hepatology. 2007;46(4):1236–45.

    Article  PubMed  CAS  Google Scholar 

  93. Theise ND, Saxena R, Portmann BC, Thung SN, Yee H, Chiriboga L, Kumar A, et al. The canals of Hering and hepatic stem cells in humans. Hepatology. 1999;30:1425–33.

    Article  PubMed  CAS  Google Scholar 

  94. Baumann U, Crosby HA, Ramani P, Kelly DA, Strain AJ. Expression of the stem cell factor receptor c-kit in normal and diseased pediatric liver: identification of a human hepatic progenitor cell? Hepatology. 1999;30:112–7.

    Article  PubMed  CAS  Google Scholar 

  95. Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, Boggs SS, et al. Bone marrow as a potential source of hepatic oval cells. Science. 1999;284:1168–70.

    Article  PubMed  CAS  Google Scholar 

  96. Navarro-Alvarez N. Stem cell-derived hepatocytes. Curr Opin Organ Transplant. 2006;11:659–64.

    Article  Google Scholar 

  97. Radaeva S, Steinberg P. Phenotype and differentiation patterns of the oval cell lines OC/CDE 6 and OC/CDE 22 derived from the livers of carcinogen-treated rats. Cancer Res. 1995;55: 1028–1038.

    PubMed  CAS  Google Scholar 

  98. Fujio K, Evarts RP, Hu Z, Marsden ER, Thorgeirsson SS. Expression of stem cell factor and its receptor, c-kit, during liver regeneration from putative stem cells in adult rat. Lab Invest. 1994;70:511–6.

    PubMed  CAS  Google Scholar 

  99. Omori M, Omori N, Evarts RP, Teramoto T, Thorgeirsson SS. Coexpression of flt-3 ligand/flt-3 and SCF/c-kit signal transduction system in bile-duct-ligated SI and W mice. Am J Pathol. 1997;150:1179–87.

    PubMed  CAS  Google Scholar 

  100. Omori N, Omori M, Evarts RP, Teramoto T, Miller MJ, Hoang TN, Thorgeirsson SS. Partial cloning of rat CD34 cDNA and expression during stem cell-dependent liver regeneration in the adult rat. Hepatology. 1997;26:720–7.

    Article  PubMed  CAS  Google Scholar 

  101. Petersen BE, Goff JP, Greenberger JS, Michalopoulos GK. Hepatic oval cells express the hematopoietic stem cell marker Thy-1 in the rat. Hepatology. 1998;27:433–45.

    Article  PubMed  CAS  Google Scholar 

  102. Engelhardt NV, Factor VM, Medvinsky AL, Baranov VN, Lazareva MN, Poltoranina VS. Common antigen of oval and biliary epithelial cells (A6) is a differentiation marker of epithelial and erythroid cell lineages in early development of the mouse. Differentiation. 1993;55:19–26.

    Article  PubMed  CAS  Google Scholar 

  103. Omori N, Evarts RP, Omori M, Hu Z, Marsden ER, Thorgeirsson SS. Expression of leukemia inhibitory factor and its receptor during liver regeneration in the adult rat. Lab Invest. 1996;75:15–24.

    PubMed  CAS  Google Scholar 

  104. Shimano K, Satake M, Okaya A, Kitanaka J, Kitanaka N, Takemura M, Sakagami M, et al. Hepatic oval cells have the side population phenotype defined by expression of ATP-binding cassette transporter ABCG2/BCRP1. Am J Pathol. 2003;163:3–9.

    Article  PubMed  CAS  Google Scholar 

  105. Oh SH, Witek RP, Bae SH, Zheng D, Jung Y, Piscaglia AC, Petersen BE. Bone marrow-derived hepatic oval cells differentiate into hepatocytes in 2-acetylaminofluorene/partial hepatectomy-induced liver regeneration. Gastroenterology. 2007;132:1077–87.

    Article  PubMed  CAS  Google Scholar 

  106. Wang X, Foster M, Al-Dhalimy M, Lagasse E, Finegold M, Grompe M. The origin and liver repopulating capacity of murine oval cells. Proc Natl Acad Sci U S A. 2003;100 Suppl 1: 11881–8.

    Article  PubMed  CAS  Google Scholar 

  107. Menthena A, Deb N, Oertel M, Grozdanov PN, Sandhu J, Shah S, Guha C, et al. Bone marrow progenitors are not the source of expanding oval cells in injured liver. Stem Cells. 2004;22: 1049–61.

    Article  PubMed  Google Scholar 

  108. Akhurst B, Croager EJ, Farley-Roche CA, Ong JK, Dumble ML, Knight B, Yeoh GC. A modified choline-deficient, ethionine-supplemented diet protocol effectively induces oval cells in mouse liver. Hepatology. 2001;34:519–22.

    Article  PubMed  CAS  Google Scholar 

  109. Factor VM, Radaeva SA, Thorgeirsson SS. Origin and fate of oval cells in dipin-induced hepatocarcinogenesis in the mouse. Am J Pathol. 1994;145:409–22.

    PubMed  CAS  Google Scholar 

  110. Preisegger KH, Factor VM, Fuchsbichler A, Stumptner C, Denk H, Thorgeirsson SS. Atypical ductular proliferation and its inhibition by transforming growth factor beta1 in the 3,5-diethoxycarbonyl-1,4-dihydrocollidine mouse model for chronic alcoholic liver disease. Lab Invest. 1999;79:103–9.

    PubMed  CAS  Google Scholar 

  111. Rosenberg D, Ilic Z, Yin L, Sell S. Proliferation of hepatic lineage cells of normal C57BL and interleukin-6 knockout mice after cocaine-induced periportal injury. Hepatology. 2000;31:948–55.

    Article  PubMed  CAS  Google Scholar 

  112. Lemire JM, Shiojiri N, Fausto N. Oval cell proliferation and the origin of small hepatocytes in liver injury induced by D-galactosamine. Am J Pathol. 1991;139:535–52.

    PubMed  CAS  Google Scholar 

  113. Petersen BE, Zajac VF, Michalopoulos GK. Hepatic oval cell activation in response to injury following chemically induced periportal or pericentral damage in rats. Hepatology. 1998;27:1030–8.

    Article  PubMed  CAS  Google Scholar 

  114. Yovchev MI, Grozdanov PN, Joseph B, Gupta S, Dabeva MD. Novel hepatic progenitor cell surface markers in the adult rat liver. Hepatology. 2007;45:139–49.

    Article  PubMed  CAS  Google Scholar 

  115. Rountree CB, Barsky L, Ge S, Zhu J, Senadheera S, Crooks GM. A CD133-expressing murine liver oval cell population with bilineage potential. Stem Cells. 2007;25(10):2419–29.

    Article  PubMed  CAS  Google Scholar 

  116. Jelnes P, Santoni-Rugiu E, Rasmussen M, Friis SL, Nielsen JH, Tygstrup N, Bisgaard HC. Remarkable heterogeneity displayed by oval cells in rat and mouse models of stem cell-mediated liver regeneration. Hepatology. 2007;45:1462–70.

    Article  PubMed  CAS  Google Scholar 

  117. Gordon GJ, Coleman WB, Hixson DC, Grisham JW. Liver regeneration in rats with retrorsine-induced hepatocellular injury proceeds through a novel cellular response. Am J Pathol. 2000;156:607–19.

    Article  PubMed  CAS  Google Scholar 

  118. Gordon GJ, Coleman WB, Grisham JW. Temporal analysis of hepatocyte differentiation by small hepatocyte-like progenitor cells during liver regeneration in retrorsine-exposed rats. Am J Pathol. 2000;157:771–86.

    Article  PubMed  CAS  Google Scholar 

  119. Avril A, Pichard V, Bralet MP, Ferry N. Mature hepatocytes are the source of small hepatocyte-like progenitor cells in the retrorsine model of liver injury. J Hepatol. 2004;41:737–43.

    Article  PubMed  CAS  Google Scholar 

  120. Vig P, Russo FP, Edwards RJ, Tadrous PJ, Wright NA, Thomas HC, Alison MR, et al. The sources of parenchymal regeneration after chronic hepatocellular liver injury in mice. Hepatology. 2006;43:316–24.

    Article  PubMed  Google Scholar 

  121. Fausto N. Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells. Hepatology. 2004;39:1477–87.

    Article  PubMed  Google Scholar 

  122. Best DH, Coleman WB. Treatment with 2-AAF blocks the small hepatocyte-like progenitor cell response in retrorsine-exposed rats. J Hepatol. 2007;46:1055–63.

    Article  PubMed  CAS  Google Scholar 

  123. Shibata C, Mizuguchi T, Kikkawa Y, Nobuoka T, Oshima H, Kawasaki H, Kawamoto M, et al. Liver repopulation and long-term function of rat small hepatocyte transplantation as an alternative cell source for hepatocyte transplantation. Liver Transpl. 2006;12:78–87.

    Article  PubMed  Google Scholar 

  124. Morrison SJ. Stem cell potential: can anything make anything? Curr Biol. 2001;11:R7–9.

    Article  PubMed  CAS  Google Scholar 

  125. Orkin SH, Zon LI. Hematopoiesis and stem cells: plasticity versus developmental heterogeneity. Nat Immunol. 2002;3:323–8.

    Article  PubMed  CAS  Google Scholar 

  126. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410:701–5.

    Article  PubMed  CAS  Google Scholar 

  127. Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature. 2002;416:542–5.

    Article  PubMed  CAS  Google Scholar 

  128. Ying QL, Nichols J, Evans EP, Smith AG. Changing potency by spontaneous fusion. Nature. 2002;416:545–8.

    Article  PubMed  CAS  Google Scholar 

  129. Vassilopoulos G, Wang PR, Russell DW. Transplanted bone marrow regenerates liver by cell fusion. Nature. 2003;422:901–4.

    Article  PubMed  CAS  Google Scholar 

  130. Wang X, Willenbring H, Akkari Y, Torimaru Y, Foster M, Al-Dhalimy M, Lagasse E, et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature. 2003;422: 897–901.

    Article  PubMed  CAS  Google Scholar 

  131. Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med. 2000;6:1229–34.

    Article  PubMed  CAS  Google Scholar 

  132. Theise ND, Badve S, Saxena R, Henegariu O, Sell S, Crawford JM, Krause DS. Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology. 2000;31:235–40.

    Article  PubMed  CAS  Google Scholar 

  133. Wang X, Ge S, McNamara G, Hao QL, Crooks GM, Nolta JA. Albumin-expressing hepatocyte-like cells develop in the livers of immune-deficient mice that received transplants of highly purified human hematopoietic stem cells. Blood. 2003;101:4201–8.

    Article  PubMed  CAS  Google Scholar 

  134. Schwartz RE, Reyes M, Koodie L, Jiang Y, Blackstad M, Lund T, Lenvik T, et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest. 2002;109:1291–302.

    PubMed  CAS  Google Scholar 

  135. Korbling M, Katz RL, Khanna A, Ruifrok AC, Rondon G, Albitar M, Champlin RE, et al. Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. N Engl J Med. 2002;346:738–46.

    Article  PubMed  Google Scholar 

  136. Harris RG, Herzog EL, Bruscia EM, Grove JE, Van Arnam JS, Krause DS. Lack of a fusion requirement for development of bone marrow-derived epithelia. Science. 2004;305:90–3.

    Article  PubMed  CAS  Google Scholar 

  137. Alison MR, Poulsom R, Jeffery R, Dhillon AP, Quaglia A, Jacob J, Novelli M, et al. Hepatocytes from non-hepatic adult stem cells. Nature. 2000;406:257.

    Article  PubMed  CAS  Google Scholar 

  138. Theise ND, Nimmakayalu M, Gardner R, Illei PB, Morgan G, Teperman L, Henegariu O, et al. Liver from bone marrow in humans. Hepatology. 2000;32:11–16.

    Article  PubMed  CAS  Google Scholar 

  139. Willenbring H, Bailey AS, Foster M, Akkari Y, Dorrell C, Olson S, Finegold M, et al. Myelomonocytic cells are sufficient for therapeutic cell fusion in liver. Nat Med. 2004;10:744–8.

    Article  PubMed  CAS  Google Scholar 

  140. Camargo FD, Finegold M, Goodell MA. Hematopoietic myelomonocytic cells are the major source of hepatocyte fusion partners. J Clin Invest. 2004;113:1266–70.

    PubMed  CAS  Google Scholar 

  141. Jang YY, Collector MI, Baylin SB, Diehl AM, Sharkis SJ. Hematopoietic stem cells convert into liver cells within days without fusion. Nat Cell Biol. 2004;6:532–9.

    Article  PubMed  CAS  Google Scholar 

  142. Avital I, Inderbitzin D, Aoki T, Tyan DB, Cohen AH, Ferraresso C, Rozga J, et al. Isolation, characterization, and transplantation of bone marrow-derived hepatocyte stem cells. Biochem Biophys Res Commun. 2001;288:156–64.

    Article  PubMed  CAS  Google Scholar 

  143. Saji Y, Tamura S, Yoshida Y, Kiso S, Iizuka AS, Matsumoto H, Kawasaki T, et al. Basic fibroblast growth factor promotes the trans-differentiation of mouse bone marrow cells into hepatic lineage cells via multiple liver-enriched transcription factors. J Hepatol. 2004;41:545–50.

    Article  PubMed  CAS  Google Scholar 

  144. Fiegel HC, Lioznov MV, Cortes-Dericks L, Lange C, Kluth D, Fehse B, Zander AR. Liver-specific gene expression in cultured human hematopoietic stem cells. Stem Cells. 2003;21: 98–104.

    Article  PubMed  CAS  Google Scholar 

  145. Zhao Y, Glesne D, Huberman E. A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proc Natl Acad Sci U S A. 2003;100:2426–31.

    Article  PubMed  CAS  Google Scholar 

  146. Ruhnke M, Ungefroren H, Nussler A, Martin F, Brulport M, Schormann W, Hengstler JG, et al. Differentiation of in vitro-modified human peripheral blood monocytes into hepatocyte-like and pancreatic islet-like cells. Gastroenterology. 2005;128: 1774–86.

    Article  PubMed  CAS  Google Scholar 

  147. Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AM, Deans R, Marshak DR, et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med. 2000;6:1282–86.

    Article  PubMed  CAS  Google Scholar 

  148. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    Article  PubMed  CAS  Google Scholar 

  149. Lee KD, Kuo TK, Whang-Peng J, Chung YF, Lin CT, Chou SH, Chen JR, et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology. 2004;40:1275–84.

    Article  PubMed  CAS  Google Scholar 

  150. Aurich I, Mueller LP, Aurich H, Luetzkendorf J, Tisljar K, Dollinger MM, Schormann W, et al. Functional integration of hepatocytes derived from human mesenchymal stem cells into mouse livers. Gut. 2007;56:405–15.

    Article  PubMed  CAS  Google Scholar 

  151. Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F, Quinn G, Okochi H, et al. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology. 2007;46:219–228.

    Article  PubMed  CAS  Google Scholar 

  152. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418:41–9.

    Article  PubMed  CAS  Google Scholar 

  153. Wobus AM, Boheler KR. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev. 2005;85: 635–78.

    Article  PubMed  CAS  Google Scholar 

  154. Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, Soreq H, et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med. 2000;6:88–95.

    PubMed  CAS  Google Scholar 

  155. Kim JH, Auerbach JM, Rodriguez-Gomez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature. 2002;418:50–6.

    Article  PubMed  CAS  Google Scholar 

  156. Kehat I, Khimovich L, Caspi O, Gepstein A, Shofti R, Arbel G, Huber I, et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol. 2004;22:1282–9.

    Article  PubMed  CAS  Google Scholar 

  157. Lako M, Lindsay S, Lincoln J, Cairns PM, Armstrong L, Hole N. Characterisation of Wnt gene expression during the differentiation of murine embryonic stem cells in vitro: role of Wnt3 in enhancing haematopoietic differentiation. Mech Dev. 2001;103: 49–59.

    Article  PubMed  CAS  Google Scholar 

  158. Suzuki H, Watabe T, Kato M, Miyazawa K, Miyazono K. Roles of vascular endothelial growth factor receptor 3 signaling in differentiation of mouse embryonic stem cell-derived vascular progenitor cells into endothelial cells. Blood 2005;105:2372–9.

    Article  PubMed  CAS  Google Scholar 

  159. D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24:1392–401.

    Article  PubMed  CAS  Google Scholar 

  160. Soto-Gutierrez A, Navarro-Alvarez N, Zhao D, Rivas-Carrillo JD, Lebkowski J, Tanaka N, Fox IJ, et al. Differentiation of mouse embryonic stem cells to hepatocyte-like cells by co-culture with human liver nonparenchymal cell lines. Nat Protoc. 2007;2: 347–56.

    Article  PubMed  CAS  Google Scholar 

  161. Cai J, Zhao Y, Liu Y, Ye F, Song Z, Qin H, Meng S, et al. Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology. 2007;45:1229–39.

    Article  PubMed  CAS  Google Scholar 

  162. Chen Y, Soto-Gutierrez A, Navarro-Alvarez N, Rivas-Carrillo JD, Yamatsuji T, Shirakawa Y, Tanaka N, et al. Instant hepatic differentiation of human embryonic stem cells using activin A and a deleted variant of HGF. Cell Transplant. 2006;15:865–71.

    Article  PubMed  Google Scholar 

  163. Teratani T, Yamamoto H, Aoyagi K, Sasaki H, Asari A, Quinn G, Sasaki H, et al. Direct hepatic fate specification from mouse embryonic stem cells. Hepatology. 2005;41:836–46.

    Article  PubMed  CAS  Google Scholar 

  164. Lavon N, Benvenisty N. Study of hepatocyte differentiation using embryonic stem cells. J Cell Biochem. 2005;96:1193–202.

    Article  PubMed  CAS  Google Scholar 

  165. Lavon N, Yanuka O, Benvenisty N. Differentiation and isolation of hepatic-like cells from human embryonic stem cells. Differentiation. 2004;72:230–8.

    Article  PubMed  CAS  Google Scholar 

  166. Yamamoto H, Quinn G, Asari A, Yamanokuchi H, Teratani T, Terada M, Ochiya T. Differentiation of embryonic stem cells into hepatocytes: biological functions and therapeutic application. Hepatology. 2003;37:983–93.

    Article  PubMed  CAS  Google Scholar 

  167. Rambhatla L, Chiu CP, Kundu P, Peng Y, Carpenter MK. Generation of hepatocyte-like cells from human embryonic stem cells. Cell Transplant. 2003;12:1–11.

    Article  PubMed  Google Scholar 

  168. Fair JH, Cairns BA, Lapaglia M, Wang J, Meyer AA, Kim H, Hatada S, et al. Induction of hepatic differentiation in embryonic stem cells by co-culture with embryonic cardiac mesoderm. Surgery. 2003;134:189–96.

    Article  PubMed  Google Scholar 

  169. Heo J, Factor VM, Uren T, Takahama Y, Lee JS, Major M, Feinstone SM, et al. Hepatic precursors derived from murine embryonic stem cells contribute to regeneration of injured liver. Hepatology. 2006;44:1478–86.

    Article  PubMed  CAS  Google Scholar 

  170. Yamada T, Yoshikawa M, Kanda S, Kato Y, Nakajima Y, Ishizaka S, Tsunoda Y. In vitro differentiation of embryonic stem cells into hepatocyte-like cells identified by cellular uptake of indocyanine green. Stem Cells. 2002;20:146–54.

    Article  PubMed  Google Scholar 

  171. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  PubMed  CAS  Google Scholar 

  172. David NB, Rosa FM. Cell autonomous commitment to an endodermal fate and behaviour by activation of Nodal signalling. Development. 2001;128:3937–47.

    PubMed  CAS  Google Scholar 

  173. Yasunaga M, Tada S, Torikai-Nishikawa S, Nakano Y, Okada M, Jakt LM, Nishikawa S, et al. Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat Biotechnol. 2005;23:1542–50.

    Article  PubMed  CAS  Google Scholar 

  174. Kubo A, Shinozaki K, Shannon JM, Kouskoff V, Kennedy M, Woo S, Fehling HJ, et al. Development of definitive endoderm from embryonic stem cells in culture. Development. 2004;131:1651–62.

    Article  PubMed  CAS  Google Scholar 

  175. Sherwood RI, Jitianu C, Cleaver O, Shaywitz DA, Lamenzo JO, Chen AE, Golub TR, et al. Prospective isolation and global gene expression analysis of definitive and visceral endoderm. Dev Biol. 2007;304:541–55.

    Article  PubMed  CAS  Google Scholar 

  176. D’Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol. 2005;23:1534–41.

    Article  PubMed  CAS  Google Scholar 

  177. Takenaga M, Fukumoto M, Hori Y. Regulated Nodal signaling promotes differentiation of the definitive endoderm and mesoderm from ES cells. J Cell Sci. 2007;120:2078–90.

    Article  PubMed  CAS  Google Scholar 

  178. Feldman B, Gates MA, Egan ES, Dougan ST, Rennebeck G, Sirotkin HI, Schier AF, et al. Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature. 1998;395:181–5.

    Article  PubMed  CAS  Google Scholar 

  179. Chazaud C, Yamanaka Y, Pawson T, Rossant J. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev Cell. 2006;10:615–24.

    Article  PubMed  CAS  Google Scholar 

  180. McLean AB, D’Amour KA, Jones KL, Krishnamoorthy M, Kulik MJ, Reynolds DM, Sheppard AM, et al. Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. Stem Cells. 2007;25:29–38.

    Article  PubMed  CAS  Google Scholar 

  181. Cleaver O, Melton DA. Endothelial signaling during development. Nat Med. 2003;9:661–8.

    Article  PubMed  CAS  Google Scholar 

  182. Matsumoto K, Yoshitomi H, Rossant J, Zaret KS. Liver organogenesis promoted by endothelial cells prior to vascular function. Science. 2001;294:559–63.

    Article  PubMed  CAS  Google Scholar 

  183. Navarro-Alvarez N, Soto-Gutierrez A, Rivas-Carrillo JD, Chen Y, Yamamoto T, Yuasa T, Misawa H, et al. Self-assembling peptide nanofiber as a novel culture system for isolated porcine hepatocytes. Cell Transplant. 2006;15:921–7.

    Article  PubMed  Google Scholar 

  184. Cirillo LA, Lin FR, Cuesta I, Friedman D, Jarnik M, Zaret KS. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell. 2002;9:279–289.

    Article  PubMed  CAS  Google Scholar 

  185. Cirillo LA, McPherson CE, Bossard P, Stevens K, Cherian S, Shim EY, Clark KL, et al. Binding of the winged-helix transcription factor HNF3 to a linker histone site on the nucleosome. EMBO J. 1998;17:244–54.

    Article  PubMed  CAS  Google Scholar 

  186. Crowe AJ, Sang L, Li KK, Lee KC, Spear BT, Barton MC. Hepatocyte nuclear factor 3 relieves chromatin-mediated repression of the alpha-fetoprotein gene. J Biol Chem. 1999;274: 25113–20.

    Article  PubMed  CAS  Google Scholar 

  187. Odom DT, Zizlsperger N, Gordon DB, Bell GW, Rinaldi NJ, Murray HL, Volkert TL, et al. Control of pancreas and liver gene expression by HNF transcription factors. Science. 2004;303: 1378–81.

    Article  PubMed  CAS  Google Scholar 

  188. Clotman F, Lannoy VJ, Reber M, Cereghini S, Cassiman D, Jacquemin P, Roskams T, et al. The onecut transcription factor HNF6 is required for normal development of the biliary tract. Development. 2002;129:1819–28.

    PubMed  CAS  Google Scholar 

  189. Offield MF, Jetton TL, Labosky PA, Ray M, Stein RW, Magnuson MA, Hogan BL, et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development. 1996;122:983–95.

    PubMed  CAS  Google Scholar 

  190. Germain L, Blouin MJ, Marceau N. Biliary epithelial and hepatocytic cell lineage relationships in embryonic rat liver as determined by the differential expression of cytokeratins, alpha-fetoprotein, albumin, and cell surface-exposed components. Cancer Res. 1988;48:4909–18.

    PubMed  CAS  Google Scholar 

  191. Suzuki A, Zheng YW, Kaneko S, Onodera M, Fukao K, Nakauchi H, Taniguchi H. Clonal identification and characterization of self-renewing pluripotent stem cells in the developing liver. J Cell Biol. 2002;156:173–84.

    Article  PubMed  CAS  Google Scholar 

  192. Hussain SZ, Sneddon T, Tan X, Micsenyi A, Michalopoulos GK, Monga SP. Wnt impacts growth and differentiation in ex vivo liver development. Exp Cell Res. 2004;292:157–69.

    Article  PubMed  CAS  Google Scholar 

  193. Monga SP, Monga HK, Tan X, Mule K, Pediaditakis P, Michalopoulos GK. Beta-catenin antisense studies in embryonic liver cultures: role in proliferation, apoptosis, and lineage specification. Gastroenterology. 2003;124:202–16.

    Article  PubMed  CAS  Google Scholar 

  194. Coffinier C, Gresh L, Fiette L, Tronche F, Schutz G, Babinet C, Pontoglio M, et al. Bile system morphogenesis defects and liver dysfunction upon targeted deletion of HNF1beta. Development. 2002;129:1829–38.

    PubMed  CAS  Google Scholar 

  195. Gualdi R, Bossard P, Zheng M, Hamada Y, Coleman JR, Zaret KS. Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes Dev. 1996;10: 1670–82.

    Article  PubMed  CAS  Google Scholar 

  196. Bhatia SN, Balis UJ, Yarmush ML, Toner M. Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J. 1999;13: 1883–900.

    PubMed  CAS  Google Scholar 

  197. Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M, Gherardi E, et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature. 1995;373:699–702.

    Article  PubMed  CAS  Google Scholar 

  198. Uehara Y, Minowa O, Mori C, Shiota K, Kuno J, Noda T, Kitamura N. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature. 1995;373:702–5.

    Article  PubMed  CAS  Google Scholar 

  199. Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C. Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature. 1995;376:768–71.

    Article  PubMed  CAS  Google Scholar 

  200. Huh CG, Factor VM, Sanchez A, Uchida K, Conner EA, Thorgeirsson SS. Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proc Natl Acad Sci U S A. 2004;101:4477–82.

    Article  PubMed  CAS  Google Scholar 

  201. Reimold AM, Etkin A, Clauss I, Perkins A, Friend DS, Zhang J, Horton HF, et al. An essential role in liver development for transcription factor XBP-1. Genes Dev. 2000;14:152–7.

    PubMed  CAS  Google Scholar 

  202. Rose TM, Bruce AG. Oncostatin M is a member of a cytokine family that includes leukemia-inhibitory factor, granulocyte colony-stimulating factor, and interleukin 6. Proc Natl Acad Sci U S A. 1991;88:8641–5.

    Article  PubMed  CAS  Google Scholar 

  203. Wijelath ES, Carlsen B, Cole T, Chen J, Kothari S, Hammond WP. Oncostatin M induces basic fibroblast growth factor expression in endothelial cells and promotes endothelial cell proliferation, migration and spindle morphology. J Cell Sci. 1997;110 (Pt 7):871–9.

    PubMed  CAS  Google Scholar 

  204. Grove RI, Eberhardt C, Abid S, Mazzucco C, Liu J, Kiener P, Todaro G, et al. Oncostatin M is a mitogen for rabbit vascular smooth muscle cells. Proc Natl Acad Sci U S A. 1993;90:823–7.

    Article  PubMed  CAS  Google Scholar 

  205. Kinoshita T, Sekiguchi T, Xu MJ, Ito Y, Kamiya A, Tsuji K, Nakahata T, et al. Hepatic differentiation induced by oncostatin M attenuates fetal liver hematopoiesis. Proc Natl Acad Sci U S A. 1999;96:7265–70.

    Article  PubMed  CAS  Google Scholar 

  206. Matsui T, Kinoshita T, Hirano T, Yokota T, Miyajima A. STAT3 down-regulates the expression of cyclin D during liver development. J Biol Chem. 2002;277:36167–73.

    Article  PubMed  CAS  Google Scholar 

  207. de Juan C, Benito M, Alvarez A, Fabregat I. Differential proliferative response of cultured fetal and regenerating hepatocytes to growth factors and hormones. Exp Cell Res. 1992;202:495–500.

    Article  PubMed  Google Scholar 

  208. Shelly LL, Tynan W, Schmid W, Schutz G, Yeoh GC. Hepatocyte differentiation in vitro: initiation of tyrosine aminotransferase expression in cultured fetal rat hepatocytes. J Cell Biol. 1989;109:3403–10.

    Article  PubMed  CAS  Google Scholar 

  209. van Poll D, Sokmensuer C, Ahmad N, Tilles AW, Berthiaume F, Toner M, Yarmush ML. Elevated hepatocyte-specific functions in fetal rat hepatocytes co-cultured with adult rat hepatocytes. Tissue Eng. 2006;12:2965–73.

    Article  PubMed  Google Scholar 

  210. Hamazaki T, Iiboshi Y, Oka M, Papst PJ, Meacham AM, Zon LI, Terada N. Hepatic maturation in differentiating embryonic stem cells in vitro. FEBS Lett. 2001;497:15–9.

    Article  PubMed  CAS  Google Scholar 

  211. Abe K, Niwa H, Iwase K, Takiguchi M, Mori M, Abe SI, Abe K, et al. Endoderm-specific gene expression in embryonic stem cells differentiated to embryoid bodies. Exp Cell Res. 1996;229: 27–34.

    Article  PubMed  CAS  Google Scholar 

  212. Levinson-Dushnik M, Benvenisty N. Involvement of hepatocyte nuclear factor 3 in endoderm differentiation of embryonic stem cells. Mol Cell Biol. 1997;17:3817–22.

    PubMed  CAS  Google Scholar 

  213. Shirahashi H, Wu J, Yamamoto N, Catana A, Wege H, Wager B, Okita K, et al. Differentiation of human and mouse embryonic stem cells along a hepatocyte lineage. Cell Transplant. 2004;13:197–211.

    Article  PubMed  Google Scholar 

  214. Runge D, Runge DM, Jager D, Lubecki KA, Beer Stolz D, Karathanasis S, Kietzmann T, et al. Serum-free, long-term cultures of human hepatocytes: maintenance of cell morphology, transcription factors, and liver-specific functions. Biochem Biophys Res Commun. 2000;269:46–53.

    Article  PubMed  CAS  Google Scholar 

  215. Nahmias Y, Berthiaume F, Yarmush ML. Integration of technologies for hepatic tissue engineering. Adv Biochem Eng Biotechnol. 2007;103:309–29.

    PubMed  Google Scholar 

  216. Asahina K, Fujimori H, Shimizu-Saito K, Kumashiro Y, Okamura K, Tanaka Y, Teramoto K, et al. Expression of the liver-specific gene Cyp7a1 reveals hepatic differentiation in embryoid bodies derived from mouse embryonic stem cells. Genes Cells. 2004;9:1297–308.

    Article  PubMed  CAS  Google Scholar 

  217. Saunier B, Triyatni M, Ulianich L, Maruvada P, Yen P, Kohn LD. Role of the asialoglycoprotein receptor in binding and entry of hepatitis C virus structural proteins in cultured human hepatocytes. J Virol. 2003;77:546–59.

    Article  PubMed  CAS  Google Scholar 

  218. Zhang QY, Dunbar D, Kaminsky LS. Characterization of mouse small intestinal cytochrome P450 expression. Drug Metab Dispos. 2003;31:1346–51.

    Article  PubMed  CAS  Google Scholar 

  219. Yoshinari K, Sato T, Okino N, Sugatani J, Miwa M. Expression and induction of cytochromes p450 in rat white adipose tissue. J Pharmacol Exp Ther. 2004;311:147–54.

    Article  PubMed  CAS  Google Scholar 

  220. Baijal PK, Fitzpatrick DW, Bird RP. Phenobarbital and 3-methylcholanthrene treatment alters phase I and II enzymes and the sensitivity of the rat colon to the carcinogenic activity of azoxymethane. Food Chem Toxicol. 1997;35:789–98.

    Article  PubMed  CAS  Google Scholar 

  221. Bertz RJ, Granneman GR. Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet. 1997;32:210–58.

    Article  PubMed  CAS  Google Scholar 

  222. Pelkonen O, Maenpaa J, Taavitsainen P, Rautio A, Raunio H. Inhibition and induction of human cytochrome P450 (CYP) enzymes. Xenobiotica. 1998;28:1203–53.

    Article  PubMed  CAS  Google Scholar 

  223. Kostrubsky VE, Ramachandran V, Venkataramanan R, Dorko K, Esplen JE, Zhang S, Sinclair JF, et al. The use of human hepatocyte cultures to study the induction of cytochrome P-450. Drug Metab Dispos. 1999;27:887–94.

    PubMed  CAS  Google Scholar 

  224. Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J. 2005;5:6–13.

    Article  PubMed  CAS  Google Scholar 

  225. Hewitt NJ, Lechon MJ, Houston JB, Hallifax D, Brown HS, Maurel P, Kenna JG, et al. Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab Rev. 2007;39:159–234.

    Article  PubMed  CAS  Google Scholar 

  226. Lin JH, Lu AY. Inhibition and induction of cytochrome P450 and the clinical implications. Clin Pharmacokinet. 1998;35:361–90.

    Article  PubMed  CAS  Google Scholar 

  227. Zuber R, Anzenbacherova E, Anzenbacher P. Cytochromes P450 and experimental models of drug metabolism. J Cell Mol Med. 2002;6:189–98.

    Article  PubMed  CAS  Google Scholar 

  228. Guengerich FP, Shimada T, Iwasaki M, Butler MA, Kadlubar FF. Activation of carcinogens by human liver cytochromes P-450. Basic Life Sci. 1990;53:381–96.

    PubMed  CAS  Google Scholar 

  229. Hollenberg PF. Characteristics and common properties of inhibitors, inducers, and activators of CYP enzymes. Drug Metab Rev. 2002;34:17–35.

    Article  PubMed  CAS  Google Scholar 

  230. Hesse LM, Venkatakrishnan K, Court MH, von Moltke LL, Duan SX, Shader RI, Greenblatt DJ. CYP2B6 mediates the in vitro hydroxylation of bupropion: potential drug interactions with other antidepressants. Drug Metab Dispos. 2000;28:1176–83.

    PubMed  CAS  Google Scholar 

  231. Wang H, Faucette SR, Gilbert D, Jolley SL, Sueyoshi T, Negishi M, LeCluyse EL. Glucocorticoid receptor enhancement of pregnane X receptor-mediated CYP2B6 regulation in primary human hepatocytes. Drug Metab Dispos. 2003;31:620–30.

    Article  PubMed  CAS  Google Scholar 

  232. Williams JA, Ring BJ, Cantrell VE, Jones DR, Eckstein J, Ruterbories K, Hamman MA, et al. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos. 2002;30:883–91.

    Article  PubMed  CAS  Google Scholar 

  233. Li YC, Wang DP, Chiang JY. Regulation of cholesterol 7 alpha-hydroxylase in the liver. Cloning, sequencing, and regulation of cholesterol 7 alpha-hydroxylase mRNA. J Biol Chem. 1990;265:12012–19.

    PubMed  CAS  Google Scholar 

  234. van Montfoort JE, Hagenbuch B, Groothuis GM, Koepsell H, Meier PJ, Meijer DK. Drug uptake systems in liver and kidney. Curr Drug Metab. 2003;4:185–211.

    Article  PubMed  Google Scholar 

  235. Mita S, Suzuki H, Akita H, Hayashi H, Onuki R, Hofmann AF, Sugiyama Y. Inhibition of bile acid transport across Na+/taurocholate cotransporting polypeptide (SLC10A1) and bile salt export pump (ABCB 11)-coexpressing LLC-PK1 cells by cholestasis-inducing drugs. Drug Metab Dispos. 2006;34: 1575–81.

    Article  PubMed  CAS  Google Scholar 

  236. Duncan SA, Navas MA, Dufort D, Rossant J, Stoffel M. Regulation of a transcription factor network required for differentiation and metabolism. Science. 1998;281:692–5.

    Article  PubMed  CAS  Google Scholar 

  237. Rigato I, Cravatari M, Avellini C, Ponte E, Croce SL, Tiribelli C. Drug-induced acute cholestatic liver damage in a patient with mutation of UGT1A1. Nat Clin Pract Gastroenterol Hepatol. 2007;4:403–8.

    Article  PubMed  CAS  Google Scholar 

  238. Kolarich D, Turecek PL, Weber A, Mitterer A, Graninger M, Matthiessen P, Nicolaes GA, et al. Biochemical, molecular characterization, and glycoproteomic analyses of alpha(1)-proteinase inhibitor products used for replacement therapy. Transfusion. 2006;46:1959–77.

    Article  PubMed  CAS  Google Scholar 

  239. Mulgrew AT, Taggart CC, McElvaney NG. Alpha-1-antitrypsin deficiency: current concepts. Lung. 2007;185:191–201.

    Article  PubMed  CAS  Google Scholar 

  240. Saheki T, Kobayashi K, Inoue I. Hereditary disorders of the urea cycle in man: biochemical and molecular approaches. Rev Physiol Biochem Pharmacol. 1987;108:21–68.

    Article  PubMed  CAS  Google Scholar 

  241. Azuma H, Paulk N, Ranade A, Dorrell C, Al-Dhalimy M, Ellis E, Strom S, et al. Robust expansion of human hepatocytes in Fah(-/-)/Rag2(-/-)/Il2rg(-/-) mice. Nat Biotechnol. 2007;25: 903–10.

    Article  PubMed  CAS  Google Scholar 

  242. Starzl TE, Lakkis FG. The unfinished legacy of liver transplantation: emphasis on immunology. Hepatology. 2006;43: S151–63.

    Article  PubMed  CAS  Google Scholar 

  243. Shizuru JA, Negrin RS, Weissman IL. Hematopoietic stem and progenitor cells: clinical and preclinical regeneration of the hematolymphoid system. Annu Rev Med. 2005;56:509–38.

    Article  PubMed  CAS  Google Scholar 

  244. Nussbaum J, Minami E, Laflamme MA, Virag JA, Ware CB, Masino A, Muskheli V, et al. Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J. 2007;21:1345–57.

    Article  PubMed  CAS  Google Scholar 

  245. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature. 2007;448:318–24.

    Article  PubMed  CAS  Google Scholar 

  246. Nagata H, Nishitai R, Shirota C, Zhang JL, Koch CA, Cai J, Awwad M, et al. Prolonged survival of porcine hepatocytes in cynomolgus monkeys. Gastroenterology. 2007;132: 321–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoya Kobayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Navarro-Alvarez, N., Soto-Gutierrez, A., Kobayashi, N. (2009). Hepatic Stem Cells and Liver Development. In: Rajasekhar, V.K., Vemuri, M.C. (eds) Regulatory Networks in Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-60327-227-8_34

Download citation

Publish with us

Policies and ethics