Skip to main content

Role of DNA Methylation and Epigenetics in Stem Cells

  • Chapter
Regulatory Networks in Stem Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1296 Accesses

Abstract

In recent years, great strides have been made in our understanding of the biology of human embryonic stem cells and their ability to differentiate into multiple lineages. Although it has always been obvious that the differentiation of stem cells does not come about due to changes to the primary sequence of the genome, only now are we beginning to understand the mechanisms involved in this process. Chromatin modification has been shown to control the expression of key genes involved in the progression of stem cells into their differentiated progeny. In this chapter, some of the key regulatory mechanisms involved in epigenetic modification of the genome are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhattacharya B, Miura T, Brandenberger R, et al. Gene expression in human embryonic stem cell lines: unique molecular signature. Blood. 2004;103:2956–64.

    PubMed  CAS  Google Scholar 

  2. Brandenberger R, Khrebtukova I, Thies RS, et al. MPSS profiling of human embryonic stem cells. BMC Dev Biol. 2004;4:10.

    PubMed  Google Scholar 

  3. Brandenberger R, Wei H, Zhang S, et al. Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. Nat Biotechnol. 2004;22:707–16.

    PubMed  Google Scholar 

  4. Ginis I, Luo Y, Miura T, et al. Differences between human and mouse embryonic stem cells. Dev Biol. 2004; 269:360–80.

    PubMed  CAS  Google Scholar 

  5. Sato N, Sanjuan IM, Heke M, et al. Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev Biol. 2003;260:404–13.

    PubMed  CAS  Google Scholar 

  6. Sperger JM, Chen X, Draper JS, et al. Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc Natl Acad Sci U S A . 2003;100:13350–5.

    PubMed  CAS  Google Scholar 

  7. Abeyta MJ, Clark AT, Rodriguez RT, et al. Unique gene expression signatures of independently-derived human embryonic stem cell lines. Hum Mol Genet. 2004;13:601–8.

    PubMed  CAS  Google Scholar 

  8. Fraga MF, Agrelo R, Esteller M. Cross-talk between aging and cancer: the epigenetic language. Ann N Y Acad Sci. 2007;1100:60–74.

    PubMed  CAS  Google Scholar 

  9. Lu Q, Qiu X, Hu N, et al. Epigenetics, disease, and therapeutic interventions. Ageing Res Rev. 2006;5:449–67.

    PubMed  CAS  Google Scholar 

  10. Rodenhiser D, Mann M. Epigenetics and human disease: translating basic biology into clinical applications. CMAJ 2006;174: 341–8.

    PubMed  Google Scholar 

  11. Moss TJ, Wallrath LL. Connections between epigenetic gene silencing and human disease. Mutat Res. 2007;618:163–74.

    PubMed  CAS  Google Scholar 

  12. Grewal SI, Moazed D. Heterochromatin and epigenetic control of gene expression. Science. 2003;301:798–802.

    PubMed  CAS  Google Scholar 

  13. Elgin SC, Grewal SI. Heterochromatin: silence is golden. Curr Biol. 2003;13:R895–8.

    PubMed  CAS  Google Scholar 

  14. Espino PS, Drobic B, Dunn KL, et al. Histone modifications as a platform for cancer therapy. J Cell Biochem. 2005;94:1088–102.

    PubMed  CAS  Google Scholar 

  15. Hendrich B, Guy J, Ramsahoye B, et al. Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev. 2001;15:710–23.

    PubMed  CAS  Google Scholar 

  16. Peterson CL, Laniel MA. Histones and histone modifications. Curr Biol. 2004;14:R546–51.

    PubMed  CAS  Google Scholar 

  17. Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403:41–5.

    PubMed  CAS  Google Scholar 

  18. Zhan M. Genomic studies to explore self-renewal and differentiation properties of embryonic stem cells. Front Biosci. 2008;13:276–83.

    PubMed  CAS  Google Scholar 

  19. Cheng LC, Tavazoie M, Doetsch F. Stem cells: from epigenetics to microRNAs. Neuron. 2005;46:363–7.

    PubMed  CAS  Google Scholar 

  20. Chiang PK, Gordon RK, Tal J, et al. S-Adenosylmethionine and methylation. FASEB J. 1996;10:471–80.

    PubMed  CAS  Google Scholar 

  21. Bird AP. CpG-rich islands and the function of DNA methylation. Nature. 1986;321:209–13.

    PubMed  CAS  Google Scholar 

  22. Wade PA. Methyl CpG-binding proteins and transcriptional repression. Bioessays. 2001;23:1131–7.

    PubMed  CAS  Google Scholar 

  23. Wade PA. SWItching off methylated DNA. Nat Genet. 2005;37:212–3.

    PubMed  CAS  Google Scholar 

  24. Wei CL, Ng P, Chiu KP, et al. 5’ Long serial analysis of gene expression (LongSAGE) and 3’ LongSAGE for transcriptome characterization and genome annotation. Proc Natl Acad Sci U S A. 2004;101:11701–6.

    PubMed  CAS  Google Scholar 

  25. Ge X, Wu Q, Jung YC, et al. A large quantity of novel human antisense transcripts detected by LongSAGE. Bioinformatics. 2006;22:2475–9.

    PubMed  CAS  Google Scholar 

  26. Ge X, Wu Q, Wang SM. SAGE detects microRNA precursors. BMC Genomics. 2006;7:285.

    PubMed  Google Scholar 

  27. Nielsen KL, Hogh AL, Emmersen J. DeepSAGE-digital transcriptomics with high sensitivity, simple experimental protocol and multiplexing of samples. Nucleic Acids Res. 2006;34:e133.

    PubMed  Google Scholar 

  28. Wahl MB, Heinzmann U, Imai K. LongSAGE analysis significantly improves genome annotation: identifications of novel genes and alternative transcripts in the mouse. Bioinformatics. 2005;21:1393–400.

    PubMed  CAS  Google Scholar 

  29. Wahl MB, Heinzmann U, Imai K. LongSAGE analysis revealed the presence of a large number of novel antisense genes in the mouse genome. Bioinformatics. 2005;21:1389–92.

    PubMed  CAS  Google Scholar 

  30. Bibikova M, Lin Z, Zhou L, et al. High-throughput DNA methylation profiling using universal bead arrays. Genome Res. 2006;16:383–393.

    PubMed  CAS  Google Scholar 

  31. Bibikova M, Chudin E, Wu B, et al. Human embryonic stem cells have a unique epigenetic signature. Genome Res. 2006;16: 1075–83.

    PubMed  CAS  Google Scholar 

  32. Bestor T, Laudano A, Mattaliano R, et al. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol. 1988;203:971–83.

    PubMed  CAS  Google Scholar 

  33. Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 1998;19:219–20.

    PubMed  CAS  Google Scholar 

  34. Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992;69:915–26.

    PubMed  CAS  Google Scholar 

  35. Okano M, Bell DW, Haber DA, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–57.

    PubMed  CAS  Google Scholar 

  36. Hsieh CL. In vivo activity of murine de novo methyltransferases, Dnmt3a and Dnmt3b. Mol Cell Biol. 1999;19:8211–8.

    PubMed  CAS  Google Scholar 

  37. Jahner D, Stuhlmann H, Stewart CL, et al. De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature. 1982;298:623–8.

    PubMed  CAS  Google Scholar 

  38. Hendrich B, Hardeland U, Ng HH, et al. The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature. 1999;401:301–4.

    PubMed  CAS  Google Scholar 

  39. Amit M, Itskovitz-Eldor J. Derivation and spontaneous differentiation of human embryonic stem cells. J Anat. 2002;200: 225–32.

    PubMed  Google Scholar 

  40. Brimble SN, Zeng X, Weiler DA, et al. Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9, 2001. Stem Cells Dev. 2004;13: 585–97.

    PubMed  CAS  Google Scholar 

  41. Heins N, Englund MC, Sjoblom C, et al. Derivation, characterization, and differentiation of human embryonic stem cells. Stem Cells. 2004;22:367–76.

    PubMed  Google Scholar 

  42. Reubinoff BE, Pera MF, Fong CY, et al. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol. 2000;18:399–404.

    PubMed  CAS  Google Scholar 

  43. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    PubMed  CAS  Google Scholar 

  44. Maitra A, Arking DE, Shivapurkar N, et al. Genomic alterations in cultured human embryonic stem cells. Nat Genet. 2005;37:1099–103

    PubMed  CAS  Google Scholar 

  45. Andrews PW, Damjanov I, Simon D, et al. Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Differentiation in vivo and in vitro. Lab Invest. 1984;50:147–62.

    PubMed  CAS  Google Scholar 

  46. Monk M, Boubelik M, Lehnert S. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development. 1987;99:371–82.

    PubMed  CAS  Google Scholar 

  47. Kafri T, Ariel M, Brandeis M, et al. Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes Dev. 1992;6:705–14.

    PubMed  CAS  Google Scholar 

  48. Woodcock DM, Crowther PJ, Diver WP. The majority of methylated deoxycytidines in human DNA are not in the CpG dinucleotide. Biochem Biophys Res Commun. 1987;145: 888–94.

    PubMed  CAS  Google Scholar 

  49. Toth M, Muller U, Doerfler W. Establishment of de novo DNA methylation patterns. Transcription factor binding and deoxycytidine methylation at CpG and non-CpG sequences in an integrated adenovirus promoter. J Mol Biol. 1990;214:673–83.

    PubMed  CAS  Google Scholar 

  50. Ramsahoye BH, Biniszkiewicz D, Lyko F, et al. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci U S A. 2000;97:5237–42.

    PubMed  CAS  Google Scholar 

  51. Constancia M, Hemberger M, Hughes J, et al. Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature. 2002;417:945–8.

    PubMed  CAS  Google Scholar 

  52. Frank D, Fortino W, Clark L, et al. Placental overgrowth in mice lacking the imprinted gene Ipl. Proc Natl Acad Sci U S A. 2002;99:7490–5.

    PubMed  CAS  Google Scholar 

  53. Lin SP, Youngson N, Takada S, et al. Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12. Nat Genet. 2003;35:97–102.

    PubMed  CAS  Google Scholar 

  54. Ferguson-Smith AC, Surani MA. Imprinting and the epigenetic asymmetry between parental genomes. Science. 2001;293: 1086–9.

    PubMed  CAS  Google Scholar 

  55. Armstrong L, Lako M, Dean W, et al. Epigenetic modification is central to genome reprogramming in somatic cell nuclear transfer. Stem Cells. 2006;24:805–14.

    PubMed  Google Scholar 

  56. Jacob S, Moley KH. Gametes and embryo epigenetic reprogramming affect developmental outcome: implication for assisted reproductive technologies. Pediatr Res . 2005;58:437–46.

    PubMed  Google Scholar 

  57. Temple IK. Imprinting in human disease with special reference to transient neonatal diabetes and Beckwith-Wiedemann syndrome. Endocr Dev. 2007;12:113–23.

    PubMed  CAS  Google Scholar 

  58. Santos-Reboucas CB, Pimentel MM. Implication of abnormal epigenetic patterns for human diseases. Eur J Hum Genet. 2007;15:10–7.

    PubMed  CAS  Google Scholar 

  59. Hoffman LM, Hall L, Batten JL, et al. X-inactivation status varies in human embryonic stem cell lines. Stem Cells. 2005;23: 1468–78.

    PubMed  CAS  Google Scholar 

  60. Shiota K, Kogo Y, Ohgane J, et al. Epigenetic marks by DNA methylation specific to stem, germ and somatic cells in mice. Genes Cells. 2002;7:961–9.

    PubMed  CAS  Google Scholar 

  61. Hanlon SE, Lieb JD. Progress and challenges in profiling the dynamics of chromatin and transcription factor binding with DNA microarrays. Curr Opin Genet Dev. 2004;14:697–705.

    PubMed  CAS  Google Scholar 

  62. O’;Neill LP, Vermilyea MD, Turner BM. Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nat Genet. 2006;38:835–41.

    Google Scholar 

  63. Meshorer E, Yellajoshula D, George E, et al. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell. 2006;10:105–16.

    PubMed  CAS  Google Scholar 

  64. Azuara V, Perry P, Sauer S, et al. Chromatin signatures of pluripotent cell lines. Nat Cell Biol. 2006;8:532–8.

    PubMed  CAS  Google Scholar 

  65. Bernstein BE, Mikkelsen TS, Xie X, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125:315–26.

    PubMed  CAS  Google Scholar 

  66. Mikkelsen TS, Ku M, Jaffe DB, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature. 2007;448:553–60.

    PubMed  CAS  Google Scholar 

  67. Boyer LA, Lee TI, Cole MF, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122:947–56.

    PubMed  CAS  Google Scholar 

  68. Guenther MG, Levine SS, Boyer LA, et al. A chromatin landmark and transcription initiation at most promoters in human cells. Cell. 2007;130:77–88.

    PubMed  CAS  Google Scholar 

  69. Lee TI, Jenner RG, Boyer LA, et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell. 2006;125:301–13.

    PubMed  CAS  Google Scholar 

  70. Boyer LA, Plath K, Zeitlinger J, et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature. 2006;441:349–53.

    PubMed  CAS  Google Scholar 

  71. Bracken AP, Dietrich N, Pasini D, et al. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 2006;20:1123–36.

    PubMed  CAS  Google Scholar 

  72. Buszczak M, Spradling AC. Searching chromatin for stem cell identity. Cell. 2006;125:233–6.

    PubMed  CAS  Google Scholar 

  73. de la Cruz CC, Kirmizis A, Simon MD, et al. The polycomb group protein SUZ12 regulates histone H3 lysine 9 methylation and HP1 alpha distribution. Chromosome Res. 2007;15:299–314.

    PubMed  Google Scholar 

  74. Jorgensen HF, Giadrossi S, Casanova M, et al. Stem cells primed for action: polycomb repressive complexes restrain the expression of lineage-specific regulators in embryonic stem cells. Cell Cycle. 2006;5:1411–4.

    PubMed  CAS  Google Scholar 

  75. Lee ER, Murdoch FE, Fritsch MK. High histone acetylation and decreased polycomb repressive complex 2 member levels regulate gene specific transcriptional changes during early embryonic stem cell differentiation induced by retinoic acid. Stem Cells. 2007;25:2191–9.

    PubMed  CAS  Google Scholar 

  76. Pasini D, Bracken AP, Hansen JB, et al. The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol Cell Biol. 2007;27:3769–79.

    PubMed  CAS  Google Scholar 

  77. Rajasekhar VK, Begemann M. Concise review: roles of polycomb group proteins in development and disease: a stem cell perspective. Stem Cells. 2007;25:2498–510.

    PubMed  CAS  Google Scholar 

  78. Spivakov M, Fisher AG. Epigenetic signatures of stem-cell identity. Nat Rev Genet. 2007;8:263–71.

    PubMed  CAS  Google Scholar 

  79. Tanay A, O’;Donnell AH, Damelin M, et al. Hyperconserved CpG domains underlie Polycomb-binding sites. Proc Natl Acad Sci U S A. 2007;104:5521–6.

    PubMed  CAS  Google Scholar 

  80. Rao M. Conserved and divergent paths that regulate self-renewal in mouse and human embryonic stem cells. Dev Biol. 2004;275:269–86.

    PubMed  CAS  Google Scholar 

  81. Collas P, Noer A, Timoskainen S. Programming the genome in embryonic and somatic stem cells. J Cell Mol Med. 2007;11: 602–20.

    PubMed  CAS  Google Scholar 

  82. Ura H, Usuda M, Kinoshita K, et al. STAT3 and Oct-3/4 control histone modification through induction of Eed in embryonic stem cells. J Biol Chem. 2008;283:9713–23

    PubMed  CAS  Google Scholar 

  83. Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet. 2006;15 Spec No 1:R17–29.

    PubMed  CAS  Google Scholar 

  84. Kuwabara T, Hsieh J, Nakashima K, et al. A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell. 2004;116:779–93.

    PubMed  CAS  Google Scholar 

  85. Houbaviy HB, Murray MF, Sharp PA. Embryonic stem cell-specific MicroRNAs. Dev Cell. 2003;5:351–8.

    PubMed  CAS  Google Scholar 

  86. Suh MR, Lee Y, Kim JY, et al. Human embryonic stem cells express a unique set of microRNAs. Dev Biol. 2004;270:488–98.

    PubMed  CAS  Google Scholar 

  87. Josephson R, Ording CJ, Liu Y, et al. Qualification of embryonal carcinoma 2102Ep as a reference for human embryonic stem cell research. Stem Cells. 2007;25:437–46.

    PubMed  CAS  Google Scholar 

  88. Lakshmipathy U, Love B, Goff LA, et al. MicroRNA expression pattern of undifferentiated and differentiated human embryonic stem cells. Stem Cells Dev. 2007;16:1003–16.

    PubMed  CAS  Google Scholar 

  89. Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell. 2007;129:303–17.

    PubMed  CAS  Google Scholar 

  90. Tay YM, Tam WL, Ang YS, et al. MicroRNA-134 modulates the differentiation of mouse embryonic stem cells, where it causes post-transcriptional attenuation of Nanog and LRH1. Stem Cells. 2008;26:17–29.

    PubMed  CAS  Google Scholar 

  91. Klein ME, Impey S, Goodman RH. Role reversal: the regulation of neuronal gene expression by microRNAs. Curr Opin Neurobiol. 2005;15:507–13.

    PubMed  CAS  Google Scholar 

  92. Giraldez AJ, Cinalli RM, Glasner ME, et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science. 2005;308:833–8.

    PubMed  CAS  Google Scholar 

  93. Naguibneva I, Ameyar-Zazoua M, Polesskaya A, et al. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol. 2006;8: 278–84.

    PubMed  CAS  Google Scholar 

  94. Hatfield SD, Shcherbata HR, Fischer KA, et al. Stem cell division is regulated by the microRNA pathway. Nature. 2005;435:974–8.

    PubMed  CAS  Google Scholar 

  95. Calabrese JM, Seila AC, Yeo GW, et al. RNA sequence analysis defines Dicer’s role in mouse embryonic stem cells. Proc Natl Acad Sci U S A. 2007;104:18097–102.

    PubMed  CAS  Google Scholar 

  96. Heisler LE, Torti D, Boutros PC, et al. CpG Island microarray probe sequences derived from a physical library are representative of CpG Islands annotated on the human genome. Nucleic Acids Res. 2005;33:2952–61.

    PubMed  CAS  Google Scholar 

  97. Rakyan VK, Hildmann T, Novik KL, et al. DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project. PLoS Biol. 2004;2:e405.

    PubMed  Google Scholar 

  98. Weber M, Davies JJ, Wittig D, et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet. 2005;37:853–62.

    PubMed  CAS  Google Scholar 

  99. Murrell A, Rakyan VK, Beck S. From genome to epigenome. Hum Mol Genet. 2005;14 Spec No 1:R3–10.

    PubMed  CAS  Google Scholar 

  100. Pal R, Mandal A, Rao HS, et al. A panel of tests to standardize the characterization of human embryonic stem cells. Regenerative Med. 2007;2:179–92.

    CAS  Google Scholar 

  101. Yao S, Chen S, Clark J, et al. Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc Natl Acad Sci U S A. 2006;103:6907–12.

    PubMed  CAS  Google Scholar 

  102. Lei T, Jacob S, Ajil-Zaraa I, et al. Xeno-free derivation and culture of human embryonic stem cells: current status, problems and challenges. Cell Res. 2007;17:682–8.

    PubMed  CAS  Google Scholar 

  103. Skottman H, Hovatta O. Culture conditions for human embryonic stem cells. Reproduction. 2006;132:691–8.

    PubMed  CAS  Google Scholar 

  104. Dang SM, Zandstra PW. Scalable production of embryonic stem cell-derived cells. Methods Mol Biol. 2005;290:353–64.

    PubMed  CAS  Google Scholar 

  105. Rao BM, Zandstra PW. Culture development for human embryonic stem cell propagation: molecular aspects and challenges. Curr Opin Biotechnol. 2005;16:568–76.

    PubMed  CAS  Google Scholar 

  106. Mallon BS, Park KY, Chen KG, et al. Toward xeno-free culture of human embryonic stem cells. Int J Biochem Cell Biol. 2006;38:1063–75.

    PubMed  CAS  Google Scholar 

  107. Andrews PW, Benvenisty N, McKay R, et al. The International Stem Cell Initiative: toward benchmarks for human embryonic stem cell research. Nat Biotechnol. 2005;23:795–7.

    PubMed  CAS  Google Scholar 

  108. Allegrucci C, Denning C, Priddle H, et al. Stem-cell consequences of embryo epigenetic defects. Lancet. 2004;364:206–8.

    PubMed  Google Scholar 

  109. Cowan CA, Atienza J, Melton DA, et al. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science. 2005;309:1369–73.

    PubMed  CAS  Google Scholar 

  110. Nakagawa M, Koyanagi M, Tanabe K, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 2008;26:101–6.

    PubMed  CAS  Google Scholar 

  111. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448: 313–17.

    PubMed  CAS  Google Scholar 

  112. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    PubMed  CAS  Google Scholar 

  113. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    PubMed  CAS  Google Scholar 

  114. Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaskar Thyagarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Thyagarajan, B., Rao, M. (2009). Role of DNA Methylation and Epigenetics in Stem Cells. In: Rajasekhar, V.K., Vemuri, M.C. (eds) Regulatory Networks in Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-60327-227-8_22

Download citation

Publish with us

Policies and ethics