Skip to main content

Noninvasive Imaging of the Vulnerable Myocardium: Cardiac MRI and CT Based

  • Chapter
  • First Online:
  • 1270 Accesses

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Multiple noninvasive imaging modalities can be used for the evaluation of the vulnerable myocardium. In this chapter, the applications of advanced cardiac imaging with cardiac MRI and cardiac CT are reviewed for the assessment of myocardial perfusion, viability, infarct size, and myocardium at risk. The accurate characterization of the vulnerable myocardium can provide important information that can guide therapeutics by detection of myocardial ischemia under stress conditions, the detection and characterization of myocardial infarct (size, transmural and circumferential extent), or the assessment of myocardium at risk (myocardial edema, microvascular obstruction, “grey zone”). Modalities with high spatial resolution and excellent tissue characterization, such as cardiac MRI and CT, will permit to obtain this type of information. Animal and human data will be reviewed and will be placed in clinical perspective, taking into account the limitations of each modality. Finally, we aim to demonstrate that the search and characterization of the vulnerable myocardium can help and provide important information in the overall characterization and management of the vulnerable patient.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hendel RC, Patel MR, Kramer CM, et al. ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol 2006;48(7):1475–97.

    Article  PubMed  Google Scholar 

  2. Barkhausen J, Ruehm SG, Goyen M, Buck T, Laub G, Debatin JF. MR evaluation of ventricular function: true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study. Radiology 2001;219(1):264–9.

    PubMed  CAS  Google Scholar 

  3. Simonetti OP, Kim RJ, Fieno DS, et al. An improved MR imaging technique for the visualization of myocardial infarction. Radiology 2001;218(1):215–23.

    PubMed  CAS  Google Scholar 

  4. Klocke FJ, Simonetti OP, Judd RM, et al. Limits of detection of regional differences in vasodilated flow in viable myocardium by first-pass magnetic resonance perfusion imaging. Circulation 2001;104(20):2412–6.

    Article  PubMed  CAS  Google Scholar 

  5. Lee DC, Simonetti OP, Harris KR, et al. Magnetic resonance versus radionuclide pharmacological stress perfusion imaging for flow-limiting stenoses of varying severity. Circulation 2004;110(1):58–65.

    Article  PubMed  Google Scholar 

  6. Wilke N, Jerosch-Herold M, Wang Y, et al. Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. Radiology 1997;204(2):373–84.

    PubMed  CAS  Google Scholar 

  7. Al-Saadi N, Nagel E, Gross M, et al. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 2000;101(12):1379–83.

    Article  PubMed  CAS  Google Scholar 

  8. Bertschinger KM, Nanz D, Buechi M, et al. Magnetic resonance myocardial first-pass perfusion imaging: parameter optimization for signal response and cardiac coverage. J Magn Reson Imaging 2001;14(5):556–62.

    Article  PubMed  CAS  Google Scholar 

  9. Panting JR, Gatehouse PD, Yang GZ, et al. Echo-planar magnetic resonance myocardial perfusion imaging: parametric map analysis and comparison with thallium SPECT. J Magn Reson Imaging 2001;13(2):192–200.

    Article  PubMed  CAS  Google Scholar 

  10. Schwitter J, Nanz D, Kneifel S, et al. Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation 2001;103(18):2230–5.

    Article  PubMed  CAS  Google Scholar 

  11. Ibrahim T, Nekolla SG, Schreiber K, et al. Assessment of coronary flow reserve: comparison between contrast-enhanced magnetic resonance imaging and positron emission tomography. J Am Coll Cardiol 2002;39(5):864–70.

    Article  PubMed  Google Scholar 

  12. Chiu CW, So NM, Lam WW, Chan KY, Sanderson JE. Combined first-pass perfusion and viability study at MR imaging in patients with non-ST segment-elevation acute coronary syndromes: feasibility study. Radiology 2003;226(3):717–22.

    Article  PubMed  Google Scholar 

  13. Ishida N, Sakuma H, Motoyasu M, et al. Noninfarcted myocardium: correlation between dynamic first-pass contrast-enhanced myocardial MR imaging and quantitative coronary angiography. Radiology 2003;229(1):209–16.

    Article  PubMed  Google Scholar 

  14. Nagel E, Thouet T, Klein C, et al. Noninvasive determination of coronary blood flow velocity with cardiovascular magnetic resonance in patients after stent deployment. Circulation 2003;107(13):1738–43.

    Article  PubMed  Google Scholar 

  15. Giang TH, Nanz D, Coulden R, et al. Detection of coronary artery disease by magnetic resonance myocardial perfusion imaging with various contrast medium doses: first European multi-centre experience. Eur Heart J 2004;25(18):1657–65.

    Article  PubMed  CAS  Google Scholar 

  16. Paetsch I, Jahnke C, Wahl A, et al. Comparison of dobutamine stress magnetic resonance, adenosine stress magnetic resonance, and adenosine stress magnetic resonance perfusion. Circulation 2004;110(7):835–42.

    Article  PubMed  CAS  Google Scholar 

  17. Plein S, Greenwood JP, Ridgway JP, Cranny G, Ball SG, Sivananthan MU. Assessment of non-ST-segment elevation acute coronary syndromes with cardiac magnetic resonance imaging. J Am Coll Cardiol 2004;44(11):2173–81.

    Article  PubMed  Google Scholar 

  18. Wolff SD, Schwitter J, Coulden R, et al. Myocardial first-pass perfusion magnetic resonance imaging: a multicenter dose-ranging study. Circulation 2004;110(6):732–7.

    Article  PubMed  CAS  Google Scholar 

  19. Plein S, Radjenovic A, Ridgway JP, et al. Coronary artery disease: myocardial perfusion MR imaging with sensitivity encoding versus conventional angiography. Radiology 2005;235(2):423–30.

    Article  PubMed  Google Scholar 

  20. Cury RC, Cattani CA, Gabure LA, et al. Diagnostic performance of stress perfusion and delayed-enhancement MR imaging in patients with coronary artery disease. Radiology 2006;240(1):39–45.

    Article  PubMed  Google Scholar 

  21. Klem I, Heitner JF, Shah DJ, et al. Improved detection of coronary artery disease by stress perfusion cardiovascular magnetic resonance with the use of delayed enhancement infarction imaging. J Am Coll Cardiol 2006;47(8):1630–8.

    Article  PubMed  Google Scholar 

  22. Rieber J, Huber A, Erhard I, et al. Cardiac magnetic resonance perfusion imaging for the functional assessment of coronary artery disease: a comparison with coronary angiography and fractional flow reserve. Eur Heart J 2006;27(12):1465–71.

    Article  PubMed  Google Scholar 

  23. Cheng AS, Pegg TJ, Karamitsos TD, et al. Cardiovascular magnetic resonance perfusion imaging at 3-tesla for the detection of coronary artery disease: a comparison with 1.5-tesla. J Am Coll Cardiol 2007;49(25):2440–9.

    Article  PubMed  Google Scholar 

  24. Nandalur KR, Dwamena BA, Choudhri AF, Nandalur MR, Carlos RC. Diagnostic performance of stress cardiac magnetic resonance imaging in the detection of coronary artery disease: a meta-analysis. J Am Coll Cardiol 2007;50(14):1343–53.

    Article  PubMed  Google Scholar 

  25. Ingkanisorn WP, Kwong RY, Bohme NS, et al. Prognosis of negative adenosine stress magnetic resonance in patients presenting to an emergency department with chest pain. J Am Coll Cardiol 2006;47(7):1427–32.

    Article  PubMed  Google Scholar 

  26. Amado LC, Gerber BL, Gupta SN, et al. Accurate and objective infarct sizing by contrast-enhanced magnetic resonance imaging in a canine myocardial infarction model. J Am Coll Cardiol 2004;44(12):2383–9.

    Article  PubMed  Google Scholar 

  27. Baks T, van Geuns RJ, Biagini E, et al. Effects of primary angioplasty for acute myocardial infarction on early and late infarct size and left ventricular wall characteristics. J Am Coll Cardiol 2006;47(1):40–4.

    Article  PubMed  Google Scholar 

  28. Ibrahim T, Bulow HP, Hackl T, et al. Diagnostic value of contrast-enhanced magnetic resonance imaging and single-photon emission computed tomography for detection of myocardial necrosis early after acute myocardial infarction. J Am Coll Cardiol 2007;49(2):208–16.

    Article  PubMed  Google Scholar 

  29. Kim RJ, Chen EL, Lima JA, Judd RM. Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation 1996;94(12):3318–26.

    Article  PubMed  CAS  Google Scholar 

  30. Mahrholdt H, Wagner A, Holly TA, et al. Reproducibility of chronic infarct size measurement by contrast-enhanced magnetic resonance imaging. Circulation 2002;106(18):2322–7.

    Article  PubMed  CAS  Google Scholar 

  31. Wagner A, Mahrholdt H, Thomson L, et al. Effects of time, dose, and inversion time for acute myocardial infarct size measurements based on magnetic resonance imaging-delayed contrast enhancement. J Am Coll Cardiol 2006;47(10):2027–33.

    Article  PubMed  Google Scholar 

  32. Yang Z, Berr SS, Gilson WD, Toufektsian MC, French BA. Simultaneous evaluation of infarct size and cardiac function in intact mice by contrast-enhanced cardiac magnetic resonance imaging reveals contractile dysfunction in noninfarcted regions early after myocardial infarction. Circulation 2004;109(9):1161–7.

    Article  PubMed  Google Scholar 

  33. Hombach V, Grebe O, Merkle N, et al. Sequelae of acute myocardial infarction regarding cardiac structure and function and their prognostic significance as assessed by magnetic resonance imaging. Eur Heart J 2005;26(6):549–57.

    Article  PubMed  Google Scholar 

  34. Gerber BL, Rochitte CE, Melin JA, et al. Microvascular obstruction and left ventricular remodeling early after acute myocardial infarction. Circulation 2000;101(23):2734–41.

    Article  PubMed  CAS  Google Scholar 

  35. Wu KC, Zerhouni EA, Judd RM, et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 1998;97(8):765–72.

    Article  PubMed  CAS  Google Scholar 

  36. Aletras AH, Tilak GS, Natanzon A, et al. Retrospective determination of the area at risk for reperfused acute myocardial infarction with T2-weighted cardiac magnetic resonance imaging: histopathological and displacement encoding with stimulated echoes (DENSE) functional validations. Circulation 2006;113(15):1865–70.

    Article  PubMed  Google Scholar 

  37. Cury RC NJ, Shash K, et al. Comprehensive cardiac magnetic resonance imaging protocol in the emergency department: T2W imaging improves diagnostic accuracy for detection of patients with acute coronary syndrome. Circulation 2006;114(18:II):542.

    Google Scholar 

  38. Schmidt A, Azevedo CF, Cheng A, et al. Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction. Circulation 2007;115(15):2006–14.

    Article  PubMed  Google Scholar 

  39. Yan AT, Shayne AJ, Brown KA, et al. Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality. Circulation 2006;114(1):32–9.

    Article  PubMed  Google Scholar 

  40. Fieno DS, Kim RJ, Chen EL, Lomasney JW, Klocke FJ, Judd RM. Contrast-enhanced magnetic resonance imaging of myocardium at risk: distinction between reversible and irreversible injury throughout infarct healing. J Am Coll Cardiol 2000;36(6):1985–91.

    Article  PubMed  CAS  Google Scholar 

  41. Wu E, Judd RM, Vargas JD, Klocke FJ, Bonow RO, Kim RJ. Visualisation of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction. Lancet 2001;357(9249):21–8.

    Article  PubMed  CAS  Google Scholar 

  42. Kim RJ, Fieno DS, Parrish TB, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 1999;100(19):1992–2002.

    Article  PubMed  CAS  Google Scholar 

  43. Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 2000;343(20):1445–53.

    Article  PubMed  CAS  Google Scholar 

  44. Miller J RC, Dewey M, et al. Coronary artery evaluation using 64-row multidetector computed tomography angiography (CORE-64): results of a multicenter, international trial to assess diagnostic accuracy compared with conventional coronary angiography. #PS-03. Presented at American Heart Association 30th Annual Scientific Sessions, Orlando, Nov 3–7, 2007.

    Google Scholar 

  45. Schuijf JD, Wijns W, Jukema JW, et al. Relationship between noninvasive coronary angiography with multi-slice computed tomography and myocardial perfusion imaging. J Am Coll Cardiol 2006;48(12):2508–14.

    Article  PubMed  Google Scholar 

  46. Hacker M, Jakobs T, Matthiesen F, et al. Comparison of spiral multidetector CT angiography and myocardial perfusion imaging in the noninvasive detection of functionally relevant coronary artery lesions: first clinical experiences. J Nucl Med 2005;46(8):1294–300.

    PubMed  Google Scholar 

  47. Berman DS, Hachamovitch R. Risk assessment in patients with stable coronary artery disease: incremental value of nuclear imaging. J Nucl Cardiol 1996;3(6 Pt 2):S41–9.

    Article  PubMed  CAS  Google Scholar 

  48. Hachamovitch R, Berman DS, Shaw LJ, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation 1998;97(6):535–43.

    Article  PubMed  CAS  Google Scholar 

  49. Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. A prognostic score for prediction of cardiac mortality risk after adenosine stress myocardial perfusion scintigraphy. J Am Coll Cardiol 2005;45(5):722–9.

    Article  PubMed  Google Scholar 

  50. Lee VS, Resnick D, Tiu SS, et al. MR imaging evaluation of myocardial viability in the setting of equivocal SPECT results with (99m)Tc sestamibi. Radiology 2004;230(1):191–7.

    Article  PubMed  Google Scholar 

  51. Patel RA, Beller GA. Prognostic role of single-photon emission computed tomography (SPECT) imaging in myocardial viability. Curr Opin Cardiol 2006;21(5):457–63.

    Article  PubMed  Google Scholar 

  52. GE unveils clinician-driven future of CT; HD technologies. (Accessed 1/13/2008, at http://www.genewscenter.com/content/Detail.asp?ReleaseID=2846&NewsAreaID=2.)

  53. Higgins CB, Sovak M, Schmidt W, Siemers PT. Uptake of contrast materials by experimental acute myocardial infarctions: a preliminary report. Invest Radiol 1978;13(4):337–9.

    Article  PubMed  CAS  Google Scholar 

  54. Higgins CB, Sovak M, Schmidt W, Siemers PT. Differential accumulation of radiopaque contrast material in acute myocardial infarction. Am J Cardiol 1979;43(1):47–51.

    Article  PubMed  CAS  Google Scholar 

  55. Hoffmann U, Millea R, Enzweiler C, et al. Acute myocardial infarction: contrast-enhanced multi-detector row CT in a porcine model. Radiology 2004;231(3):697–701.

    Article  PubMed  Google Scholar 

  56. Mahnken AH, Bruners P, Katoh M, Wildberger JE, Gunther RW, Buecker A. Dynamic multi-section CT imaging in acute myocardial infarction: preliminary animal experience. Eur Radiol 2006;16(3):746–52.

    Article  PubMed  Google Scholar 

  57. Lardo AC, Cordeiro MA, Silva C, et al. Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation 2006;113(3):394–404.

    Article  PubMed  Google Scholar 

  58. Nikolaou K, Sanz J, Poon M, et al. Assessment of myocardial perfusion and viability from routine contrast-enhanced 16-detector-row computed tomography of the heart: preliminary results. Eur Radiol 2005;15(5):864–71.

    Article  PubMed  Google Scholar 

  59. Nieman K, Cury RC, Ferencik M, et al. Differentiation of recent and chronic myocardial infarction by cardiac computed tomography. Am J Cardiol 2006;98(3):303–8.

    Article  PubMed  Google Scholar 

  60. Zipes DP, Braunwald E. Braunwald’s heart disease: a textbook of cardiovascular medicine, 7th edn. Philadelphia, Pa: Elsevier Saunders, 2005.

    Google Scholar 

  61. Gerber BL, Belge B, Legros GJ, et al. Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: comparison with contrast-enhanced magnetic resonance. Circulation 2006;113(6):823–33.

    Article  PubMed  Google Scholar 

  62. Mahnken AH, Koos R, Katoh M, et al. Assessment of myocardial viability in reperfused acute myocardial infarction using 16-slice computed tomography in comparison to magnetic resonance imaging. J Am Coll Cardiol 2005;45(12):2042–7.

    Article  PubMed  Google Scholar 

  63. Habis M, Capderou A, Ghostine S, et al. Acute myocardial infarction early viability assessment by 64-slice computed tomography immediately after coronary angiography: comparison with low-dose dobutamine echocardiography. J Am Coll Cardiol 2007;49(11):1178–85.

    Article  PubMed  Google Scholar 

  64. George RT, Silva C, Cordeiro MA, et al. Multidetector computed tomography myocardial perfusion imaging during adenosine stress. J Am Coll Cardiol 2006;48(1):153–60.

    Article  PubMed  Google Scholar 

  65. George RT, Yousuf O, Kitagawa K, et al. Abstract 2547: quantification of myocardial perfusion in patients using 256-row multidetector computed tomography: evaluation of endocardial vs. epicardial blood flow. Circulation 2007;116(16_Meeting Abstracts):II_563.

    Google Scholar 

  66. Mahnken AH, Bruners P, Muhlenbruch G, et al. Low tube voltage improves computed tomography imaging of delayed myocardial contrast enhancement in an experimental acute myocardial infarction model. Invest Radiol 2007;42(2):123–9.

    Article  PubMed  Google Scholar 

  67. Husmann L, Valenta I, Gaemperli O, et al. Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J 2008;29:191–7.

    Article  PubMed  Google Scholar 

  68. Tsai IC, Lee T, Tsai WL, et al. Contrast enhancement in cardiac MDCT: comparison of iodixanol 320 versus iohexol 350. AJR 2008;190(1):W47–53.

    Article  PubMed  Google Scholar 

  69. Baks T, Cademartiri F, Moelker AD, et al. Multislice computed tomography and magnetic resonance imaging for the assessment of reperfused acute myocardial infarction. J Am Coll Cardiol 2006;48(1):144–52.

    Article  PubMed  Google Scholar 

  70. Nahrendorf M, Badea C, Hedlund LW, et al. High-resolution imaging of murine myocardial infarction with delayed-enhancement cine micro-CT. Am J Physiol 2007;292(6):H3172–8.

    CAS  Google Scholar 

  71. Lessick J, Dragu R, Mutlak D, et al. Is functional improvement after myocardial infarction predicted with myocardial enhancement patterns at multidetector CT? Radiology 2007;244(3):736–44.

    Article  PubMed  Google Scholar 

  72. George RT SK, Bluemke DA, et al. Prospectively ECG-gated multidetector computed tomography viability imaging accurately quantifies infarct size while lowering the radiation dose by an order of magnitude. Circulation. 2006;114(suppl II):818.

    Google Scholar 

  73. George RT, Jerosch-Herold M, Silva C, et al. Quantification of myocardial perfusion using dynamic 64-detector computed tomography. Invest Radiol 2007;42(12):815–22.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cury, R.C., Soni, A., Blankstein, R. (2011). Noninvasive Imaging of the Vulnerable Myocardium: Cardiac MRI and CT Based. In: Naghavi, M. (eds) Asymptomatic Atherosclerosis. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-179-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-179-0_32

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-178-3

  • Online ISBN: 978-1-60327-179-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics