Skip to main content

Elemental Signatures for Microbial Forensics

  • Chapter
  • First Online:
Book cover Chemical and Physical Signatures for Microbial Forensics

Part of the book series: Infectious Disease ((ID))

  • 893 Accesses

Abstract

Elemental signatures in microorganisms are influenced by the organism’s growth environment, postharvest modifications, and environmental exchange. It is clear that for organisms of the genus Bacillus, signatures from growth medium have the potential to remain robust for a long enough period of time to be useful from the standpoint of forensic investigation. Analogous to the compositional analysis of bullet lead (CABL), elemental signatures that are statistically indistinguishable between samples do not necessarily imply the samples have identical histories. Thus, the usefulness of elemental analyses lies in developing investigative leads and exonerating suspects rather than linking absolutely a suspect with a sample. More research is required in order to understand the ubiquity of useful signatures among types of organisms, the stability of individual signatures and the potential for overprinting by environmental influences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almiral JR (2001) Elemental analysis of glass fragments. In: Caddy B (ed) Forensic analysis of glass and paint: analysis and interpretation. Taylor and Francis, New York, pp 65–83

    Google Scholar 

  2. Goulding J (1999) Elemental analysis of hair for forensic purposes-a personal journey. In: Robertson J (ed) Forensic examination of hair. Taylor and Francis, NY, London, pp 175–204

    Google Scholar 

  3. Committe on Scientific assesment of bullet lead elemental composition comparison, National Research Council (2004) Forensic analysis weighing bullet lead evidence. National Academies, Washington, DC

    Google Scholar 

  4. Redfield AC (1943) On the proportions of organic derivations in sea water and their relation to the composition of plankton. In: Daniel RJ (ed) James Johnstone memorial volume. University, Liverpool, pp 177–192

    Google Scholar 

  5. Coldman JC, McCarthey JJ, Peavey DG (1979) Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279:210–215

    Article  Google Scholar 

  6. Goldman JC (1986) On phytoplankton growth rates and particulate C:N:P ratios at low light. Limnol Ocean 31:1358–1363

    Article  CAS  Google Scholar 

  7. Duchars MG, Attwood MM (1989) The influence of C:N ratio in the growth medium on the cellular composition and regulation of enzyme activity in Hyphomicrobium X. J Gen Microbiol 135:787–793

    CAS  Google Scholar 

  8. Egli T, Quayle JR (1986) Influence of the carbon:nitrogen ratio of the growth medium on the cellular composition and the ability of the methylotrophic yeast Hansenula polymorpha to utilise mixed carbon sources. J Gen Microbiol 132:1779–1788

    CAS  Google Scholar 

  9. Ballatori N, Madejczyz MS (2006) Transport of nonessential metals across mammalian cell membranes. In: Tamás MJ, Martinoia E (eds) Molecular biology of metal homeostasis and detoxification: from microbes to man. Springer, Newyork, pp 455–483

    Chapter  Google Scholar 

  10. Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27: 195–226

    Article  PubMed  Google Scholar 

  11. Fowle DA, Fein JB (2000) Experimental measurements of the reversibility of metal–bacteria adsorption reactions. Chem Geol 168:27–36

    Article  CAS  Google Scholar 

  12. Chang JS, Law R, Chang CC (1997) Biosorption of lead, copper, and cadmium by biomass of Pseudomonas aeruginosa PU21. Wat Res 31:1651–1658

    Article  CAS  Google Scholar 

  13. Daughney J, Fowle DA, Fortin D (2001) The effect of growth phase on proton and metal adsorption by Bacillus subtilis. Geochim Cosmochim Ac 65: 1025–1035

    Article  CAS  Google Scholar 

  14. Fein B, Daughney CJ, Yee N, Davis T (1997) A chemical equilibrium model for metal adsorption onto ­bacterial surfaces. Geochim Cosmochim Ac 61: 3319–3328

    Article  CAS  Google Scholar 

  15. Klimmek S, Stan HJ, Wilke A, Gunke G, Buchholz R (2001) Comparative analysis of the biosorption of cadmium, lead, nickel and zinc by alga. Environ Sci Technol 27:4283–4288

    Article  Google Scholar 

  16. Nacorda JO, Martinez-Goss MR, Torreta NK, Merca FE (2007) Metal resistance and removal by two strains of the green alga, Chlorella vulgaris Beijerinck, isolated from Laguna de Bay, Philippines. J Appl Phycol 19:701–710

    Article  CAS  Google Scholar 

  17. Cotoras D, Millar M, Viedma P, Pimentel J, Mestre A (1992) Biosorption of metal ions by Azotobacter vinelandii. W J Microbiol Biotechnol 8:319–323

    Article  CAS  Google Scholar 

  18. Yee N, Fein J (2001) Cd adsorption onto bacterial surfaces: a universal adsorption edge? Geochim Cosmochim Ac 65:2037–2042

    Article  CAS  Google Scholar 

  19. Fein J, Martin AM, Wightman PG (2001) Metal adsorption onto bacterial surfaces: development of a predictive approach. Geochim Cosmochim Ac 65: 4267–4273

    Article  CAS  Google Scholar 

  20. Amaha M, Ordal ZJ (1957) Effect of divalent cations in the sporulation medium on the thermal death rate of Bacillus coagulans var. thermoacidurans. J Bacteriol 74:596–604

    PubMed  CAS  Google Scholar 

  21. Levinson HS, Hyatt MT (1964) Effect of sporulation medium on heat resistance, chemical composition, and germination of Bacillus megaterium spores. J Bacteriol 87:876–886

    PubMed  CAS  Google Scholar 

  22. Marquis RE, Shin SY (1994) Mineralization and responses of bacterial spores to heat and oxidative agents. FEMS Microbiol Rev 14:375–379

    Article  PubMed  CAS  Google Scholar 

  23. Murrell WG (1967) The biochemistry of the bacterial endospore. Adv Microb Physiol 1:133–251

    Article  CAS  Google Scholar 

  24. Nicholson WL, Munakata N, Horneck G, Melosh HL, Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572

    Article  PubMed  CAS  Google Scholar 

  25. Pelcher EA, Fleming HP, Ordal ZJ (1963) Some characteristics of spores of Bacillus cereus produced by a replacement technique. Can J Microbiol 9:251–258

    Article  CAS  Google Scholar 

  26. Slepecky R, Foster JW (1959) Alterations in metal content of spores of Bacillus megaterium and the effect of some spore properties. J Bacteriol 78: 117–123

    PubMed  CAS  Google Scholar 

  27. Kihm DJ, Hutton MT, Hanlin JH, Johnson EA (1990) Influence of transition metals added during sporulation on heat resistance of Clostridium botulinum 113B spores. Appl Environ Microbiol 56:681–685

    PubMed  CAS  Google Scholar 

  28. Stewart MA, Somlyo P, Somlyo AV, Shuman H, Lindsay JA, Murrell WG (1980) Distribution of calcium and other elements in cryosectioned Bacillus cereus T spores, determined by high-resolution scanning electron probe X-ray microanalysis. J Bacteriol 143:481–491

    PubMed  CAS  Google Scholar 

  29. Stewart MA, Somlyo P, Somlyo AV, Shuman H, Lindsay JA, Murrell WG (1981) Scanning electron probe X-ray microanalysis of elemental distributions in freeze-dried cryosections of Bacillus coagulans spores. J Bacteriol 147:670–674

    PubMed  CAS  Google Scholar 

  30. Ghosal S, Fallon SJ, Leighton T, Wheeler KE, Hutcheon ID, Weber PK (2008) Imaging and 3D elemental characterization of intact bacterial spores with high-resolution secondary ion mass spectrometry (NanoSIMS) depth profile analysis. Anal Chem 80:5986–5992

    Article  PubMed  CAS  Google Scholar 

  31. Ghosal Sl, Leighton TJ, Wheeler KE, Hutcheon ID, Weber PK (2010) Spatially resolved characterization of water and ion incorporation in Bacillus spores. Appl Environ Microbiol 76:3275–3282

    Article  PubMed  CAS  Google Scholar 

  32. (https://www.llnl.gov/str/Sep06/pdfs/09_06.2.pdf). Access date 18/09/2010

  33. Velsko SP (2010) Nonbiological measurements on biological agents. In: Budowle B, Schutzer SE, Breeze RG, Keim PS, Morse SA (eds) Microbial forensics, 2nd edn. Elsevier, London, pp 509–525

    Google Scholar 

  34. Michael JR, Brewer LN, Kotula PG (2010) Electron beam-based methods for bioforensic investigations. In: Budowle B, Schutzer SE, Breeze RG, Keim PS, Morse SA (eds) Microbial forensics, 2nd edn. Elsevier, London, pp 421–447

    Google Scholar 

  35. Michael JR (2009) Presentation to the National Research Council scientific review of the FBI anthrax investigation. http://nationalacademies.org/newsroom/nalerts/20090925.

  36. Weber PK, Graham GA, Teslich NE, Moberly Chan W, Ghosal S, Leighton TJ, Wheeler KE (2010) NanoSIMS imaging of Bacillus spores sectioned by focused ion beam. J Microsc 238:189–199

    Article  PubMed  CAS  Google Scholar 

  37. Weber PK (2009) Presentation to the National Research Council scientific review of the FBI anthrax investigation. http://nationalacademies.org/newsroom/nalerts/20090925.

  38. Cliff JB, Jarman KH, Valentine NB, Golledge SL, Gaspar DJ, Wunschel DS, Wahl KL (2005) Differentiation of spores of Bacillus subtilis grown in different media by elemental characterization using time-of-flight secondary ion mass spectrometry. Appl Environ Microbiol 71:6524–6530

    Article  PubMed  CAS  Google Scholar 

  39. Gikunju CM, Lev SM, Birenzvige A, Schaefer DM (2004) Detection and identification of bacteria using direct injection inductively coupled plasma mass spectroscopy. Talanta 62:741–744

    Article  PubMed  CAS  Google Scholar 

  40. Brundle RC, Evans CA, Wilson S (eds) (1992) Encyclopedia of materials characterisation. Butter­worth-Heinemann, Stoneham

    Google Scholar 

  41. Nix ABJ, Wilson DW (1990) Assay detection limits: concept, definition, and estimation. Eur J Clin Pharmacol 39:203–206

    Article  PubMed  CAS  Google Scholar 

  42. Carrera M, Zandomeni RO, Sagripanti J-L (2008) Wet and dry density of Bacillus anthracis and other Bacillus species. J Appl Microbiol 105:68–77

    Article  PubMed  CAS  Google Scholar 

  43. Fitzsimons CW, Harte B, Clark RM (2000) SIMS stable isotope measurement: counting statistics and precision. Mineral Mag 64:59–83

    Article  CAS  Google Scholar 

  44. http://www.sandia.gov/mission/ste/stories/2009/September%202009/individual%20files/Kotula-Michael-09.pdf. Access date 18/09/2011

  45. http://www.scientificamerican.com/article.cfm?id=sandia-anthrax-mailing-investigation. Access date 18/09/2011

  46. Bhattacharjee Y (2010) Anthrax investigation: silicon mystery endures in solved anthrax case. Science 327:1435

    Article  PubMed  CAS  Google Scholar 

  47. http://www.nature.com/news/2008/080929/full/news.2008.1137.html. Access date 18/09/2011

  48. Goldstein JI, Newbury DE, Joy DC, Lyman CE, Echlin P, Lifshin E, Sawyer L, Michael JR (2003) Scanning electron microscopy and X-ray microanalysis, 3rd edn. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  49. Williams DB, Carter CB (2009) Transmission electron microscopy a textbook for materials science. Plenum, Volume IV, New York

    Google Scholar 

  50. Olesik JW (1992) Inductively coupled plasma-optical emission spectroscopy. In: Brundle RC, Evans CA, Wilson S (eds) Encyclopedia of materials char­acterization. Butterworth-Heinemann, Stoneham, pp 633–644

    Google Scholar 

  51. Streusand BJ (1992) Inductively coupled plasma mass spectroscometry. In: Brundle RC, Evans CA, Wilson S (eds) Encyclopedia of materials characterization. Butterworth-Heinemann, Stoneham, pp 624–632

    Google Scholar 

  52. Dean JR (2005) Practical inductively coupled plasma spectroscopy. Wiley, Chichester

    Book  Google Scholar 

  53. Samuels ACF, DeLucia C, McNesby KL, Miziolek AW (2003) Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential. Appl Opt 42: 6205–6209

    Article  PubMed  CAS  Google Scholar 

  54. Benninghoven A, Rüdenauer FG, Werner HW (1987) Secondary ion mass spectrometry. Wiley-Interscience, New York

    Google Scholar 

  55. Wilson RG, Stevie FA, Magee CW (1989) Secondary ion mass spectrometry: a practical handbook for depth profiling and bulk impurity analysis. Wiley, New York

    Google Scholar 

  56. Vickerman JC, Briggs D (eds) (2001) ToF-SIMS: surface analysis by mass spectrometry. IM Publications, Chichester

    Google Scholar 

  57. Schaldach CM, Bench G, DeYoreo JJ, Esposito T, Fergenson DP, Ferreira J, Gard E, Grant P, Hollars C, Horn J, Huser T, Kashgarian M, Knezovich J, Lane SM, Malkin AJ, Pitesky M, Talley C, Tobias HJ, Woods B, Wu K-J, Velsko SP (2005) Non-DNA methods for biological signatures. In: Breeze RG, Budowle B, Schutzer SE (eds) Microbial forensics. Elsevier, London, pp 251–294

    Chapter  Google Scholar 

  58. Hillion F, Daigne B, Girard F, Slodzian G (1993) A new high performance instrument: the CAMECA NanoSIMS 50. In: Benninghoven A, Nihei Y, Shimizu R, Werner HW (eds) Secondary ion mass spectrometry: SIMS IX. Wiley, Chichester, pp 254–257

    Google Scholar 

  59. Davisson ML, Weber PK, Pett-Ridge J, Singer S (2008) Development of standards for NanoSIMS analyses of biological materials. Lawerence Livermore National Laboratory Report. LLNL-TR-406039

    Google Scholar 

  60. Randich E, Duerfeldt W, McLendon W, Tobin W (2002) A metallurgical review of the interpretation of bullet lead compositional analysis. Forensic Sci Int 127:174–191

    Article  PubMed  CAS  Google Scholar 

  61. FBI National Press Office, Washington, D.C, Press release, 1 Sept. 2005

    Google Scholar 

Download references

Acknowledgments

Portions of this research were conducted under the Laboratory Directed Research and Development Program of the US Department of Energy. A portion of the research described in the manuscript was performed at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the US Department of Energy’s Office of Biological and Environmental Research, located at Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy, under contract DE-AC05-76RLO1830. Support from the National Science Foundation (DMR-0216639) for the TOF-SIMS instrumentation at the University of Oregon is gratefully acknowledged. The authors acknowledge the facilities, scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, a facility funded by the University, State, and Commonwealth Governments. Bacillus samples were prepared by Nancy Valentine, and Tom Farmer conducted ICP-OES and ICP-MS analyses. Bacillus diagram in Fig. 6.1 was created by Jeremy Shaw.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. Cliff Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cliff, J.B. (2012). Elemental Signatures for Microbial Forensics. In: Cliff, J., Kreuzer, H., Ehrhardt, C., Wunschel, D. (eds) Chemical and Physical Signatures for Microbial Forensics. Infectious Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-60327-219-3_6

Download citation

Publish with us

Policies and ethics