Skip to main content

Monitoring of Subclinical Atherosclerotic Disease

  • Chapter
  • First Online:
Book cover Asymptomatic Atherosclerosis

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1249 Accesses

Abstract

Direct assessment of the vascular wall provides the capability to monitor atherosclerosis progression and assess the response to pharmacotherapy as a surrogate to clinical outcomes. Carotid intima-media thickness (IMT) using high-frequency ultrasound (10 MHz) accurately measures arterial wall thickness, with the recommendation that the far wall of the common carotid artery is the optimal site for serial assessment. A 15–18% increase in relative risk for myocardial infarction and stroke is observed for each 0.10 mm increase in carotid IMT. Inter-test reproducibility is high, but the application to individual patients is limited by generally slow progression of IMT. Coronary artery calcium correlates to overall atherosclerosis burden and independently predicts incident cardiovascular events up to tenfold over standard risk factors. Progression of coronary calcium is rapid, and a rate ≥15% per year clinically identifies individuals with increased cardiovascular risk. A complicated relationship exists between cardiovascular risk factor modification and coronary calcium progression, such that its use in pharmacotherapy evaluation is limited. Contrast enhanced CT angiography provides the ability to image both calcified and non-calcified coronary atherosclerosis, but requires careful attention to image quality. Nuclear imaging of the vascular wall, with positron emission tomography, targets inflammation within the vascular wall of larger vessels. Pharmacotherapies with anti-inflammatory properties may be studied with FDG-PET, but these findings have not yet been related to cardiovascular outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waters D, Higginson L, Gladstone P et al. Effects of monotherapy with an HMG-CoA reductase inhibitor on the progression of coronary atherosclerosis as assessed by serial quantitative arteriography. The canadian coronary atherosclerosis intervention trial. Circulation 1994;89(3):959–68.

    Article  PubMed  CAS  Google Scholar 

  2. Hodis HN, Mack WJ, LaBree L et al. The role of carotid arterial intima-media thickness in predicting clinical coronary events. Ann Intern Med 1998;128(4):262–269.

    Article  PubMed  CAS  Google Scholar 

  3. Raggi P, Cooil B, Shaw LJ et al. Progression of coronary calcium on serial electron beam tomographic scanning is greater in patients with future myocardial infarction. Am J Cardiol 2003;92(7):827–829.

    Article  PubMed  Google Scholar 

  4. von Birgelen C, Hartmann M, Mintz GS et al. Relationship between cardiovascular risk as predicted by established risk scores versus plaque progression as measured by serial intravascular ultrasound in left main coronary arteries. Circulation 2004;110(12):1579–1585.

    Article  Google Scholar 

  5. Boissel JP, Collet JP, Moleur P, Haugh M. Surrogate endpoints: a basis for a rational approach. Eur J Clin Pharmacol 1992;43(3):235–244.

    Article  PubMed  CAS  Google Scholar 

  6. Pignoli P, Tremoli E, Poli A, Oreste P, Paoletti R. Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation 1986;74(6):1399–1406.

    Article  PubMed  CAS  Google Scholar 

  7. Touboul PJ, Hennerici MG, Meairs S et al. Mannheim intima-media thickness consensus. Cerebrovasc Dis 2004;18(4):346–349.

    Article  PubMed  Google Scholar 

  8. Stein JH, Korcarz CE, Hurst RT et al. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force. Endorsed by the Society for Vascular Medicine. J Am Soc Echocardiogr 2008;21(2):93–111.

    Article  PubMed  Google Scholar 

  9. Chambless LE, Heiss G, Folsom AR et al. Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the Atherosclerosis Risk in Communities (ARIC) Study, 1987-1993. Am J Epidemiol 1997;146(6):483–494.

    Article  PubMed  CAS  Google Scholar 

  10. Howard G, Sharrett AR, Heiss G et al. Carotid artery intimal-medial thickness distribution in general populations as evaluated by B-mode ultrasound. ARIC Investigators. Stroke 1993;24(9):1297–1304.

    Article  CAS  Google Scholar 

  11. O’Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK, Jr. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med 1999;340(1):14–22.

    Article  PubMed  Google Scholar 

  12. Lorenz MW, Markus HS, Bots ML, Rosvall M, Sitzer M. Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation 2007;115(4):459–467.

    Article  PubMed  Google Scholar 

  13. Belcaro G, Nicolaides AN, Laurora G et al. Ultrasound morphology classification of the arterial wall and cardiovascular events in a 6-year follow-up study. Arterioscler Thromb Vasc Biol 1996;16(7):851–856.

    Article  PubMed  CAS  Google Scholar 

  14. Shahab L, Hall S, Marteau T. Showing smokers with vascular disease images of their arteries to motivate cessation: a pilot study. Br J Health Psychol 2007;12(Pt 2):275–283.

    Article  PubMed  Google Scholar 

  15. Greenland P, Abrams J, Aurigemma GP et al. Prevention Conference V: Beyond secondary prevention: identifying the high-risk patient for primary prevention: noninvasive tests of atherosclerotic burden: Writing Group III. Circulation 2000;101(1):E16–E22.

    Article  PubMed  CAS  Google Scholar 

  16. Grundy SM, Cleeman JI, Merz CN et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III Guidelines. J Am Coll Cardiol 2004;44(3):720–732.

    Article  PubMed  Google Scholar 

  17. Taylor AJ, Kent SM, Flaherty PJ, Coyle LC, Markwood TT, Vernalis MN. ARBITER: Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol: a randomized trial comparing the effects of atorvastatin and pravastatin on carotid intima medial thickness. Circulation 2002;106(16):2055–2060.

    Article  PubMed  CAS  Google Scholar 

  18. Nissen SE, Tuzcu EM, Schoenhagen P et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. J Am Med Assoc 2004;291(9):1071–1080.

    Article  CAS  Google Scholar 

  19. Cannon CP, Braunwald E, McCabe CH et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 2004;350(15):1495–1504.

    Article  PubMed  CAS  Google Scholar 

  20. Larosa JC, Grundy SM, Waters DD et al. Intensive Lipid Lowering with Atorvastatin in Patients with Stable Coronary Disease. N Engl J Med 2005:352(14):1425–1435.

    Article  PubMed  CAS  Google Scholar 

  21. Taylor AJ, Sullenberger LE, Lee HJ, Lee JK, Grace KA. Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol (ARBITER) 2: a double-blind, placebo-controlled study of extended-release niacin on atherosclerosis progression in secondary prevention patients treated with statins. Circulation 2004;110(23):3512–3517.

    Article  PubMed  CAS  Google Scholar 

  22. Nissen SE, Tsunoda T, Tuzcu EM et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. J Am Med Assoc 2003;290(17):2292–2300.

    Article  CAS  Google Scholar 

  23. Al-Shali K, House AA, Hanley AJ et al. Differences between carotid wall morphological phenotypes measured by ultrasound in one, two and three dimensions. Atherosclerosis 2005;178(2):319–325.

    Article  PubMed  CAS  Google Scholar 

  24. Bae JH, Kim WS, Rihal CS, Lerman A. Individual measurement and significance of carotid intima, media, and intima-media thickness by B-mode ultrasonographic image processing. Arterioscler Thromb Vasc Biol 2006;26(10):2380–2385.

    Article  PubMed  CAS  Google Scholar 

  25. Gronholdt ML, Nordestgaard BG, Wiebe BM, Wilhjelm JE, Sillesen H. Echo-lucency of computerized ultrasound images of carotid atherosclerotic plaques are associated with increased levels of triglyceride-rich lipoproteins as well as increased plaque lipid content. Circulation 1998;97(1):34-40.

    Article  PubMed  CAS  Google Scholar 

  26. Shah F, Balan P, Weinberg M et al. Contrast-enhanced ultrasound imaging of atherosclerotic carotid plaque neovascularization: a new surrogate marker of atherosclerosis? Vasc Med 2007;12(4):291–297.

    Article  PubMed  Google Scholar 

  27. Feinstein SB. Contrast ultrasound imaging of the carotid artery vasa vasorum and atherosclerotic plaque neovascularization. J Am Coll Cardiol 2006;48(2):236–243.

    Article  PubMed  Google Scholar 

  28. Rumberger JA, Simons DB, Fitzpatrick LA, Sheedy PF, Schwartz RS. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation 1995;92(8):2157–2162.

    Article  PubMed  CAS  Google Scholar 

  29. Sangiorgi G, Rumberger JA, Severson A et al. Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: a histologic study of 723 coronary artery segments using nondecalcifying methodology. J Am Coll Cardiol 1998;31(1):126–133.

    Article  PubMed  CAS  Google Scholar 

  30. O’Malley PG, Taylor AJ, Jackson JL, Doherty TM, Detrano RC. Prognostic value of coronary electron-beam computed tomography for coronary heart disease events in asymptomatic populations. Am J Cardiol 2000;85(8):945–948.

    Article  PubMed  Google Scholar 

  31. Arad Y, Spadaro LA, Goodman K, Newstein D, Guerci AD. Prediction of coronary events with electron beam computed tomography. J Am Coll Cardiol 2000;36(4):1253–1260.

    Article  PubMed  CAS  Google Scholar 

  32. Kondos GT, Hoff JA, Sevrukov A et al. Electron-beam tomography coronary artery calcium and cardiac events: a 37-month follow-up of 5635 initially asymptomatic low- to intermediate-risk adults. Circulation 2003;107(20):2571–2576.

    Article  PubMed  Google Scholar 

  33. Shaw LJ, Raggi P, Schisterman E, Berman DS, Callister TQ. Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology 2003;228(3):826–833.

    Article  PubMed  Google Scholar 

  34. Hoff JA, Chomka EV, Krainik AJ, Daviglus M, Rich S, Kondos GT. Age and gender distributions of coronary artery calcium detected by electron beam tomography in 35,246 adults. Am J Cardiol 2001;87(12):1335–1339.

    Article  PubMed  CAS  Google Scholar 

  35. Kaufmann RB, Sheedy PF, Breen JF et al. Detection of heart calcification with electron beam CT: interobserver and intraobserver reliability for scoring quantification. Radiology 1994;190(2):347–352.

    PubMed  CAS  Google Scholar 

  36. Devries S, Wolfkiel C, Shah V, Chomka E, Rich S. Reproducibility of the measurement of coronary calcium with ultrafast computed tomography. Am J Cardiol 1995;75(14):973–975.

    Article  PubMed  CAS  Google Scholar 

  37. Lu B, Budoff MJ, Zhuang N et al. Causes of interscan variability of coronary artery calcium measurements at electron-beam CT. Acad Radiol 2002;9(6):654–661.

    Article  PubMed  Google Scholar 

  38. Shields JP, Mielke CH, Jr., Rockwood TH, Short RA, Viren FK. Reliability of electron beam computed tomography to detect coronary artery calcification. Am J Card Imaging 1995;9(2):62–66.

    PubMed  CAS  Google Scholar 

  39. Kopp AF, Ohnesorge B, Becker C et al. Reproducibility and accuracy of coronary calcium measurements with multi-detector row versus electron-beam CT. Radiology 2002;225(1):113–119.

    Article  PubMed  CAS  Google Scholar 

  40. Knez A, Becker A, Becker C et al. Detection of coronary calcinosis with multislice spiral computerized tomography: an alternative to electron beam tomography. Z Kardiol 2002;91(8):642–649.

    Article  PubMed  CAS  Google Scholar 

  41. Callister TQ, Cooil B, Raya SP, Lippolis NJ, Russo DJ, Raggi P. Coronary artery disease: improved reproducibility of calcium scoring with an electron-beam CT volumetric method. Radiology 1998;208(3):807–814.

    PubMed  CAS  Google Scholar 

  42. Wu B, Elmariah S, Kaplan FS, Cheng G, Mohler ER, III. Paradoxical effects of statins on aortic valve myofibroblasts and osteoblasts: implications for end-stage valvular heart disease. Arterioscler Thromb Vasc Biol 2005;25(3):592–597.

    Article  PubMed  CAS  Google Scholar 

  43. Raggi P, Bommer J, Chertow GM. Valvular calcification in hemodialysis patients randomized to calcium-based phosphorus binders or sevelamer. J Heart Valve Dis 2004;13(1):134–141.

    PubMed  Google Scholar 

  44. Raggi P, Callister TQ, Shaw LJ. Progression of coronary artery calcium and risk of first myocardial infarction in patients receiving cholesterol-lowering therapy. Arterioscler Thromb Vasc Biol 2004;24(7):1272–1277.

    Article  PubMed  CAS  Google Scholar 

  45. Budoff MJ, Achenbach S, Blumenthal RS et al. Assessment of Coronary artery disease by cardiac computed tomography: a scientific statement from the American heart association committee on cardiovascular imaging and intervention, council on cardiovascular radiology and intervention, and committee on cardiac imaging, council on clinical cardiology. Circulation 2006;114(16):1761–1791.

    Article  PubMed  Google Scholar 

  46. Greenland P, Bonow RO, Brundage BH et al. ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography) developed in collaboration with the Society of Atherosclerosis Imaging and Prevention and the Society of Cardiovascular Computed Tomography. J Am Coll Cardiol 2007 January 23;49(3):378–402.

    Article  PubMed  Google Scholar 

  47. Leber AW, Knez A, Becker A et al. Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atherosclerotic plaques: a comparative study with intracoronary ultrasound. J Am Coll Cardiol 2004;43(7):1241–1247.

    Article  PubMed  Google Scholar 

  48. Nikolaou K, Sagmeister S, Knez A et al. Multidetector-row computed tomography of the coronary arteries: predictive value and quantitative assessment of non-calcified vessel-wall changes. Eur Radiol 2003;13(11):2505–2512.

    Article  PubMed  Google Scholar 

  49. Kopp AF, Schroeder S, Baumbach A et al. Non-invasive characterisation of coronary lesion morphology and composition by multislice CT: first results in comparison with intracoronary ultrasound. Eur Radiol 2001;11(9):1607–1611.

    Article  PubMed  CAS  Google Scholar 

  50. Schoenhagen P, Tuzcu EM, Stillman AE et al. Non-invasive assessment of plaque morphology and remodeling in mildly stenotic coronary segments: comparison of 16-slice computed tomography and intravascular ultrasound. Coron Artery Dis 2003;14(6):459–462.

    Article  PubMed  Google Scholar 

  51. Achenbach S, Moselewski F, Ropers D et al. Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation 2004;109(1):14–17.

    Article  PubMed  Google Scholar 

  52. Schroeder S, Kuettner A, Leitritz M et al. Reliability of differentiating human coronary plaque morphology using contrast-enhanced multislice spiral computed tomography: a comparison with histology. J Comput Assist Tomogr 2004;28(4):449–454.

    Article  PubMed  Google Scholar 

  53. Nikolaou K, Becker CR, Muders M et al. Multidetector-row computed tomography and magnetic resonance imaging of atherosclerotic lesions in human ex vivo coronary arteries. Atherosclerosis 2004;174(2):243–252.

    Article  PubMed  CAS  Google Scholar 

  54. Burgstahler C, Reimann A, Beck T et al. Influence of a lipid-lowering therapy on calcified and noncalcified coronary plaques monitored by multislice detector computed tomography: results of the New Age II Pilot Study. Invest Radiol 2007;42(3):189–195.

    Article  PubMed  CAS  Google Scholar 

  55. Fayad ZA, Fuster V, Fallon JT et al. Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation 2000;102(5):506–510.

    Article  PubMed  CAS  Google Scholar 

  56. Fayad ZA, Nahar T, Fallon JT et al. In vivo magnetic resonance evaluation of atherosclerotic plaques in the human thoracic aorta: a comparison with transesophageal echocardiography. Circulation 2000;101(21):2503–2309.

    Article  PubMed  CAS  Google Scholar 

  57. Itskovich VV, Samber DD, Mani V et al. Quantification of human atherosclerotic plaques using spatially enhanced cluster analysis of multicontrast-weighted magnetic resonance images. Magn Reson Med 2004;52(3):515–523.

    Article  PubMed  Google Scholar 

  58. Sirol M, Itskovich VV, Mani V et al. Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging. Circulation 2004;109(23):2890–2896.

    Article  PubMed  CAS  Google Scholar 

  59. Hatsukami TS, Ross R, Polissar NL, Yuan C. Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with high-resolution magnetic resonance imaging. Circulation 2000;102(9):959–964.

    Article  PubMed  CAS  Google Scholar 

  60. Corti R, Fayad ZA, Fuster V et al. Effects of lipid-lowering by simvastatin on human atherosclerotic lesions: a longitudinal study by high-resolution, noninvasive magnetic resonance imaging. Circulation 2001;104(3):249–252.

    Article  PubMed  CAS  Google Scholar 

  61. Kampschulte A, Ferguson MS, Kerwin WS et al. Differentiation of intraplaque versus juxtaluminal hemorrhage/thrombus in advanced human carotid atherosclerotic lesions by in vivo magnetic resonance imaging. Circulation 2004;110(20):3239–3244.

    Article  PubMed  CAS  Google Scholar 

  62. Flacke S, Fischer S, Scott MJ et al. Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation 2001;104(11):1280–1285.

    Article  PubMed  CAS  Google Scholar 

  63. Kooi ME, Cappendijk VC, Cleutjens KB et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 2003;107(19):2453–2458.

    Article  PubMed  CAS  Google Scholar 

  64. Tawakol A, Castano AP, Gad F et al. Intravascular detection of inflamed atherosclerotic plaques using a fluorescent photosensitizer targeted to the scavenger receptor. Photochem Photobiol Sci 2008;7(1):33–39.

    Article  PubMed  CAS  Google Scholar 

  65. Tawakol A, Migrino RQ, Bashian GG et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 2006;48(9):1818–1824.

    Article  PubMed  Google Scholar 

  66. Wu YW, Kao HL, Chen MF et al. Characterization of plaques using 18F-FDG PET/CT in patients with carotid atherosclerosis and correlation with matrix metalloproteinase-1. J Nucl Med 2007;48(2):227–233.

    PubMed  CAS  Google Scholar 

  67. Rudd JH, Warburton EA, Fryer TD et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002;105(23):2708–2711.

    Article  PubMed  CAS  Google Scholar 

  68. Tahara N, Kai H, Nakaura H et al. The prevalence of inflammation in carotid atherosclerosis: analysis with fluorodeoxyglucose-positron emission tomography. Eur Heart J 2007;28(18):2243–2248.

    Article  PubMed  CAS  Google Scholar 

  69. Tahara N, Kai H, Yamagishi S et al. Vascular inflammation evaluated by [18F]-fluorodeoxyglucose positron emission tomography is associated with the metabolic syndrome. J Am Coll Cardiol 2007;49(14):1533–1539.

    Article  PubMed  CAS  Google Scholar 

  70. Tatsumi M, Cohade C, Nakamoto Y, Wahl RL. Fluorodeoxyglucose uptake in the aortic wall at PET/CT: possible finding for active atherosclerosis. Radiology 2003;229(3):831–837.

    Article  PubMed  Google Scholar 

  71. Bural GG, Torigian DA, Chamroonrat W et al. Quantitative assessment of the atherosclerotic burden of the aorta by combined FDG-PET and CT image analysis: a new concept. Nucl Med Biol 2006;33(8):1037–1043.

    Article  PubMed  CAS  Google Scholar 

  72. Rudd JH, Myers KS, Bansilal S et al. Atherosclerosis Inflammation Imaging with 18F-FDG PET: Carotid, Iliac, and Femoral Uptake Reproducibility, Quantification Methods, and Recommendations. J Nucl Med 2008;49(6):871–878.

    Article  PubMed  Google Scholar 

  73. Rudd JH, Myers KS, Bansilal S et al. (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J Am Coll Cardiol 2007;50(9):892–896.

    Article  PubMed  Google Scholar 

  74. Ogawa M, Magata Y, Kato T et al. Application of 18F-FDG PET for monitoring the therapeutic effect of antiinflammatory drugs on stabilization of vulnerable atherosclerotic plaques. J Nucl Med 2006;47(11):1845–1850.

    PubMed  CAS  Google Scholar 

  75. Tahara N, Kai H, Ishibashi M et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 2006;48(9):1825–1831.

    Article  PubMed  CAS  Google Scholar 

  76. Schmid M, Achenbach S, Ropers D et al. Assessment of changes in non-calcified atherosclerotic plaque volume in the left main and left anterior descending coronary arteries over time by 64-slice computed tomography. Am J Cardiol 2008;101(5):579–584.

    Article  PubMed  Google Scholar 

  77. Zhao XQ, Phan BA, Chu B et al. Testing the hypothesis of atherosclerotic plaque lipid depletion during lipid therapy by magnetic resonance imaging: study design of carotid plaque composition study. Am Heart J 2007;154(2):239–246.

    Article  PubMed  CAS  Google Scholar 

  78. Azen SP, Mack WJ, Cashin-Hemphill L et al. Progression of coronary artery disease predicts clinical coronary events. long-term follow-up from the cholesterol lowering atherosclerosis study. Circulation 1996;93(1):34–41.

    Article  PubMed  CAS  Google Scholar 

  79. von Birgelen C, Hartmann M, Mintz GS, Baumgart D, Schmermund A, Erbel R. Relation between progression and regression of atherosclerotic left main coronary artery disease and serum cholesterol levels as assessed with serial long-term (> or =12 months) follow-up intravascular ultrasound. Circulation 2003;108(22):2757–2762.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen J. Taylor MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zhu, D., Taylor, A.J., Villines, T.C. (2011). Monitoring of Subclinical Atherosclerotic Disease. In: Naghavi, M. (eds) Asymptomatic Atherosclerosis. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-179-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-179-0_41

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-178-3

  • Online ISBN: 978-1-60327-179-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics