Skip to main content

Optimization of Cyclodextrin Glucanotransferase Production From Bacillus clausii E16 in Submerged Fermentation Using Response Surface Methodology

  • Chapter
Applied Biochemistry and Biotecnology

Abstract

Cyclodextrin glucanotransferase production from Bacillus clausii E16, a new bacteria isolated from Brazilian soil samples was optimized in shake-flask cultures. A 24 full-factorial central composite design was performed to optimize the culture conditions, using a response surface methodology. The combined effect among the soluble starch concentration, the peptone concentration, the yeast extract concentration, and the initial pH value of the culture medium was investigated. The optimum concentrations of the components, determined by a 24 full-factorial central composite design, were 13.4 g/L soluble starch, 4.9 g/L peptone, 5.9 g/L yeast extract, and initial pH 10.1. Under these optimized conditions, the maximum cyclodextrin glucanotransferase activity was. 5.9 U/mL after a 48-h fermentation. This yield was 68% higher than that obtained when the microorganism was cultivated in basal culture medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bender, H. (1986), Adv. Biotechnol. Process. 6, 31–71.

    CAS  Google Scholar 

  2. Alves-Prado, H. F., Gomes, E., and DaSilva, R. (2002), Bol. SBCTA. 36, 43–54.

    Google Scholar 

  3. Martin del Valle, E. M. (2004), Process Biochem. 39, 1033–1046.

    Article  Google Scholar 

  4. Hedges, A. R. (1998), Chem. Rev. 98, 2035–2044.

    Article  CAS  Google Scholar 

  5. Szejtli, J. (1997), J. Mater. Chem. 7, 575–587.

    Article  CAS  Google Scholar 

  6. Tonkova, A. (1998), Enz. Microbial Technol. 22, 678–686.

    Article  CAS  Google Scholar 

  7. Van der Veen, B. A., Uitdehaag, J. C. M., Dijkstra, B. W. E., and Dijkhuizen, L. (2000), Biochim. Bioph. Acta 1543, 336–360.

    Google Scholar 

  8. Gawande, B. N. and Patkar, A. Y. (1999), Biotechnol. Bioeng. 64, 168–173.

    Article  CAS  Google Scholar 

  9. Gawande, B. N., Singh, R. K., Chauhan, A. K., Goel, A., and Patkar, A. Y. (1998), Enz. Microbial Technol. 22, 288–291.

    Article  CAS  Google Scholar 

  10. Ramakrishna, S. V., Saswathi, N., Sheela, R., and Jamuna, R. (1994), Enz. Microbial. Technol. 16, 441–444.

    Article  CAS  Google Scholar 

  11. Turnes, R. E. and Bahar, S. (1996), Acta Científ. Venez. 47, 133–137.

    CAS  Google Scholar 

  12. Matioli, G., Zanin, G. M., and Moraes, F. F. (2002), Appl. Biochem. Biotechnol. 98–100, 947–961.

    Article  Google Scholar 

  13. Ibrahim, H. M., Yusoff, W. M. W., Hamid, A. A., Illias, R. M., Hassan, O., and Omar, O. (2005), Process Biochem. 40, 753–758.

    Article  CAS  Google Scholar 

  14. Rahman, R. A., Illias, R. M., Nawawi, M. G. M., Ismail, A. F., Hassan, O., and Kamaruddin, K. (2004), Process Biochem. 39, 2053–2060.

    Article  CAS  Google Scholar 

  15. Box, G. E. P., Hunter, W. G., and Hunter, J. S. (1978), Statistics for Experimenters. An Introduction to Design, Data Analysis and Model Building. John Wiley, New York.

    Google Scholar 

  16. Barros Neto, B., Scarminio, I. S., and Bruns, R. E. (1996), Planejamento e Otimização de Experimentos. 2nd ed., Editora da UNICAMP, Campinas.

    Google Scholar 

  17. Dey, G., Mitra, A., Banerjee, R., and Maiti, B. R. (2001), Biochem. Eng. J. 7, 227–231.

    Article  CAS  Google Scholar 

  18. Haltrich, D., Preiss, M., and Steiner, W. (1993), Enz. Microbial. Technol. 15, 854–860.

    Article  CAS  Google Scholar 

  19. Bocchini, D. A., Alves-Prado, H. F., Baida, L. C., Roberto, I. C., Gomes, E., and Dasilva, R. (2002), Process Biochem. 38, 727–731.

    Article  CAS  Google Scholar 

  20. Lee, S. L. and Chen, W. C. (1997), Enz. Microbial. Technol. 21, 436–440.

    Article  CAS  Google Scholar 

  21. Alves-Prado, H. F., Gomes, E, and DaSilva, R. (2002), Brazilian J. Food Technol. 98, 189–196.

    Google Scholar 

  22. Sneath, P. H. A. (1986), In: Bergey’s Manual of Systematic Bacteriology. Section 13, Williams & Wilkins, Baltimor, pp. 1105–1139.

    Google Scholar 

  23. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994), Nucleic Acid Res. 22, 4673–4680.

    Article  CAS  Google Scholar 

  24. Nakamura, N. and Horikoshi, K. (1976), Agric. Biol. Chem. 40, 1785–1791.

    CAS  Google Scholar 

  25. Nakamura, N. and Horikoshi, K. (1976), Agric. Biol. Chem. 40, 753–757.

    CAS  Google Scholar 

  26. Mäkelä, M. J., Korpela, T. K., Puisto, J., and Laakso, S. V. (1988), Agric. Food Chem. 36, 83–88.

    Article  Google Scholar 

  27. Alves-Prado, H. F., Gomes, E., and DaSilva, R. (2006), Appl. Biochem. Biotechnol. 129–132, 234–246.

    Google Scholar 

  28. Alves-Prado, H. F. (2000), M.Sc. Dissertation, UNESP, Rio Claro, Brazil, pp. 144.

    Google Scholar 

  29. Nielsen, P., Fritze, D., and Priest, F. G. (1995), Microbiology 141, 1745–1761.

    Article  CAS  Google Scholar 

  30. Myers, R. H. (1971), Response surface methodology Allyn and Bacon, Boston.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Alves-Prado, H.F. et al. (2007). Optimization of Cyclodextrin Glucanotransferase Production From Bacillus clausii E16 in Submerged Fermentation Using Response Surface Methodology. In: Mielenz, J.R., Klasson, K.T., Adney, W.S., McMillan, J.D. (eds) Applied Biochemistry and Biotecnology. ABAB Symposium. Humana Press. https://doi.org/10.1007/978-1-60327-181-3_4

Download citation

Publish with us

Policies and ethics