Skip to main content

Experimental Laceration Spinal Cord Injury Model

  • Protocol
Animal Models of Acute Neurological Injuries

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 2770 Accesses

An experimental laceration spinal cord injury (L-SCI) is an animal model designed to study mechanisms of axonal regeneration following SCI. Current techniques for creating L-SCI are performed freehand using visual estimation that cause significant errors in both the lesion depth and shape. In this chapter, we describe an unique method to create precise L-SCI in rodents using the Louisville Injury System Apparatus. We will explain the step-bystep procedure and describe the conditions that affect the outcomes following laceration injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bunge RP, Puckett WR, Hiester ED. Observations on the pathology of several types of human spinal cord injury, with emphasis on the astrocyte response to penetrating injuries. Adv Neurol 1997;72:305–315.

    PubMed  CAS  Google Scholar 

  2. Quencer RM, Bunge RP. The injured spinal cord: imaging, histopathologic clinical correlates, and basic science approaches to enhancing neural function after spinal cord injury. Spine 1996;21(18):2064–2066.

    Article  PubMed  CAS  Google Scholar 

  3. Liverman CT, Altevogt BM, Joy JE, Johnson RT, eds. Progression of spinal cord injury. In: Spinal Cord Injury: Progress, Promise, and Priorities. Washington, D.C.: The National Academies Press, 2005:30–63.

    Google Scholar 

  4. Tracey D. Ascending and descending pathways in the spinal cord. In: Paxinos G, ed. The Rat Nervous System. 3rd ed. San Diego: Elsevier Academic Press, 2004:149–164.

    Google Scholar 

  5. Bradbury EJ, Moon LD, Popat RJ, et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 2002;416(6881):636–640.

    Article  PubMed  CAS  Google Scholar 

  6. Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci 2004;5(2):146–156.

    Article  PubMed  CAS  Google Scholar 

  7. Chen MS, Huber AB, van der Haar ME, et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 2000;403(6768):434–439.

    Article  PubMed  CAS  Google Scholar 

  8. Liu BP, Fournier A, GrandPre T, Strittmatter SM. Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. Science 2002;297(5584):1190–1193.

    Article  PubMed  CAS  Google Scholar 

  9. McGee AW, Strittmatter SM. The Nogo-66 receptor: focusing myelin inhibition of axon regeneration. Trends Neurosci 2003;26(4):193–198.

    Article  PubMed  CAS  Google Scholar 

  10. Wang KC, Koprivica V, Kim JA, et al. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 2002;417(6892):941– 944.

    Article  PubMed  CAS  Google Scholar 

  11. Benson MD, Romero MI, Lush ME, Lu QR, Henkemeyer M, Parada LF. Ephrin-B3 is a myelin-based inhibitor of neurite outgrowth. Proc Natl Acad Sci USA 2005;102(30):10694–10699.

    Article  PubMed  CAS  Google Scholar 

  12. Goldberg JL, Vargas ME, Wang JT, et al. An oligodendrocyte lineage-specific semaphorin, Sema5A, inhibits axon growth by retinal ganglion cells. J Neurosci 2004;24(21):4989–4999.

    Article  PubMed  CAS  Google Scholar 

  13. Goldshmit Y, Galea MP, Wise G, Bartlett PF, Turnley AM. Axonal regeneration and lack of astrocytic gliosis in EphA4-deficient mice. J Neurosci 2004;24(45):10064–10073.

    Article  PubMed  CAS  Google Scholar 

  14. Ramer MS, Harper GP, Bradbury EJ. Progress in spinal cord research — a refined strategy for the International Spinal Research Trust. Spinal Cord 2000;38(8):449–472.

    Article  PubMed  CAS  Google Scholar 

  15. Inman D, Guth L, Steward O. Genetic influences on secondary degeneration and wound healing following spinal cord injury in various strains of mice. J Comp Neurol 2002;451(3):225–235.

    Article  PubMed  Google Scholar 

  16. Kim JE, Li S, GrandPre T, Qiu D, Strittmatter SM. Axon regeneration in young adult mice lacking Nogo-A/B. Neuron 2003;38(2):187–199.

    Article  PubMed  CAS  Google Scholar 

  17. Simonen M, Pedersen V, Weinmann O, et al. Systemic deletion of the myelin-asso-ciated outgrowth inhibitor Nogo-A improves regenerative and plastic responses after spinal cord injury. Neuron 2003;38(2):201–211.

    Article  PubMed  CAS  Google Scholar 

  18. Zheng B, Ho C, Li S, Keirstead H, Steward O, Tessier-Lavigne M. Lack of enhanced spinal regeneration in Nogo-deficient mice. Neuron 2003;38(2):213–224.

    Article  PubMed  CAS  Google Scholar 

  19. Hermanns S, Reiprich P, Muller HW. A reliable method to reduce collagen scar formation in the lesioned rat spinal cord. J Neurosci Methods 2001;110(1–2):141– 146.

    Article  PubMed  CAS  Google Scholar 

  20. Seitz A, Aglow E, Heber-Katz E. Recovery from spinal cord injury: a new transec-tion model in the C57Bl/6 mouse. J Neurosci Res 2002;67(3):337–345.

    Article  PubMed  CAS  Google Scholar 

  21. Frisen J, Fried K, Sjogren AM, Risling M. Growth of ascending spinal axons in CNS scar tissue. Int J Dev Neurosci 1993;11(4):461–475.

    Article  PubMed  CAS  Google Scholar 

  22. Dyer JK, Bourque JA, Steeves JD. Regeneration of brainstem-spinal axons after lesion and immunological disruption of myelin in adult rat. Exp Neurol 1998;154(1):12–22.

    Article  PubMed  CAS  Google Scholar 

  23. Onifer SM, Zhang YP, Burke DA, et al. Adult rat forelimb dysfunction after dorsal cervical spinal cord injury. Exp Neurol 2005;192(1):25–38.

    Article  PubMed  Google Scholar 

  24. Zhang YP, Shields LBE, Zhang Y, et al. Use of magnetic stimulation to elicit motor evoked potentials, somatosensory evoked potentials, and H-reflexes in non-sedated rodents. J Neurosci Methods 2007;165(1):9–17.

    Article  PubMed  Google Scholar 

  25. Iannotti C, Zhang YP, Shields LBE, et al. Dural repair reduces connective tissue scar invasion and cystic cavity formation after acute spinal cord laceration injury in adult rats. J Neurotrauma 2006;23(6):853–865.

    Article  PubMed  Google Scholar 

  26. Sivasankaran R, Pei J, Wang KC, et al. PKC mediates inhibitory effects of myelin and chondroitin sulfate proteoglycans on axonal regeneration. Nat Neurosci 2004;7(3):261–268.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang YP, Iannotti C, Shields LBE, et al. Dural closure, cord approximation, and clot removal: enhancement of tissue sparing in a novel laceration spinal cord injury model. J Neurosurg 2004;100(4 Suppl Spine):343–352.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Zhang, Y.P., Shields, L.B., Shields, C.B. (2009). Experimental Laceration Spinal Cord Injury Model. In: Chen, J., Xu, Z.C., Xu, XM., Zhang, J.H. (eds) Animal Models of Acute Neurological Injuries. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-60327-185-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-185-1_39

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-184-4

  • Online ISBN: 978-1-60327-185-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics