Skip to main content

New Blood Biomarkers of Inflammation and Atherosclerosis

  • Chapter
  • First Online:
Asymptomatic Atherosclerosis

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1327 Accesses

Abstract

During the past decade, compelling experimental and clinical evidence has demonstrated that both systemic and local inflammation might play a prominent role in the pathogenesis of atherosclerosis and its clinical complications. Since inflammatory processes accompany all stages of atherosclerosis, measurement of plasma/serum concentrations of circulating inflammatory biomarkers might aid in identifying individuals at high risk for cardiovascular disease (CVD). In particular, such biomarkers might add to the predictive value of the atherogenic lipoprotein phenotype to further improve assessment of future global cardiovascular (CV) risk, since many of these molecules can be measured systemically by sensitive assays, and elevated concentrations in the circulation have been shown to be associated with future CV events. Determination of several of these molecules carries important prognostic information, independent of traditional risk factors, and may turn out to be useful in improving risk stratification. However, for most of these biomarkers, the clinical utility has not yet been firmly established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greenland P, Smith SC Jr, Grundy SM. Improving coronary heart disease risk assessment in asymptomatic people: role of traditional risk factors and noninvasive cardiovascular tests. Circulation. 2001;104:1863–1867.

    Article  PubMed  CAS  Google Scholar 

  2. Koenig W, Khuseyinova N. Biomarkers of atherosclerotic plaque instability and rupture. Arterioscler Thromb Vasc Biol. 2007;27:15–26.

    Article  PubMed  CAS  Google Scholar 

  3. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO 3rd, Criqui M, Fadl YY, Fortmann SP, Hong Y, Myers GL, Rifai N, Smith SC Jr, Taubert K, Tracy RP, Vinicor F; Centers for Disease Control and Prevention; American Heart Association. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation. 2003;107:499–511.

    Article  PubMed  Google Scholar 

  4. Danesh J, Wheeler JG, Hirschfield GM, Eda S, Eiriksdottir G, Rumley A, Lowe GD, Pepys MB, Gudnason V. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med. 2004;350:1387–1397.

    Article  PubMed  CAS  Google Scholar 

  5. Rattazzi M, Puato M, Faggin E, Bertipaglia B, Zambon A, Pauletto P. C-reactive protein and interleukin-6 in vascular disease: culprits or passive bystanders? J Hypertens. 2003;21:1787–1803.

    Article  PubMed  CAS  Google Scholar 

  6. The Emerging Risk Factors Collaboration. The Emerging Risk Factors Collaboration: analysis of individual data on lipid, inflammatory and other markers in over 1.1 million participants in 104 prospective studies of cardiovascular diseases. Eur J Epidemiol. 2007;22:839–869.

    Article  Google Scholar 

  7. Pepys MB, Booth DR, Hutchinson WL, Gallimore JR, Collins PM, Hohenester E. Amyloid P component. A critical review. Amyloid. 1997;4:274–295.

    Article  CAS  Google Scholar 

  8. Li XA, Hatanaka K, Ishibashi-Ueda H, Yutani C, Yamamoto A. Characterization of serum amyloid P component from human aortic atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 1995;15:252–257.

    Article  PubMed  CAS  Google Scholar 

  9. Jenny NS, Arnold AM, Kuller LH, Tracy RP, Psaty BM. Serum amyloid P and cardiovascular disease in older men: results from the Cardiovascular Health Study. Arterioscler Thromb Vasc Biol. 2007;27:352–358.

    Article  PubMed  CAS  Google Scholar 

  10. Kamath S, Lip GYH. Fibrinogen: biochemistry, epidemiology and determinants. Q J Med 2003;96:711–729.

    Article  CAS  Google Scholar 

  11. Koenig W. Fibrin(ogen) in cardiovascular disease: an update. Thromb Haemost. 2003;89:601–609.

    PubMed  CAS  Google Scholar 

  12. Fibrinogen Studies Collaboration. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis. JAMA. 2005;294:1799–1809.

    Article  Google Scholar 

  13. Vaughan DE. PAI-1 and atherothrombosis. J Thromb Haemost. 2005;3:1879–1883.

    Article  PubMed  CAS  Google Scholar 

  14. Falkenberg M, Tjarnstrom J, Ortenwall P, Olausson M, Risberg B. Localization of fibrinolytic activators and inhibitors in normal and atherosclerotic vessels. Thromb Haemost. 1996;75:933–938.

    PubMed  CAS  Google Scholar 

  15. Collet JP, Montalescot G, Vicaut E, Ankri A, Walylo F, Lesty C, Choussat R, Beygui F, Borentain M, Vignolles N, Thomas D. Acute release of plasminogen activator inhibitor-1 in ST-segment elevation myocardial infarction predicts mortality. Circulation. 2003;108:391–394

    Article  PubMed  CAS  Google Scholar 

  16. Lowe GD, Danesh J, Lewington S, Walker M, Lennon L, Thomson A, Rumley A, Whincup PH. Tissue plasminogen activator antigen and coronary heart disease. Prospective study and meta-analysis. Eur Heart J. 2004;25:252–259.

    Article  PubMed  CAS  Google Scholar 

  17. Lowe GD. Fibrin D-dimer and cardiovascular risk. Semin Vasc Med. 2005;5:387–398.

    Article  PubMed  Google Scholar 

  18. Lowe GD, Rumley A, McMahon AD, Ford I, O’Reilly DS, Packard CJ; West of Scotland Coronary Prevention Study Group. Interleukin-6, fibrin D-dimer, and coagulation factors VII and XIIa in prediction of coronary heart disease. Arterioscler Thromb Vasc Biol. 2004;24:1529–1534.

    Article  PubMed  CAS  Google Scholar 

  19. Pradhan AD, LaCroix AZ, Langer RD, Trevisan M, Lewis CE, Hsia JA, Oberman A, Kotchen JM, Ridker PM. Tissue plasminogen activator antigen and D-dimer as markers for atherothrombotic risk among healthy postmenopausal women. Circulation. 2004;110:292–300.

    Article  PubMed  CAS  Google Scholar 

  20. Lindmark E, Diderholm E, Wallentin L, Siegbahn A. Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: effects of an early invasive or noninvasive strategy. JAMA. 2001;286:2107–2113.

    Article  PubMed  CAS  Google Scholar 

  21. Gracie JA, Robertson SE, McInnes IB. Interleukin-18. J Leukoc Biol. 2003;73:213–224

    Article  PubMed  CAS  Google Scholar 

  22. Caligiuri G, Kaveri S, Nicoletti A. When interleukin-18 conducts, the Preludio sounds the same no matter who plays. Arterioscler Thromb Vasc Biol. 2005;25:655–657.

    Article  PubMed  CAS  Google Scholar 

  23. Blankenberg S, Tiret L, Bickel C, Peetz D, Cambien F, Meyer J, Rupprecht HJ; AtheroGene Investigators. Interleukin-18 is a strong predictor of cardiovascular death in stable and unstable angina. Circulation. 2002;106:24–30.

    Article  PubMed  CAS  Google Scholar 

  24. Tiret L, Godefroy T, Lubos E, Nicaud V, Tregouet DA, Barbaux S, Schnabel R, Bickel C, Espinola-Klein C, Poirier O, Perret C, Munzel T, Rupprecht HJ, Lackner K, Cambien F, Blankenberg S; AtheroGene Investigators. Genetic analysis of the interleukin-18 system highlights the role of the interleukin-18 gene in cardiovascular disease. Circulation. 2005;112:643–650.

    Article  PubMed  CAS  Google Scholar 

  25. Blankenberg S, Luc G, Ducimetiere P, Arveiler D, Ferrieres J, Amouyel P, Evans A, Cambien F, Tiret L; PRIME Study Group Interleukin-18 and the risk of coronary heart disease in European men: the Prospective Epidemiological Study of Myocardial Infarction (PRIME). Circulation. 2003;108:2453–2459.

    Article  PubMed  CAS  Google Scholar 

  26. Koenig W, Khuseyinova N, Baumert J, Thorand B, Loewel H, Chambless L, Meisinger C, Schneider A, Martin S, Kolb H, Herder C. Increased concentrations of C-reactive protein and IL-6 but not IL-18 are independently associated with incident coronary events in middle-aged men and women: results from the MONICA/KORA Augsburg case-cohort study, 1984–2002. Arterioscler Thromb Vasc Biol. 2006;26:2745–2751.

    Article  PubMed  CAS  Google Scholar 

  27. Murr C, Widner B, Wirleitner B, Fuchs D. Neopterin as a marker for immune system activation. Curr Drug Metab. 2002;3:175–187.

    Article  PubMed  CAS  Google Scholar 

  28. Pacileo M, Cirillo P, De Rosa S, Ucci G, Petrillo G, D’Amore SM, Sasso L, Maietta P, Spagnuolo R, Chiariello M. The role of neopterin in cardiovascular disease. Monaldi Arch Chest Dis. 2007;68:68–73.

    PubMed  Google Scholar 

  29. Ray KK, Morrow DA, Sabatine MS, Shui A, Rifai N, Cannon CP, Braunwald E. Long-term prognostic value of neopterin: a novel marker of monocyte activation in patients with acute coronary syndrome. Circulation. 2007;115:3071–3078.

    Article  PubMed  CAS  Google Scholar 

  30. Jones CB, Sane DC, Herrington DM. Matrix metalloproteinases: a review of their structure and role in acute coronary syndrome. Cardiovasc Res. 2003;59:812–823.

    Article  PubMed  CAS  Google Scholar 

  31. Blankenberg S, Rupprecht HJ, Poirier O, Bickel C, Smieja M, Hafner G, Meyer J, Cambien F, Tiret L; AtheroGene Investigators. Plasma concentrations and genetic variation of matrix metalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation. 2003;107:1579–1585.

    Article  PubMed  CAS  Google Scholar 

  32. Lubos E, Schnabel R, Rupprecht HJ, Bickel C, Messow CM, Prigge S, Cambien F, Tiret L, Munzel T, Blankenberg S. Prognostic value of tissue inhibitor of metalloproteinase-1 for cardiovascular death among patients with cardiovascular disease: results from the AtheroGene study. Eur Heart J. 2006;27:150–156.

    Article  PubMed  CAS  Google Scholar 

  33. Cavusoglu E, Ruwende C, Chopra V, Yanamadala S, Eng C, Clark LT, Pinsky DJ, Marmur JD. Tissue inhibitor of metalloproteinase-1 (TIMP-1) is an independent predictor of all-cause mortality, cardiac mortality, and myocardial infarction. Am Heart J. 2006;151:1101.e1–1101.e8.

    Article  Google Scholar 

  34. Thorn EM, Khan IA. Pregnancy-associated plasma protein-A: an emerging cardiac biomarker. Int J Cardiol. 2007;117:370–372.

    Article  PubMed  Google Scholar 

  35. Bunn RC, Fowlkes JL. Insulin-like growth factor binding protein proteolysis. Trends Endocrinol Metab. 2003;14:176–181.

    Article  PubMed  Google Scholar 

  36. Conti E, Andreotti F, Zuppi C. Pregnancy-associated plasma protein a as predictor of outcome in patients with suspected acute coronary syndromes. Circulation. 2004;109:e211–212.

    Article  PubMed  CAS  Google Scholar 

  37. Qin QP, Kokkala S, Lund J, Tamm N, Qin X, Lepantalo M, Pettersson K. Immunoassays developed for pregnancy-associated plasma protein-A (PAPP-A) in pregnancy may not recognize PAPP-A in acute coronary syndromes. Clin Chem. 2006;52:398–404.

    Article  PubMed  CAS  Google Scholar 

  38. Nicholls SJ, Hazen SL. Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2005;25:1102–1111.

    Article  PubMed  CAS  Google Scholar 

  39. Eiserich JP, Baldus S, Brennan ML, Ma W, Zhang C, Tousson A, Castro L, Lusis AJ, Nauseef WM, White CR, Freeman BA. Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science. 2002;296:2391–2394.

    Article  PubMed  CAS  Google Scholar 

  40. Baldus S, Heeschen C, Meinertz T, Zeiher AM, Eiserich JP, Munzel T, Simoons ML, Hamm CW; CAPTURE Investigators. Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation. 2003;108:1440–1445.

    Article  PubMed  CAS  Google Scholar 

  41. Brennan ML, Penn MS, Van Lente F, Nambi V, Shishehbor MH, Aviles RJ, Goormastic M, Pepoy ML, McErlean ES, Topol EJ, Nissen SE, Hazen SL. Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med. 2003;349:1595–1604.

    Article  PubMed  CAS  Google Scholar 

  42. Jessup W, Kritharides L, Stocker R. Lipid oxidation in atherogenesis: an overview. Biochem Soc Trans. 2004;32:134–138.

    Article  PubMed  CAS  Google Scholar 

  43. Salonen JT, Yla-Herttuala S, Yamamoto R, Butler S, Korpela H, Salonen R, Nyyssonen K, Palinski W, Witztum JL. Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet. 1992;339:883–887.

    Article  PubMed  CAS  Google Scholar 

  44. Meisinger C, Baumert J, Khuseyinova N, Loewel H, Koenig W. Plasma oxidized low-density lipoprotein, a strong predictor for acute coronary heart disease events in apparently healthy, middle-aged men from the general population. Circulation. 2005;112:651–657.

    Article  PubMed  CAS  Google Scholar 

  45. Vivekananthan DP, Penn MS, Sapp SK, Hsu A, Topol EJ. Use of antioxidant vitamins for the prevention of cardiovascular disease: metaanalysis of randomised trials. Lancet. 2003:361:2017–2023.

    Article  PubMed  CAS  Google Scholar 

  46. Ursini F, Maiorino M, Roveri A. Phospholipid hydroperoxide glutathione peroxidase (PHGPx): more than an antioxidant enzyme? Biomed Environ Sci. 1997;10:327–332.

    PubMed  CAS  Google Scholar 

  47. Lackner KJ, Blankenberg S. Atherosclerosis, oxidative stress and glutathione peroxidase-1: a new kid on the block. Ital Heart J. 2004;5:169–172.

    PubMed  Google Scholar 

  48. Blankenberg S, Rupprecht HJ, Bickel C, Torzewski M, Hafner G, Tiret L, Smieja M, Cambien F, Meyer J, Lackner KJ; AtheroGene Investigators. Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N Engl J Med. 2003;349:1605–1613.

    Article  PubMed  CAS  Google Scholar 

  49. Khuseyinova N, Koenig W. Predicting the risk of cardiovascular disease: where does lipoprotein-associated phospholipase A(2) fit in? Mol Diagn Ther. 2007;11:203–217.

    Article  PubMed  CAS  Google Scholar 

  50. Kolodgie FD, Burke AP, Skorija KS, Ladich E, Kutys R, Makuria AT, Virmani R. Lipoprotein-associated phospholipase A2 protein expression in the natural progression of human coronary atherosclerosis. Arterioscler Thromb Vasc Biol. 2006;26:2523–2529.

    Article  PubMed  CAS  Google Scholar 

  51. Zalewski A, Macphee C. Role of lipoprotein-associated phospholipase A2 in atherosclerosis: biology, epidemiology, and possible therapeutic target. Arterioscler Thromb Vasc Biol. 2005;25:923–931.

    Article  PubMed  CAS  Google Scholar 

  52. Hurt-Camejo E, Camejo G, Peilot H, Oorni K, Kovanen P. Phospholipase A(2) in vascular disease. Circ Res. 2001;89:298–304.

    Article  PubMed  CAS  Google Scholar 

  53. Sartipy P, Camejo G, Svensson L, Hurt-Camejo E. Phospholipase A(2) modification of low density lipoproteins forms small high density particles with increased affinity for proteoglycans and glycosaminoglycans. J Biol Chem. 1999;274:25913–25920.

    Article  PubMed  CAS  Google Scholar 

  54. Boekholdt SM, Keller TT, Wareham NJ, Luben R, Bingham SA, Day NE, Sandhu MS, Jukema JW, Kastelein JJ, Hack CE, Khaw KT. Serum levels of type II secretory phospholipase A2 and the risk of future coronary artery disease in apparently healthy men and women: the EPIC-Norfolk Prospective Population Study. Arterioscler Thromb Vasc Biol. 2005;25:839–846.

    Article  PubMed  CAS  Google Scholar 

  55. Koenig W, Vossen CY, Brenner H, Rothenbacher D. Type II secretory phospolipase A2 plasma concentrations predict cardiovascular events in patients with coronary heart disease. Circulation. 2007;116:II_841 (Abstract).

    Article  Google Scholar 

  56. Böger RH. Asymmetric dimethylarginine (ADMA): a novel risk marker in cardiovascular medicine and beyond. Ann Med. 2006;38:126–136.

    Article  PubMed  Google Scholar 

  57. Schnabel R, Blankenberg S, Lubos E, Lackner KJ, Rupprecht HJ, Espinola-Klein C, Jachmann N, Post F, Peetz D, Bickel C, Cambien F, Tiret L, Münzel T. Asymmetric dimethylarginine and the risk of cardiovascular events and death in patients with coronary artery disease: results from the AtheroGene Study. Circ Res. 2005;97:e53-e59.

    Article  PubMed  CAS  Google Scholar 

  58. Maas R, Schulze F, Baumert J, Löwel H, Hamraz K, Schwedhelm E, Koenig W, Böger RH. Asymmetric dimethylarginine, smoking, and risk of coronary heart disease in apparently healthy men: prospective analysis from the population-based Monitoring of Trends and Determinants in Cardiovascular Disease/Kooperative Gesundheitsforschung in der Region Augsburg study and experimental data. Clin Chem. 2007;53:693–701.

    Article  PubMed  CAS  Google Scholar 

  59. Madero M, Sarnak MJ, Stevens LA. Serum cystatin C as a marker of glomerular filtration rate. Curr Opin Nephrol Hypertens. 2006;15:610–616.

    Article  PubMed  CAS  Google Scholar 

  60. Jernberg T, Lindahl B, James S, Larsson A, Hansson LO, Wallentin L. Cystatin C: a novel predictor of outcome in suspected or confirmed non-ST-elevation acute coronary syndrome. Circulation. 2004;110:2342–2348.

    Article  PubMed  CAS  Google Scholar 

  61. Koenig W, Twardella D, Brenner H, Rothenbacher D. Plasma concentrations of cystatin C in patients with coronary heart disease and risk for secondary cardiovascular events: more than simply a marker of glomerular filtration rate. Clin Chem. 2005;51:321–327.

    Article  PubMed  CAS  Google Scholar 

  62. Ix JH, Shlipak MG, Chertow GM, Whooley MA. Association of cystatin C with mortality, cardiovascular events, and incident heart failure among persons with coronary heart disease: data from the Heart and Soul Study. Circulation. 2007;115:173–179.

    Article  PubMed  CAS  Google Scholar 

  63. Coll B, Alonso-Villaverde C, Joven J. Monocyte chemoattractant protein-1 and atherosclerosis: is there room for an additional biomarker? Clin Chim Acta. 2007;383:21–29.

    Article  PubMed  CAS  Google Scholar 

  64. De Lemos JA, Morrow DA, Sabatine MS, Murphy SA, Gibson CM, Antman EM, McCabe CH, Cannon CP, Braunwald E. Association between plasma levels of monocyte chemoattractant protein-1 and long-term clinical outcomes in patients with acute coronary syndromes. Circulation. 2003;107:690–695.

    Article  PubMed  Google Scholar 

  65. Herder C, Baumert J, Thorand B, Martin S, Lowel H, Kolb H, Koenig W. Chemokines and incident coronary heart disease: results from the MONICA/KORA Augsburg case-cohort study, 1984–2002. Arterioscler Thromb Vasc Biol. 2006;26:2147–2152.

    Article  PubMed  CAS  Google Scholar 

  66. Morrow DA, de Lemos JA. Benchmarks for the assessment of novel cardiovascular biomarkers. Circulation. 2007;115:949–952.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Khuseyinova, N., Koenig, W. (2011). New Blood Biomarkers of Inflammation and Atherosclerosis. In: Naghavi, M. (eds) Asymptomatic Atherosclerosis. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-179-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-179-0_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-178-3

  • Online ISBN: 978-1-60327-179-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics