Skip to main content

Cardiac Imaging for Ischemia in Asymptomatic Patients: Use of Coronary Artery Calcium Scanning to Improve Patient Selection: Lessons from the EISNER Study

  • Chapter
  • First Online:
Asymptomatic Atherosclerosis

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1259 Accesses

Abstract

We review emerging data that identify how coronary artery calcium (CAC) scanning can complement radionuclide cardiac stress testing for ischemia in the work-up of patients with suspected coronary artery disease (CAD). First, among screening populations, i.e., patients with low (<15%) Bayesian likelihood of CAD, stress imaging is characterized by a high false-positive test rate for CAD prediction and inability to detect hemodynamically insignificant stenoses. Because CAC scanning does not have these limitations and is a specific measure for atherosclerosis, it is a better screening test for CAD. Second, with respect to diagnostic testing, typically applied to patients with intermediate (15–85%) CAD likelihood, radionuclide imaging for ischemia has been validated as an effective diagnostic procedure. However, CAC scanning might complement this process by permitting more effective triaging of diagnostic patients for stress testing. This is because studies have demonstrated a threshold relationship between CAC scores and the frequency of myocardial ischemia. This threshold is typically low for patients with CAC scores <400, but a lower CAC threshold is observed among select risk factor subgroups, such as patients with diabetes and metabolic syndrome. Prospective work is thus needed to define the optimal CAC score criteria for triaging diagnostic patients for radionuclide stress testing on the basis of CAC scanning. Third, radionuclide stress testing is commonly used for risk stratification purposes in patients with both intermediate and high (>85%) pretest CAD likelihood. Of note, our data indicate when radionuclide stress testing is normal, a wide range of CAC scores is observed, including the presence of high CAC scores in approximately one-third of such patients. Thus, knowledge of CAC scores may represent important information for modifying projections of long-term risk and optimizing medical treatment when using stress tests for risk stratification purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berman DS, Hachamovitch R, Shaw LJ, Hayes SW, Germano G. Nuclear Cardiology. In: Fuster V, O’Rourke RA, Walsh RA, Poole-Wilson P, King III SB, Roberts R, Nash IS, Prystowsky EN, eds. Hurst’s The Heart. 12th Edition. McGraw-Hill Companies, Inc. New York, NY. 2008;544–76.

    Google Scholar 

  2. Ladenheim ML, Pollack BH, Rozanski A, Berman DS, Staniloff HM, Forrester JS, Diamond GA. Extent and severity of myocardial hypoperfusion as orthogonal indices of prognosis in patients with suspected coronary artery disease. J Am Coll Cardiol 1986;7:464-71.

    Article  PubMed  CAS  Google Scholar 

  3. Levy R, Rozanski A, Berman DS, Garcia E, Van Train K, Maddahi J, Swan HJC. Analyses of the degree of pulmonary thallium “washout” following exercise. J Am Coll Cardiol 1983;2:719-28.

    Article  PubMed  CAS  Google Scholar 

  4. Abidov A, Bax JJ, Hayes SW, Cohen I, Nishina H, Yoda S, et al. Integration of automatically measured transient ischemic dilation ratio into interpretation of adenosine stress myocardial perfusion SPECT for detection of severe and extensive CAD. J Nuc Med 2004;45:1999–2007.

    CAS  Google Scholar 

  5. Diamond GA, Forrester JS. Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. N Engl J Med 1979;300(24):1350–8.

    Article  PubMed  CAS  Google Scholar 

  6. Berman DS. Hockhamovitch R, Kiat H, et al. Incremental value of prognostic testing in patients with known or suspected heart disease: a basis for optimal utilization of exercise technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 1995;26:639–47.

    Article  PubMed  CAS  Google Scholar 

  7. Bairey CN, Rozanski A, Maddahi A, Resser KJ, Berman DS. Exercise thallium – 201 scintigraphy and prognosis in patients with typical angina and negative exercise electrocardiography. Am J Cardiol 1989;64:282–8.

    Article  PubMed  CAS  Google Scholar 

  8. Berman DS, Shaw LJ, Hachamovitch R, Friedman JD, Polk DM, Hayes SW, et al. Comparative use of radionuclide stress testing, coronary artery calcium scanning, and noninvasive coronary angiography for diagnostic and prognostic cardiac assessment. Semin Nucl Med 2007;37(1):2–16.

    Article  PubMed  Google Scholar 

  9. Navare SM, Mather JF, Shaw LJ, Fowler MS, Heller GV. Comparison if risk stratification with pharmacologic and exercise stress myocardial perfusion imaging: a meta-analysis. J Nucl Cardiol 2004;11:551–6.

    Article  PubMed  Google Scholar 

  10. Calnon DA, McGrath PD, Doss AL, Harrell FE, Watson DD, Beller GA. Prognostic value of dobutamine stress technetium-99m-sestamibi single-photon emission computed tomography myocardial perfusion imaging: stratification of a high-risk population. J Am Coll Cardiol 2001;38:1151–517.

    Article  Google Scholar 

  11. Shaw LJ, Iskandrian AE. Prognostic value of gated myocardial perfusion SPECT. J Nucl Cardiol 2004;11:171–85.

    Article  PubMed  Google Scholar 

  12. Booth FW, Chakravarthy MV, Gordon SE, Spangenburg EE. Waging war on physical inactivity: using modern molecular ammunition against an ancient enemy. J Appl Physiol 2002;93:3–30.

    PubMed  Google Scholar 

  13. Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation 2003;107:2900–7.

    Article  PubMed  Google Scholar 

  14. Hachamovitch R, Rozanski A, Hayes SW, et al. Predicting therapeutic benefit from myocardial revascularization procedures: are measurements of both resting left ventricular ejection fraction and stress-induced myocardial ischemia necessary? J Nucl Cardiol 2006;13:742–6.

    Article  Google Scholar 

  15. Berman DS, Garcia EV, Maddahi J. Thallium-201 myocardial scintigraphy in the detection and evaluation of coronary artery disease. (Chapter 3) In: Clinical Nuclear Cardiology (Berman DS, Mason DT, eds), Grune & Stratton, New York, 1981;49–106.

  16. Berman DS, Wong ND, Gransar H, Miranda-Peats R, Dahlbeck J, Arad Y, et al. Relationship between stress-induced myocardial ischemia and atherosclerosis measured by coronary calcium tomography. J Am Coll Cardiol 2004;44:923–30.

    Article  PubMed  CAS  Google Scholar 

  17. He ZX, Hedrick TD, Pratt CM, Verani MS, Aquino V, Roberts R, et al. Severity of coronary artery calcification by electron beam computed tomography predicts silent myocardial ischemia. Circulation 2000;101(3):244–51.

    Article  PubMed  CAS  Google Scholar 

  18. Moser KW, O’Keefe JH, Bateman TM, McGhie IA. Coronary calcium screening in asymptomatic patients as a guide to risk factor modification and stress myocardial perfusion imaging. J Nucl Cardiol 2003;10:590–8.

    Article  PubMed  Google Scholar 

  19. Anand DV, Lim E, Hopkins D, Corder R, Shaw LJ, Sharp P, et al. Risk stratification in uncomplicated type 2 diabetes: prospective evaluation of the combined use of coronary artery calcium imaging and selective myocardial perfusion scintigraphy. Eur Heart J 2006;27(6):713–21.

    Article  PubMed  Google Scholar 

  20. Wong ND, Rozanski A, Gransar H, Miranda-Peats R, Kang X, Hayes S, et al. Metabolic syndrome and diabetes are associated with an increased likelihood of inducible myocardial ischemia among patients with subclinical atherosclerosis. Diabetes Care 2005;28:1445–50.

    Article  PubMed  Google Scholar 

  21. Beller GA. Noninvasive screening for coronary atherosclerosis and silent ischemia in asymptomatic type 2 diabetes mellitus patients: is it appropriate and cost-effective? J Am Coll Cardiol 2007;49:1918–23.

    Article  PubMed  Google Scholar 

  22. Yerramasu A, Maggae SV, Lahiri A, Anand DV. Cardiac computed tomography and myocardial perfusion imaging for risk stratification in asymptomatic diabetic patients: a critical review. J Nucl Cardiol 2008;15:13–22.

    Article  PubMed  Google Scholar 

  23. Rozanski A, Gransar H, Wong ND, et al. Use of coronary calcium scanning for predicting inducible myocardial ischemia: influence of patients’ clinical presentation. J Nucl Cardiol 2007;14:669–79.

    Article  PubMed  Google Scholar 

  24. Abidov A, Hachamovitch R, Rozanski A, et al. Prognostic implications of atrial fibrillation in patients undergoing myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 2004;44:1062–70.

    Article  PubMed  Google Scholar 

  25. Abidov A, Rozanski A, Hachamovitch R, Hayes SW, Aboul-Enein F, Cohen I, et al. Complaints of dyspnea among patients referred for cardiac stress testing. New Eng J Med 2005;353:1889–98.

    Article  PubMed  CAS  Google Scholar 

  26. Shaw LJ, Berman DS, Hendel RC, Alazraki N, Krawczynska E, Borges-Neto S, et al. Cardiovascular disease risk stratification with stress single-photon emission computed tomography technetium-99m tetrofosmin imaging in patients with the metabolic syndrome and diabetes mellitus. Am J Cardiol 2006;97:1538–44.

    Article  PubMed  Google Scholar 

  27. Arad Y, Sparado LA, Goodman K, et al. Prediction of coronary events with electron beam computed tomography. J Am Coll Cardiol 2000;36:1253–60.

    Article  PubMed  CAS  Google Scholar 

  28. Wong ND, Hsu JC, Detrano RC, et al. Coronary artery calcium evaluation by electron beam computed tomography and its relation to new cardiovascular events. Am J Cardiol 2000;86:495–8.

    Article  PubMed  CAS  Google Scholar 

  29. Raggi P, Callister TQ, Cooil B, et al. Identification of patients at increased risk of first unheralded acute myocardial infarction by electron beam computed tomography. Circulation 2000;101:850–5.

    Article  PubMed  CAS  Google Scholar 

  30. Park R, Detrano R, Xiang M, et al. Combined use of computed tomography coronary calcium scores and C-reactive protein levels in predicting cardiovascular events in nondiabetic individuals. Circulation 2002;106:2073–7.

    Article  PubMed  CAS  Google Scholar 

  31. Kondos GT, Hoff JA, Sevrukov A, et al. Coronary artery calcium and cardiac events electron-beam tomography coronary artery calcium and cardiac events: a 37-month follow-up of 5,635 initially asymptomatic low to intermediate risk adults. Circulation 2003;107:2571–6.

    Article  PubMed  Google Scholar 

  32. Arad Y, Goodman KJ, Roth M, et al. Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events. J Am Coll Cardiol 2005;46:158–65.

    Article  PubMed  CAS  Google Scholar 

  33. Budoff MJ, Shaw LJ, Liu ST. Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol 2007;49:1860–70.

    Article  PubMed  Google Scholar 

  34. Kronmal RA, McClelland RL, Detrano R, et al. Risk factors for the progression of coronary artery calcification in asymptomatic subjects. Results from the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 2007;115:2722–30.

    Article  PubMed  Google Scholar 

  35. Rozanski A, Gransar H, Wong ND, Shaw LJ, Miranda-Peats R, Polk D, Hayes SW, Friedman JD, Berman DS. Clinical outcomes after both coronary calcium scanning and exercise myocardial perfusion scinitigraphy. J Am Coll Cardiol 2007;49:1352–61.

    Article  PubMed  CAS  Google Scholar 

  36. Detrano R, Guerci AD, Car JJ, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med 2008;358:1336–45.

    Article  PubMed  CAS  Google Scholar 

  37. Naghavi M, Falk E, Hecht HS, Jamieson MJ, Berman D, Budoff MJ, et al. From vulnerable plaque to vulnerable patient – Part III: executive summary of the Screening for Heart Attack Prevention and Education (SHAPE) Task Force report. Am J Cardiol 2006;98:2H–15.

    Article  PubMed  Google Scholar 

  38. Lloyd-Jones DM, Leip EP, Larson MG, et al. Prediction of lifetime risk for cardiovascular disease by risk factor burden at 50 years of age. Circulation 2006;113:791–8.

    Article  PubMed  Google Scholar 

  39. Taylor AJ, Binderman J, Feuerstein I, et al. Community-based provision of statin and aspirin after the detection of coronary artery calcium within a community-based screening cohort. J Am Coll Cardiol 2008;51:1337–41.

    Article  PubMed  Google Scholar 

  40. Schenker MP, Dorbala S, Hong EC, et al. Interrelation of coronary calcification, myocardial ischemia, and outcomes in patients with intermediate threshold of coronary artery disease: a combined positron emission tomography/computed tomography study. Circulation 2008;117:1693–700.

    Article  PubMed  Google Scholar 

  41. Greenland P, Bonow RO, Brundage BH, Bundoff MJ. Eisenberg MJ, Grundy SM, et al. ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography). Circulation 2007;115(3):402–26.

    Article  PubMed  Google Scholar 

  42. O’Rourke RA, Brudage BH, Froelicher VF, et al. American college of Cardiology/American heart association expert consensus document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease. Circulation 2000;102:126–40.

    Article  PubMed  Google Scholar 

  43. Mieres JH, Shaw LJ, Arai A, et al. The role of non-invasive testing in the clinical evaluation of women with suspected coronary artery disease: American Heart Association consensus statement. Circulation 2005;111:682–96.

    Article  PubMed  Google Scholar 

  44. Taylor AJ, Feurstein I, Wong H, et al. Do conventional risk factors predict subclinical coronary artery disease? Results from the prospective army coronary calcium project. Am Heart J 2001;141:463–8.

    Article  PubMed  CAS  Google Scholar 

  45. Hecht HS, Superko HR, Smith LK, McColgan BP. Relation of coronary artery calcium identified by electron beam tomography to serum lipoprotein levels and implications for treatment. Am J Cardiol 2001;87(4):406–12.

    Article  PubMed  CAS  Google Scholar 

  46. Mahoney LT, Burns TL, Stanford W, Thompson BH, Witt JD, Rost CA, Lauer RM. Usefulness of the Framingham risk score and body mass index to predict early coronary artery calcium in young adults (Muscatine Study). Am J Cardiol 2001;88(5):509–15.

    Article  PubMed  CAS  Google Scholar 

  47. Michos ED, Vasamreddy CR, Becker DM, et al. Women with a low Framingham risk score and a family history of premature coronary heart disease have a high prevalence of subclinical coronary atherosclerosis. Am Heart J 2005;150:1276–81.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rozanski, A., Gransar, H., Wong, N.D., Shaw, L.J., Zellweger, M.J., Berman, D.S. (2011). Cardiac Imaging for Ischemia in Asymptomatic Patients: Use of Coronary Artery Calcium Scanning to Improve Patient Selection: Lessons from the EISNER Study. In: Naghavi, M. (eds) Asymptomatic Atherosclerosis. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-179-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-179-0_30

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-178-3

  • Online ISBN: 978-1-60327-179-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics