Skip to main content

The Impact of Enzyme Characteristics on Corn Stover Fiber Degradation and Acid Production During Ensiled Storage

  • Chapter
Applied Biochemistry and Biotecnology

Part of the book series: ABAB Symposium ((ABAB))

Abstract

Ensilage can be used to store lignocellulosic biomass before industrial bioprocessing. This study investigated the impacts of seven commerical enzyme mixtures derived from Aspergillus niger, Trichoderma reesei, and T. longibrachiatum. Treatments included three size grades of corn stover, two enzyme levels (1.67 and 5 IU/g dry matter based on hemicellulase), and various ratios of cellulase to hemicellulase (C ∶ H). The highest C ∶ H ratio tested, 2.38, derived from T. reesei, resulted in the most effective fermentation, with lactic acid as the dominant product. Enzymatic activity during storage may complement industrial pretreatment; creating synergies that could reduce total bioconversion costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kadam, K. L. and McMillan, J. D. (2003), Bioresour. Technol. 88, 17–25.

    Article  CAS  Google Scholar 

  2. Perlack, R. D., Wright, L. L., Turhollow, A. F., Graham, R. L., Stokes, B. J., and Erbach, D. C. (2005), Biomass as Feedstock for Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion Ton Annual Supply. Oak Ridge National Laboratory, Oak Ridge, TN.

    Google Scholar 

  3. Walsh, M. E., Perlack, R. L., Turhoolow, A., et al. (1999), Biomass Feedstock Availability in the United States: 1999 State Level Analysis. Oak Ridge National Laboratory, Oak Ridge, TN.

    Google Scholar 

  4. Sudha Rani, K., Swamy, M. V., and Seenayya, G. (1998), Process Biochem. 33, 435–440.

    Article  Google Scholar 

  5. Riera, F. A., Alvarez, R., and Coca, J. (1991), J. Chem. Technol. Biotechnol. 50, 149–155.

    CAS  Google Scholar 

  6. Buhner, J. and Agblevor, F. A. (2004) Appl. Biochem. Biotechnol. 119, 13–30.

    Article  CAS  Google Scholar 

  7. Wang, D. and Sun, X. S. (2002), Ind. Crops Prods. 15, 43–50.

    Article  CAS  Google Scholar 

  8. Chow, P., Bowers, T. C., Bajwa, D. S., et al. (1999), Proceeding of 5th International Conference on Woodfiber-plastic Composites, Madison, WS, 26–27 May 1999, pp. 312–313.

    Google Scholar 

  9. Green, A. E. S. and Feng, J. (2005), J. Anal. Appl. Pyrolysis 76, 60–69.

    Article  CAS  Google Scholar 

  10. Hu, Z. and Yu, H. (2005), Process Biochem. 40, 2371–2377.

    Article  CAS  Google Scholar 

  11. Teymouri, F., Laureano-Perez, L., Alizadeh, H., and Dale, B. E. (2005), Bioresour. Technol. 98, 2014–2018.

    Article  CAS  Google Scholar 

  12. Ren, H., Richard, T. L., Chen, Z., et al. (2006), Biotechnol. Prog. 22, 78–85.

    Article  CAS  Google Scholar 

  13. Richard, T. L., Moore, K. J., Tobía, C., and Patrick, P. (2002), Proceedings Institute of Biological Engineering, Baton Rouge, LA, 18–21 January, vol. 3, pp. 45–53.

    Google Scholar 

  14. Thompson, D. N., Barnes, J. M., and Houghton, T. P. (2005), Appl. Biochem. Biotechnol. 121–124, 21–46.

    Article  Google Scholar 

  15. McDonald, P., Henderson, A. R., and Heron, S. J. E. (1991), The Biochemistry of Silage, 2nd ed. Chalcobe Publications, Marlow, Bucks, UK.

    Google Scholar 

  16. Ren, H., Richard, T. L., Moore, K. J., and Patrick, P. (2004), ASAE paper No. 047066. ASAE, Ottawa, Canada.

    Google Scholar 

  17. Henderson, A. R. and McDonald, P. (1977), J. Sci. Food Agric. 28, 486–490.

    Article  CAS  Google Scholar 

  18. Allen, A. L. and Roche, C. D. (1989), Biotechnol. Bioeng. 33, 650–656.

    Article  CAS  Google Scholar 

  19. Sternberg, D., Vijayakumar, P., and Reese, E. T. (1977), Can. J. Microbiol. 23, 139.

    CAS  Google Scholar 

  20. Flachner, B., Brumbauer, A., and Reczey, K. (1999), Enzyme Microb. Technol. 24, 362–367.

    Article  CAS  Google Scholar 

  21. Kang, S. W., Park, Y. S., Lee, J. S., Hong, S. I., and Kim, S. W. (2004), Bioresour. Technol. 91, 153–156.

    Article  CAS  Google Scholar 

  22. Kim, S. W., Kang, S. W., and Lee, J. S. (1997), Bioresour. Technol. 59, 63–67.

    Article  CAS  Google Scholar 

  23. Colombatto, D., Mould, F. L., Bhat, M. K., Phipps, R. H., and Owen, E. (2004), Anim. Feed Sci. Technol. 111, 145–159.

    Article  CAS  Google Scholar 

  24. Mielenz, J. R. (2001), Curr. Opin. Microb. 4, 324–329.

    Article  CAS  Google Scholar 

  25. White, B. A., Mackie, R. I., and Doerner, K. C. (1993), In: Forage Cell Wall Structure and Digestibility, American society of Agronomy, Madison, Inc., pp. 715–767

    Google Scholar 

  26. Mooney, C. A., Mansfield, S. D., Beatson, R. P., and Saddler, J. N. (1999), Enzyme Microb. Technol. 25, 644–650.

    Article  CAS  Google Scholar 

  27. Allan, G. G., Ko, Y. C., and Ritzenthaler, P. (1991), Tappi J. 74, 205–212.

    CAS  Google Scholar 

  28. Richard, T. L., Proulx, S., Moore, K. J., and Shouse, S. (2001) ASAE paper No. 016019. ASAE, St. Joseph, Mich.

    Google Scholar 

  29. Wood, T. M. and Bhat, K. M. (1988), Methods Enzymol. 160, 97–112.

    Google Scholar 

  30. Bailey, M. J., Biely, P., and Poutanen, K. (1992), J. Biotechnol. 23, 257–270.

    Article  CAS  Google Scholar 

  31. Vogel, K. P., Pedersen, J. F., Masterson, S. D., and Toy, J. J. (1999), Crop Sci. 39, 276–279.

    Article  Google Scholar 

  32. Guiragossian, V. Y., Scoyoc, S. W. V., and Axtell, J. D. (1977), In: Chemical and Biological Methods for Grain and Forage Sorghum, Purdue University, W. Lafayette, IN: pp. 174–178.

    Google Scholar 

  33. SAS, SAS/STAT User’s Guide, Version 9.1. (2004), Statistical Analysis System Institute Inc., Cary, NC. Available at http://support.sas.com/91doc/docMainpage.jsp.

    Google Scholar 

  34. Dewar, W. A., McDonald, P, and Whittenbury, R. (1963), J. Sci. Food Agric. 14, 411–417.

    Article  CAS  Google Scholar 

  35. Leibensperger, R. Y. and Pitt, R. E. (1987), Grass Forage Sci. 42, 297–313.

    Article  Google Scholar 

  36. Rauramaa, A., Setala, J., Moisio, T., and Sivela, S. (1987), J. Agric. Sci. Finland 59, 371–377.

    CAS  Google Scholar 

  37. Mandebvu, P,, West, J. W., Froetschel, M. A., Hatfield, R. D., Gates, R. N., and Hill, G. M. (1999), Anim. Feed Sci. Technol. 77, 317–329.

    Article  CAS  Google Scholar 

  38. Jakhmola, R. C., Weddell, J. R., and Greenhalgh, J. F. D. (1990), Anim. Feed Sci. Technol. 28, 39–50.

    Article  Google Scholar 

  39. Nadeau, E. M. G., Buxton, D. R., Russell, J. R., Allison, M. J., and Young, J. W. (2000), J. Dairy Sci. 83, 1487–1502.

    Article  CAS  Google Scholar 

  40. Adogla-Bessa, T., Owen, E., and Adesogan, A. T. (1999), Anim. Food Sci. Technol. 82, 51–61.

    Article  CAS  Google Scholar 

  41. Morrison, I. M. (1988), J. Agric. Sci. 111, 35–39.

    Article  CAS  Google Scholar 

  42. Lynd, L. R., Weimer, P. J., van Zyl, W. H., and Pretorius, I. S. (2002), Microbiol. Mol. Biol. Rev. 66, 506–577.

    Article  CAS  Google Scholar 

  43. Yahaya, M. S., Kimura, A., Harai, J., et al. (2001), Anim. Feed Sci. Technol. 92, 141–148.

    Article  Google Scholar 

  44. Kawamura, O., Fukuyama, K., and Niimi, M. (2001), Anim. Sci. J. 72, 134–138.

    CAS  Google Scholar 

  45. Morrison, I. M. (1979), J. Agric. Sci. 93, 581–586.

    Article  CAS  Google Scholar 

  46. McDonald, P., Stirling, A. C., Henderson, A. R., et al. (1960), Edinburgh School of Agriculture Technical Bulletin 24, 70–77.

    Google Scholar 

  47. Heron, S. J. E., Edwards, R. A., and McDonald, P. (1986), J. Sci. Food Agric. 37, 979–985.

    Article  CAS  Google Scholar 

  48. Ohyama, Y. and Masaki, S. (1977), J. Sci. Food Agric. 28, 78–84.

    Article  CAS  Google Scholar 

  49. Pitt, R. E., Muck, R. E., and Leibensperger, R. Y. (1985), Grass Forage Sci. 40, 279–303.

    Article  Google Scholar 

  50. Bousset, J., Bousset-Fatianoff, N., Gouet, Ph., et al. (1972), Ann. Biol. Anim. Biochim. Biophys. 12, 453–477.

    Article  CAS  Google Scholar 

  51. Van Vuuren, A. M., Bergsma, K., Krol-Kramer, F., and Van Beers, J. A. C. (1989), Grass Forage Sci. 44, 223–230.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom L. Richard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Ren, H., Richard, T.L., Moore, K.J. (2007). The Impact of Enzyme Characteristics on Corn Stover Fiber Degradation and Acid Production During Ensiled Storage. In: Mielenz, J.R., Klasson, K.T., Adney, W.S., McMillan, J.D. (eds) Applied Biochemistry and Biotecnology. ABAB Symposium. Humana Press. https://doi.org/10.1007/978-1-60327-181-3_21

Download citation

Publish with us

Policies and ethics