Skip to main content

Carbohydrate Markers of Organism Purity and Growth Environment

  • Chapter
  • First Online:
Chemical and Physical Signatures for Microbial Forensics

Part of the book series: Infectious Disease ((ID))

Abstract

Recent experience with Bacillus spore characterization has demonstrated that carbohydrate content can provide potentially useful bioforensics information. Like other metabolites, the carbohydrate profiles of a sample can reflect variations in cellular structures as well as presence of residual carbohydrates from the medium. The presence and characteristics of residual carbohydrates, such as agar, represent strong indicators of culturing method. The culturing method is but one part of the biological production process. Methods to detect residual carbohydrates can be extended to other carbohydrates commonly used in processing and preservation of microbes and their components in a dry form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Budowle B, Wilson MR (2003) Addressing bioterrorism and biocrimes through microbial forensics. Forensic Sci Int 136:392

    Google Scholar 

  2. Budowle B, Schutzer SE, Einseln A et al (2003) Building microbial forensics as a response to bioterrorism. Science 301:1852–3

    Article  PubMed  CAS  Google Scholar 

  3. Budowle B (2004) Genetics and attribution issues that confront the microbial forensics field. Forensic Sci Int 146:S185–S8

    Article  PubMed  CAS  Google Scholar 

  4. Budowle B, Johnson MD, Fraser CM, Leighton TJ, Murch RS, Chakraborty R (2005) Genetic analysis and attribution of microbial forensics evidence. Crit Rev Microbiol 31:233–54

    Article  PubMed  CAS  Google Scholar 

  5. Ecker DJ, Sampath RA, Willett P et al (2005) The Microbial Rosetta Stone database: a common structure for microbial biosecurity threat agents. J Forensic Sci 50:1380–5

    Article  CAS  Google Scholar 

  6. Budowle B, Schutzer SE, Ascher MS et al (2005) Toward a system of microbial forensics: from sample collection to interpretation of evidence. Appl Environ Microbiol 71:2209–13

    Article  PubMed  CAS  Google Scholar 

  7. Morse SA, Budowle B (2006) Microbial forensics: application to bioterrorism preparedness and response. Infect Dis Clin North Am 20:455–73

    Article  PubMed  Google Scholar 

  8. Murch RS (2003) Microbial forensics: building a national capacity to investigate bioterrorism. Biosecur Bioterror 1:117–22

    Article  PubMed  Google Scholar 

  9. Murch RS (2005) Biothreat agent forensics: seeking attribution using an adaptive, integrated approach. Abs Pap Am Chem Soc 229:U1182–U3

    Google Scholar 

  10. Beecher DJ (2006) Forensic application of microbiological culture analysis to identify mail intentionally contaminated with Bacillus anthracis spores. Appl Environ Microbiol 72:5304–10

    Article  PubMed  CAS  Google Scholar 

  11. Fox A, Black GE, Fox K, Rostovtseva S (1993) Determination of carbohydrate profiles of Bacillus anthracis and Bacillus cereus including identification of O-methyl methyl pentoses by using gas-chromatography mass spectrometry. J Clin Microbiol 31:887–94

    PubMed  CAS  Google Scholar 

  12. Fox A, Rogers JC, Fox KF, Schnitzer G, Morgan SL, Brown A, Aono R (1990) Chemotaxonomic differentiation of Legionellae by detection and characterization of aminodideoxyhexoses and other unique sugars using gas chromatography mass spectrometry. J Clin Microbiol 28:546–52

    PubMed  CAS  Google Scholar 

  13. Fox A, Gilbart J, Morgan SL (1990) Profiling and detection of bacterial carbohydrates. In: Fox A et al (ed) Analytical microbiology methods: chromatography and mass spectrometry; first international symposium on the interface between analytical chemistry and microbiology: applications of chromatography and mass spectrometry, Columbia, South Carolina, USA, 3–7 June 1987, New York, 280 p. Plenum, New York, pp 71–88

    Google Scholar 

  14. Fox A, Black GE (1994) Identification and detection of carbohydrate markers for bacteria – derivatization and gas chromatography mass spectrometry. In: Mass Spectrometry for the Characterization of Microorganisms. Chap. 8 American Chemical Society, 107–31

    Google Scholar 

  15. Kim JS, Laskowich ER, Arumugham RG, Kaiser RE, MacMichael GJ (2005) Determination of saccharide content in pneumococcal polysaccharides and conjugate vaccines by GG-MSD. Anal Biochem 347:262–74

    Article  PubMed  CAS  Google Scholar 

  16. Adams MA, Chen ZL, Landman P, Colmer TD (1999) Simultaneous determination by capillary gas chromatography of organic acids, sugars, and sugar alcohols in plant tissue extracts as their trimethylsilyl derivatives. Anal Biochem 266:77–84

    Article  PubMed  CAS  Google Scholar 

  17. Honda S (1996) Separation of neutral carbohydrates by capillary electrophoresis. J Chromatogr A 720:337–51

    Article  PubMed  CAS  Google Scholar 

  18. Honda S, Okeda J, Iwanaga H et al (2000) Ultramicroanalysis of reducing carbohydrates by capillary electrophoresis with laser-induced fluorescence detection as 7-nitro-2,1,3-benzoxadiazole-tagged N-methylglycamine derivatives. Anal Biochem 286: 99–111

    Article  PubMed  CAS  Google Scholar 

  19. Guignard C, Jouve L, Bogeat-Triboulot MB, Dreyer E, Hausman JF, Hoffmann L (2005) Analysis of carbohydrates in plants chromatography coupled with by high-performance anion-exchange electrospray mass spectrometry. J Chromatogr A 1085:137–42

    Article  PubMed  CAS  Google Scholar 

  20. Bruggink C, Maurer R, Herrmann H, Cavalli S, Hoefler F (2005) Analysis of carbohydrates by anion exchange chromatography and mass spectrometry. J Chromatogr A 1085:104–9

    Article  PubMed  CAS  Google Scholar 

  21. Conboy JJ, Henion J (1992) High performance anion exchange chromatography coupled with mass spectrometry for the determination of carbohydrates. Biol Mass Spectrom 21:397–407

    Article  PubMed  CAS  Google Scholar 

  22. Kohler M, Leary JA (1995) LC/MS/MS of carbohydrates with postcolumn addition of metal chlorides using a triaxial electrospray probe. Anal Chem 67: 3501–8

    Article  PubMed  CAS  Google Scholar 

  23. Wunschel DS, Fox KF, Fox A et al (1997) Quantitative analysis of neutral and acidic sugars in whole bacterial cell hydrolysates using high-performance anion-exchange liquid chromatography electrospray ionization tandem mass spectrometry. J Chromatogr A 776:205–19

    Article  PubMed  CAS  Google Scholar 

  24. Shahgholi M, Ohorodnik S, Callahan JH, Fox A (1997) Trace detection of underivatized muramic acid in environmental dust samples by microcolumn liquid chromatography electrospray tandem mass spectrometry. Anal Chem 69:1956–60

    Article  CAS  Google Scholar 

  25. Itoh S, Kawasaki N, Ohta M, Hayakawa T (2002) Structural analysis of a glycoprotein by liquid chromatography-mass spectrometry and liquid chromatography with tandem mass spectrometry – application to recombinant human thrombomodulin. J Chromatogr A 978:141–52

    Article  PubMed  CAS  Google Scholar 

  26. Rogatsky E, Stein D (2005) Novel, highly robust method of carbohydrate pre-purification by two-dimensional liquid chromatography prior to liquid chromatography/mass spectrometry or gas chromatography/mass spectrometry. J Chromatogr A 1073:11–6

    Article  PubMed  CAS  Google Scholar 

  27. Kim K, Hadfield T, Fox K, Fox A (1996) Differentiation of Brucella species using PCR and gas chromatography-mass spectrometry. Abs Gen Meet Am Soc Micro 96:472

    Google Scholar 

  28. Wunschel D, Fox KF, Black GE, Fox A (1994) Discrimination among the B. cereus group, in comparison to B. subtilis, by structural carbohydrate profiles and ribosomal RNA spacer region PCR. Syst Appl Microbiol 17:625–35

    Article  Google Scholar 

  29. Wright J, Heckels JE (1975) Teichuronic acid of cell-walls of Bacillus subtilis W23 grown in a chemostat under phosphate limitation. Biochem J 147:187–9

    PubMed  CAS  Google Scholar 

  30. Lang WK, Glassey K, Archibald AR (1982) Influence of phosphate supply on teichoic acid and teichuronic acid content of Bacillus subtilis cell walls. J Bacteriol 151:367–75

    PubMed  CAS  Google Scholar 

  31. Robson RL, Baddiley J (1977) Role of teichuronic acid in Bacillus licheniformis-defective autolysis due to deficiency of teichuronic acid in a novobiocin-resistant mutant. J Bacteriol 129:1051–8

    PubMed  CAS  Google Scholar 

  32. Ellwood DC, Tempest DW (1969) Control of teichoic acid and teichuronic acid biosyntheses in chemostat cultures of Bacillus subtilis var niger. Biochem J 111:1

    PubMed  CAS  Google Scholar 

  33. Fox KF, Wunschel DS, Fox A, Stewart GC (1998) Complementarity of GC-MS and LC-MS analyses for determination of carbohydrate profiles of vegetative cells and spores of Bacilli. J Microbiol Methods 33:1–11

    Article  CAS  Google Scholar 

  34. Sylvestre P, Couture-Tosi E, Mock M (2002) A ­collagen-like surface glycoprotein is a structural component of the Bacillus anthracis exosporium. Mol Microbiol 45:169–78

    Article  PubMed  CAS  Google Scholar 

  35. Daubenspeck JM, Zeng HD, Chen P et al (2004) Novel oligosaccharide side chains of the collagen-like region of BclA, the major glycoprotein of the Bacillus anthracis exosporium. J Biol Chem 279:30945–53

    Article  PubMed  CAS  Google Scholar 

  36. Waller LN, Stump MJ, Fox KF et al (2005) Identification of a second collagen-like glycoprotein produced by Bacillus anthracis and demonstration of associated spore-specific sugars. J Bacteriol 187: 4592–7

    Article  PubMed  CAS  Google Scholar 

  37. Thompson BM, Waller LN, Fox KF, Fox A, Stewart GC (2007) The BclB glycoprotein of Bacillus anthracis is involved in exosporium integrity. J Bacteriol 189:6704–13

    Article  PubMed  CAS  Google Scholar 

  38. Hess W (1992) Walther and Angelina Hesse-Early contributors to bacteriology. ASM News 58:425

    Google Scholar 

  39. Chaoyuan W (ed) (1990) Properties, manufacture and application of seaweed polysaccharides – agar, carrageenan and algin, China. In: Training Manual on Gracilaria Culture and Seaweed Processing in China. Chap. 3. Food and agriculture organization of the United Nations.

    Google Scholar 

  40. Jol CN, Neiss TG, Penninkhof B, Rudolph B, De Ruiter GA (1999) A novel high-performance anion-exchange chromatographic method for the analysis of carrageenans and agars containing 3,6-anhydrogalactose. Anal Biochem 268:213–22

    Article  PubMed  CAS  Google Scholar 

  41. Melo MRS, Feitosa JPA, Freitas ALP, de Paula RCM (2002) Isolation and characterization of soluble sulfated polysaccharide from the red seaweed Gracilaria cornea. Carbohydr Polymers 49:491–8

    Article  CAS  Google Scholar 

  42. Takano R, Hayashi K, Hara S (1995) Highly methylated agars with a high gel-melting point from the red seaweed, Gracilaria eucheumoides. Phytochemistry 40:487–90

    Article  PubMed  CAS  Google Scholar 

  43. Marinho-Soriano E, Bourret E (2003) Effects of season on the yield and quality of agar from Gracilaria species (Gracilariaceae, Rhodophyta). Bioresour Technol 90:329–33

    Article  PubMed  CAS  Google Scholar 

  44. Yaphe W (1960) Colorimetric determination of 3,6-anhydrogalactose and galatose in marine algal polysaccharides. Anal Chem 32:1327–30

    Article  CAS  Google Scholar 

  45. Yaphe W, Arsenault GP (1965) Improved resorcinol reagent for determination of fructose and of 3,6-anhydrogalactose in polysaccharides. Anal Biochem 13: 143–48

    Article  CAS  Google Scholar 

  46. Lahaye M, Yaphe W, Rochas C (1985) C-13-NMR-spectral analysis of sulfated and desulfated polysaccharides of the agar type. Carbohydr Res 143:240–5

    Article  CAS  Google Scholar 

  47. Kiwitthaschemie K, Heims H, Steinhart H, Mischnick P (1993) The analysis of agarose by the reductive cleavage method. Carbohydr Res 248:267–75

    Article  CAS  Google Scholar 

  48. Quemener B, Thibault JF (1990) Assessment of methanolysis for the determination of sugars in pectins. Carbohydr Res 206:277–87

    Article  CAS  Google Scholar 

  49. Navarro DA, Stortz CA (2003) Determination of the configuration of 3,6-anhydrogalactose and cyclizable alpha-galactose 6-sulfate units in red seaweed galactans. Carbohydr Res 338:2111–8

    Article  PubMed  CAS  Google Scholar 

  50. Stevenson TT, Furneaux RH (1991) Chemical methods for the analysis of sulfated galactans from red algae. Carbohydr Res 210:277–98

    Article  PubMed  CAS  Google Scholar 

  51. Fenselau C (2005) In: 17th Sanibel conference on mass spectrometry: forensic science and counter­terrorism, Sanibel conference.

    Google Scholar 

  52. Wunschel DS, Colburn HA, Fox A, Fox K, Harley W, Wahl J, Wahl K (2008) Detection of agar, by analysis of sugar markers, associated with Bacillus anthracis spores, after culture. J Microbiol Methods 74: 57–63

    Article  PubMed  CAS  Google Scholar 

  53. Fox A, Wright L, Fox K (1995) Gas chromatography-tandem mass spectrometry for trace detection of muramic acid, a peptidoglycan chemical marker, in organic dust. J Microbiol Methods 22:11–26

    Article  CAS  Google Scholar 

  54. Yang L, Ma Y, Zhang YX (2007) Freeze-drying of live attenuated Vibrio anguillarum mutant for vaccine preparation. Biologicals 35:265–9

    Article  PubMed  CAS  Google Scholar 

  55. Higl B, Kurtmann L, Carlsen CU et al (2007) Impact of water activity, temperature, and physical state on the storage stability of Lactobacillus paracasei ssp paracasei freeze-dried in a lactose matrix. Biotechnol Prog 23:794–800

    PubMed  CAS  Google Scholar 

  56. Kailasapathy K (2002) Microencapsulation of probiotic bacteria: technology and potential applications. Curr Issues Intest Microbiol 3:39–48

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

A portion of this work was supported by the US Department of Homeland Security Science and Technology within the bioforensics program at The Pacific Northwest National Laboratory, which is operated by Battelle for the US Department of Energy, under contract DE-AC05-76RLO1830. The views and conclusions contained in this document are those of the authors and should not be implied as representing the official policies either express or implied by the US government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Wunschel Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wunschel, D.S., Fox, A. (2012). Carbohydrate Markers of Organism Purity and Growth Environment. In: Cliff, J., Kreuzer, H., Ehrhardt, C., Wunschel, D. (eds) Chemical and Physical Signatures for Microbial Forensics. Infectious Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-60327-219-3_4

Download citation

Publish with us

Policies and ethics