Skip to main content

Stable Isotope Signatures for Microbial Forensics

  • Chapter
  • First Online:
  • 915 Accesses

Part of the book series: Infectious Disease ((ID))

Abstract

The isotopic composition of biomolecules synthesized by all living organisms is determined by metabolic exchange with their surrounding environments. The primary source of elemental C, N, O, and H in heterotrophic microorganisms is their growth substrate or culture medium; therefore, the isotopic signatures in a microorganism are a function of substrate and can be used to associate samples with potential culture media and also with one another. When a microorganism dies or enters a dormant state (i.e., there is no further substrate consumption, biosynthesis, or molecular decomposition), its stable isotopic signatures become fixed. These signatures can then be used for sample matching, to associate cultures with a specific growth medium, to predict characteristics of the medium used to produce a culture, and could potentially be used to distinguish organisms that occurred naturally in a given location from organisms that had been cultured in a laboratory and deliberately introduced.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kreuzer-Martin HW, Chesson LA, Lott MJ, Dorigan JV, Ehleringer JR (2004) Stable isotope ratios as a tool in microbial forensics, part 1. Microbial isotopic composition as a function of growth medium. J Forensic Sci 49:954–960

    PubMed  CAS  Google Scholar 

  2. DeNiro M, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Ac 42:495–506

    Article  CAS  Google Scholar 

  3. DeNiro M, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Ac 45:341–351

    Article  CAS  Google Scholar 

  4. Estep M (1981) Hydrogen isotope ratios of mouse ­tissues are influenced by a variety of factors other than diet. Science 214:1374–1376

    Article  Google Scholar 

  5. Estep M, Dabrowski H (1980) Tracing food webs with stable hydrogen isotopes. Science 209:1537–1538

    Article  PubMed  CAS  Google Scholar 

  6. Hobson K (1995) Reconstructing avian diets using stable-carbon and nitrogen isotope analysis of egg components: patterns of isotopic fractionation and turnover. Condor 97:752–762

    Article  Google Scholar 

  7. Schoeninger MJ, DeNiro MJ (1984) Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim Cosmochim Ac 48:625–639

    Article  CAS  Google Scholar 

  8. Schoeninger MJ, DeNiro MJ, Tauber H (1983) Stable nitrogen isotope ratios of bone collagen reflect marine and terrestrial components of prehistoric human diet. Science 220:1381–1383

    Article  PubMed  CAS  Google Scholar 

  9. Fry B, Scherr EB (1984) δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib Mar Sci 27:13–47

    CAS  Google Scholar 

  10. Taylor RE, Suchey JM, Payen LA, Slota PJ (1989) The use of radiocarbon (C-14) to identify human skeletal materials of forensic-science interest. J Forensic Sci 34:1196–1205

    PubMed  CAS  Google Scholar 

  11. Wild EM, Arlamovsky KA, Golser R et al (2000) C-14 dating with the bomb peak: an application to forensic medicine. Nucl Instrum Meth B 172:944–950

    Article  CAS  Google Scholar 

  12. Zoppi U, Skopec Z, Skopec J et al (2004) Forensic applications of C-14 bomb-pulse dating. Nucl Instrum Meth B 223–24:770–775

    Article  Google Scholar 

  13. Spalding KL, Buchholz BA, Bergman LE, Druid H, Frisen J (2005) Age written in teeth by nuclear tests. Nature 437:333–334

    Article  PubMed  CAS  Google Scholar 

  14. Ubelaker DH, Buchholz BA, Stewart JEB (2006) Analysis of artificial radiocarbon in different skeletal and dental tissue types to evaluate date of death. J Forensic Sci 51:484–488

    Article  PubMed  CAS  Google Scholar 

  15. Oda H, Akiyama M, Masuda T, Nakamura T (2007) Radiocarbon dating of an ancient Japanese document “Minamoto no Yoritomo Sodehan Migyosho” by accelerator mass spectrometry. J Radioanal Nucl Chem 272:439–442

    Article  CAS  Google Scholar 

  16. Beard BL, Johnson CM (2000) Strontium isotope composition of skeletal material can determine the birth place and geographic mobility of humans and animals. J Forensic Sci 45:1049–1061

    PubMed  CAS  Google Scholar 

  17. Chamberlain C, Blum J, Holmes R, Feng X, Sherry T, Graves G (1997) The use of isotope tracers for identifying populations of migratory birds. Oecologia 109: 132–141

    Article  Google Scholar 

  18. Edmonds JS, Steckis RA, Moran MJ, Caputi N, Morita M (1999) Stock delineation of pink snapper and tailor from Western Australia by analysis of stable isotope and strontium/calcium ratios in otolith carbonate. J Fish Biol 55:243–259

    Article  CAS  Google Scholar 

  19. Evans J, Stoodley N, Chenery C (2006) A strontium and oxygen isotope assessment of a possible fourth century immigrant population in a Hampshire cemetery, Southern England. J Archaeol Sci 33:265–272

    Article  Google Scholar 

  20. Kelly S, Heaton K, Hoogewerff J (2005) Tracing the geographical origin of food: the application of multi-element and multi-isotope analysis. Trends Food Sci Tech 16:555–567

    Article  CAS  Google Scholar 

  21. Boner M, Forstel H (2004) Stable isotope variation as a tool to trace the authenticity of beef. Anal Biol Chem 378:301–310

    Article  CAS  Google Scholar 

  22. Braune BM, Hobson KA, Malone BJ (2005) Regional differences in collagen stable isotope and tissue trace element profiles in populations of long-tailed duck breeding in the Canadian Arctic. Sci Total Environ 346:156–168

    Article  PubMed  CAS  Google Scholar 

  23. Wayland M, Hobson KA (2001) Stable carbon, nitrogen, and sulfur isotope ratios in riparian food webs on rivers receiving sewage and pulp-mill effluents. Can J Zool 79:5–15

    Article  CAS  Google Scholar 

  24. Weinstein MP, Litvin SY, Bosley KL, Fuller CM, Wainright SC (2000) The role of tidal salt marsh as an energy source for marine transient and resident finfishes: a stable isotope approach. T Am Fish Soc 129:797–810

    Article  Google Scholar 

  25. Coplen TB (1996) New guidelines for reporting stable hydrogen, carbon and oxygen isotope-ratio data. Geochim Cosmochim Ac 60:3359–3360

    Article  CAS  Google Scholar 

  26. Groning M, Frohlich K, DeRegge P, Danesi PR (1999) Intended use of the IAEA reference materials. Part II: examples on reference materials certified for stable isotope composition. International Atomic Energy reference 21. Royal Society of Chemistry, Berlin pp 81–92

    Google Scholar 

  27. Carter JF, Hill JC, Doyle S, Lock C (2009) Results of four inter-laboratory comparisons provided by the forensic isotope ratio mass spectrometry (FIRMS) network. Sci Justice 49:127–137

    Article  PubMed  CAS  Google Scholar 

  28. Schimmelmann A (1991) Determination of the concentration and stable isotopic composition of nonexchangeable hydrogen in organic matter. Anal Chem 63:2456–2459

    Article  CAS  Google Scholar 

  29. Wassenaar LI, Hobson KA (2003) Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. Isotopes Environ Health Stud 39:211–217

    Article  PubMed  CAS  Google Scholar 

  30. Wassenaar LI, Hobson KA (2000) Improved method for determining the stable-hydrogen isotopic composition (D) of complex organic materials of environmental interest. Environ Sci Technol 34:2354–2360

    Article  CAS  Google Scholar 

  31. Bowen GJ, Chesson L, Nielson K, Cerling TE, Ehleringer JR (2005) Treatment methods for the determination of delta H-2 and delta O-18 of hair keratin by continuous-flow isotope-ratio mass spectrometry. Rapid Commun Mass Spectrom 19:2371–2378

    Article  PubMed  CAS  Google Scholar 

  32. DeGroot PA (2004) Handbook of stable isotope analytical techniques, vol 1. Elsevier, Amsterdam

    Google Scholar 

  33. DeGroot PA (2008) Handbook of stable isotope analytical techniques, vol 2. Elsevier, Amsterdam

    Google Scholar 

  34. Burgoyne TW, Hayes JM (1998) Quantitative production of H2 by pyrolysis of gas chromatographic effluents. Anal Chem 70:5136–5141

    Article  CAS  Google Scholar 

  35. Hayes JM, Freeman KH, Popp BN, Hoham CH (1990) Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes. Org Geochem 16:1115–1128

    Article  PubMed  CAS  Google Scholar 

  36. Merritt DA, Freeman KH, Ricci MP, Studley SA, Hayes JM (1995) Performance and optimization of a combustion interface for isotope ratio monitoring ­gas-chromatography mass-spectrometry. Anal Chem 67:2461–2473

    Article  PubMed  CAS  Google Scholar 

  37. Sessions AL, Sylva SP, Hayes JM (2005) Moving-wire device for carbon isotopic analyses of nanogram quantities of nonvolatille organic carbon. Anal Chem 77:6519–6527

    Article  PubMed  CAS  Google Scholar 

  38. Eek KM, Sessions AL, Lies DP (2007) Carbon-isotopic analysis of microbial cells sorted by flow cytometry. Geobiology 5:85–95

    Article  CAS  Google Scholar 

  39. Moran JJ, Newburn MK, Alexander ML, Kreuzer HW (2011) Laser ablation isotope ratio mass spectrometry for enhanced sensitivity and spatial resolution in stable isotope analysis. Rapid Commun Mass Spectrom 25:1282–1290

    Article  PubMed  CAS  Google Scholar 

  40. Cerling TE, Harris JM, MacFadden BJ et al (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153–158

    Article  CAS  Google Scholar 

  41. Ehleringer JR, Cerling TE (2002) C3 and C4 photosynthesis. In: Mooney HA, Canadell JG (eds) The earth system: biological and ecological dimensions of global environmental change. Wiley, Chichester, pp 186–190

    Google Scholar 

  42. Ehleringer JR, Bowling DR, Flanagan LB et al (2002) Stable isotopes and carbon cycle processes in forests and grasslands. Plant Biol 4:181–189

    Article  Google Scholar 

  43. Harrington RR, Kennedy BP, Chamberlain CP, Blum JD, Folt CL (1998) N-15 enrichment in agricultural catchments: field patterns and applications to tracking Atlantic salmon (Salmo salar). Chem Geol 147: 281–294

    Article  CAS  Google Scholar 

  44. Gende SM, Miller AE, Hood E (2007) The effects of salmon carcasses on soil nitrogen pools in a riparian forest of southeastern Alaska. Can J Forest Res 37: 1194–1202

    Article  CAS  Google Scholar 

  45. Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    Article  PubMed  CAS  Google Scholar 

  46. Kendall C, Caldwell E (1998) Fundamentals of ­isotope geochemistry. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, New York, pp 51–68

    Google Scholar 

  47. Kendall C, Coplen TB (2001) Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrol Process 15:1363–1393

    Article  Google Scholar 

  48. Dawson TE, Ehleringer JR (1998) Plants, isotopes and water use: a catchment-scale perspective. In: Kendall C, McDonnel JJ (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, p 839

    Google Scholar 

  49. Roden JS, Ehleringer JR (1999) Hydrogen and oxygen isotope ratios of tree-ring cellulose for riparian trees grown long-term under hydroponically controlled environments. Oecologia 121:467–477

    Article  Google Scholar 

  50. Yapp CJ, Epstein S (1982) Climatic significance of the hydrogen isotope ratios in tree cellulose. Nature 297:636–639

    Article  CAS  Google Scholar 

  51. Tykot RH (2005) Isotope analyses and the histories of maize. In: Staller J, Tykot RH, Benz G (eds) Histories of maize – multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of maize. Academic, Burlington

    Google Scholar 

  52. McCullagh JSO, Tripp JA, Hedges REM (2005) Carbon isotope analysis of bulk keratin and single amino acids from British and North American hair. Rapid Commun Mass Spectrom 19:3227–3231

    Article  PubMed  CAS  Google Scholar 

  53. Kelly JF (2000) Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Can J Zool 78:1–27

    Article  Google Scholar 

  54. Luz B, Kolodny Y, Horowitz M (1984) Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochim Cos­mochim Ac 48:1689–1693

    Article  CAS  Google Scholar 

  55. Cormie A, Schwarcz H, Gray J (1994) Determination of the hydrogen isotopic composition of bone collagen and correction for hydrogen exchange. Geochim Cosmochim Ac 58:365–375

    Article  CAS  Google Scholar 

  56. Hobson KA, Wassenaar LI (2008) Tracking animal migrations with stable isotopes. Elsevier, London

    Google Scholar 

  57. Ehleringer JR, Bowen GJ, Chesson LA, West AG, Podlesak DW, Cerling TE (2008) Hydrogen and ­oxygen isotope ratios in human hair are related to geography. Proc Natl Acad Sci USA 105:2788–2793

    Article  PubMed  CAS  Google Scholar 

  58. Bridson EY (1990) Media in microbiology. Rev Med Microbiol 1:1–9

    Google Scholar 

  59. Kreuzer-Martin HW, Chesson LA, Lott MJ, Dorigan JV, Ehleringer JR (2004) Stable isotope ratios as a tool in microbial forensics, part 2. Isotopic variation among different growth media as a tool for sourcing origins of bacterial cells or spores. J Forensic Sci 49: 961–967

    PubMed  CAS  Google Scholar 

  60. Blair N, Leu A, Munoz E, Olsen J, Kwong E, Des Marais D (1985) Carbon isotopic fractionation in ­heterotrophic microbial metabolism. Appl Environ Microbiol 50:996–1001

    PubMed  CAS  Google Scholar 

  61. Coffin RB, Velinsky DJ, Devereux R, Price WA, Cifuentes LA (1990) Stable carbon isotope analysis of nucleic acids to trace sources of dissolved substrates used by estuarine bacteria. Appl Environ Microbiol 56:2012–2020

    PubMed  CAS  Google Scholar 

  62. Horita J, Vass AA (2003) Stable-isotope fingerprints of biological agents as forensic tools. J Forensic Sci 48:122–126

    PubMed  CAS  Google Scholar 

  63. Hobson KA, Atwell L, Wassenaar LI (1999) Influence of drinking water and diet on the stable-hydrogen isotope ratios of animal tissues. Proc Natl Acad Sci USA 96:8003–8006

    Article  PubMed  CAS  Google Scholar 

  64. Sharp ZD, Atudorei V, Panarello HO, Fernandez J, Douthitt C (2003) Hydrogen isotope systematics of hair: archeological and forensic applications. J Archaeol Sci 30:1–8

    Article  Google Scholar 

  65. Kreuzer-Martin HW, Chesson LA, Lott MJ, Ehleringer JR (2005) Stable isotope ratios as a tool in microbial forensics – part 3. Effect of culturing on agar-­containing growth media. J Forensic Sci 50:1372–1379

    Article  PubMed  CAS  Google Scholar 

  66. Boschker HTS, Nold SC, Wellsbury P et al (1998) Direct linking of microbial populations to specific biogeochemical processes by C-13-labelling of biomarkers. Nature 392:801–805

    Article  CAS  Google Scholar 

  67. Kreuzer-Martin HW (2007) Stable isotope probing: linking functional activity to specific members of microbial communities. Soil Sci Soc Am J 71: 611–619

    Article  CAS  Google Scholar 

  68. Benson S, Lennard C, Maynard P, Roux C (2006) Foren­sic applications of isotope ratio mass spectrometry – a review. Forensic Sci Int 157:1–22

    Article  PubMed  CAS  Google Scholar 

  69. Ehleringer JR, Cerling CE, West JB (2007) Forensic science applications of stable isotope ratio analysis. In: Blackledge RD (ed) Forensic analysis on the cutting edge: new methods for trace evidence analysis. Hoboken New Jersey, Wiley, New York, pp 399–422

    Chapter  Google Scholar 

  70. Carter JF, Grundy PL, Hill JC, Ronan NC, Titterton EL, Sleeman R (2004) Forensic isotope ratio mass spectrometry of packaging tapes. Analyst 129: 1206–1210

    Article  PubMed  CAS  Google Scholar 

  71. Carter JF, Titterton EL, Murray M, Sleeman R (2002) Isotopic characterization of 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethyamphetamine (ecstacy). Analyst 127:830–833

    Article  PubMed  CAS  Google Scholar 

  72. Becchi M, Aguilera R, Farizon Y, Flament MM, Casabianca H, James P (1994) Gas-chromatography combustion isotope ratio mass-spectrometry analysis of urinary steroids to detect misuse of testosterone in sport. Rapid Commun Mass Spectrom 8:304–308

    Article  PubMed  CAS  Google Scholar 

  73. Thevis M, Schanzer W (2005) Mass spectrometry in doping control analysis. Curr Org Chem 9:825–848

    Article  CAS  Google Scholar 

  74. Ueki M, Okano M (1999) Analysis of exogenous dehydroepiandrosterone excretion in urine by gas chromatography/combustion/isotope ratio mass ­spectrometry. Rapid Commun Mass Spectrom 13: 2237–2243

    Article  PubMed  CAS  Google Scholar 

  75. Tremblay P, Paquin R (2007) Improved detection of sugar addition to maple syrup using malic acid as internal standard and in C-13 isotope ratio mass spectrometry (IRMS). J Agric Food Chem 55:197–203

    Article  PubMed  CAS  Google Scholar 

  76. Padovan GJ, De Jong D, Rodrigues LP, Marchini JS (2003) Detection of adulteration of commercial honey samples by the C-13/C-12 isotopic ratio. Food Chem 82:633–636

    Article  CAS  Google Scholar 

  77. Ehleringer JR, Cooper DA, Lott MJ, Cook CS (1999) Geo-location of heroin and cocaine by stable isotope ratios. Forensic Sci Int 106:27–35

    Article  CAS  Google Scholar 

  78. Zhang D, Sun W, Yuan ZP, Ju HX, Shi XJ, Wang CH (2005) Origin differentiation of a heroin sample and its acetylating agent with C-13 isotope ratio mass spectrometry. Eur J Mass Spectrom 11:277–285

    Article  CAS  Google Scholar 

  79. Ehleringer JR, Casale JF, Lott MJ, Ford VL (2000) Tracing the geographical origin of cocaine. Nature 408:311–312

    Article  PubMed  CAS  Google Scholar 

  80. Kreuzer-Martin HW, Jarman K (2007) Stable isotope ratios and forensic analysis of microorganisms. Appl Environ Microbiol 73:3896–3908

    Article  PubMed  CAS  Google Scholar 

  81. Kreuzer-Martin HW, Lott MJ, Dorigan J, Ehleringer JR (2003) Microbe forensics: oxygen and hydrogen stable isotope ratios in Bacillus subtilis cells and spores. Proc Natl Acad Sci USA 100:815–819

    Article  PubMed  CAS  Google Scholar 

  82. Bowen GJ, Ehleringer JR, Chesson L, Stange E, Cerling CE (2007) Stable isotope ratios of tap water in the contiguous USA. Water Resour Res 43:W03419

    Article  Google Scholar 

  83. Douville M, Gagne F, Masson L, McKay J, Blaise C (2005) Tracking the source of Bacillus thuringiensis Cry1Ab endotoxin in the environment. Biochem Syst Ecol 33:219–232

    Article  CAS  Google Scholar 

  84. Jarman KH, Kreuzer-Martin HW, Wunschel DS et al (2008) Bayesian-integrated microbial forensics. Appl Environ Microbiol 74:3573–3582

    Article  PubMed  CAS  Google Scholar 

  85. Ayliffe LK, Cerling TE, Robinson T et al (2004) Turnover of carbon isotopes in tail hair and breath CO2 of horses fed an isotopically varied diet. Oecologia 139:11–22

    Article  PubMed  CAS  Google Scholar 

  86. Cerling TE, Ayliffe LK, Dearing MD et al (2007) Determining biological tissue turnover using stable isotopes: the reaction progress variable. Oecologia 151:175–189

    Article  PubMed  Google Scholar 

  87. Benninghoven A, Rudenauer F, Werner W (1987) Secondary ion mass spectrometry. Wiley, New York

    Google Scholar 

  88. Peteranderl R, Lechene C (2004) Measure of carbon and nitrogen stable isotope ratios in cultured cells. J Am Soc Mass Spectrom 15:478–485

    Article  PubMed  CAS  Google Scholar 

  89. Vickerman J, Briggs D (2001) ToF-SIMS: surface analysis by mass spectrometry. IM Publications, Chichester

    Google Scholar 

  90. Cliff JB, Jarman KH, Valentine NB et al (2005) Differentiation of spores of Bacillus subtilis grown in different media by elemental characterization using time-of-flight secondary ion mass spectrometry. Appl Environ Microbiol 71:6524–6530

    Article  PubMed  CAS  Google Scholar 

  91. Fahey AJ, Messenger S (2001) Isotopic ratio measurements by time-of-flight secondary ion mass spectrometry. Int J Mass Spectrom 208:227–242

    Article  CAS  Google Scholar 

  92. Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF (2002) Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc Natl Acad Sci USA 99:7663–7668

    Article  PubMed  CAS  Google Scholar 

  93. Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF (2001) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–487

    Article  PubMed  CAS  Google Scholar 

  94. Fitzsimons ICW, Harte B, Clark RM (2000) SIMS stable isotope measurement: counting statistics and analytical precision. Mineral Mag 64:59–83

    Article  CAS  Google Scholar 

  95. Wahl KL, Colburn HA, Wunschel DS, Petersen CE, Jarman KH, Valentine NB (2010) Residual agar ­determination in bacterial spores by electrospray ­ionization mass spectrometry. Anal Chem 82: 1200–1206

    Article  PubMed  CAS  Google Scholar 

  96. Sharp ZD (2007) Principles of stable isotope geochemistry. Pearson/Prentice Hall, Upper Saddle River

    Google Scholar 

  97. Price TD, Burton JH, Bentley RA (2002) The characterization of biologically available strontium isotope ratios for the study of prehistoric migration. Archaeometry 44:117–135

    Article  CAS  Google Scholar 

  98. Budd P, Montgomery J, Evans J, Chenery C, Powlesland D (2002) Reconstructing Anglo-Saxon immigration and residential mobility from O-Sr- and Pb-isotope analysis. Geochim Cosmochim Ac 66: A109–A

    Article  Google Scholar 

  99. Evans JA, Chenery CA, Fitzpatrick AP (2006) Bronze age childhood migration of individuals near stonehenge revealed by strontium and oxygen isotope tooth enamel analysis. Archaeometry 48:309–321

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen W. Kreuzer Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kreuzer, H.W. (2012). Stable Isotope Signatures for Microbial Forensics. In: Cliff, J., Kreuzer, H., Ehrhardt, C., Wunschel, D. (eds) Chemical and Physical Signatures for Microbial Forensics. Infectious Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-60327-219-3_7

Download citation

Publish with us

Policies and ethics