Skip to main content

Selection and Design of Nitrogen Removal Processes

  • Chapter
Advanced Biological Treatment Processes

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 9))

  • 2205 Accesses

Abstract

The characteristics of the wastewater to be treated and site constraints will affect treatment performance and thus the selection of an effective process. The nature of the existing facilities will have an effect on the process selection when upgrading for nitrogen removal, especially when attempting to make maximum use of the existing facilities to reduce costs. Usually, a single-sludge system can be more easily retrofitted into an existing activated sludge plant than can a separate-stage system. In addition to the discussion of the factors that affect process selection, the chapter covers costs, design considerations, process design, and design examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. US EPA, Nitrogen Control Manual, US Environmental Protection Agency, Tech. Report # EPA/625/R-93/010, Office of Research and Development, Washington, DC, September (1993).

    Google Scholar 

  2. N. K. Shammas, Interactions of temperature, pH and biomass on the nitrification process, Journal Water Pollution Control Federation, 58, 1, 52–59, January (1986).

    CAS  Google Scholar 

  3. N. K. Shammas, An allosteric kinetic model for the nitrification process, Proceedimgs of the Tenth Annual Conference of Water Supply Improvement Association, Honolulu, Hawaii, pp. 1–30, July (1982).

    Google Scholar 

  4. N. K. Shammas, Optimization of Biological Nitrification, Ph.D. dissertation, Microfilm Publication, University of Michigan, Ann Arbor, Michigan (1971).

    Google Scholar 

  5. L. K. Wang, N. C. Pereira, Y. T. Hung, and N. K. Shammas (eds.), Biological Treatment Processes, Humana Press, Totowa, NJ (2009).

    Google Scholar 

  6. C. Beer, and L. K. Wang, Activated sludge systems using nitrate respiration — Design Considerations, Journal of Water Pollution Control Federation, 50, 2120, September (1978).

    CAS  Google Scholar 

  7. C. W Randall, J. L. Barnard, and H. D. Stensel, Design and retrofit of wastewater treatment plants for biological nutrient removal, Vol. 5, Water Quality Management Library, Technomic Publishing, Lancaster, PA (1992).

    Google Scholar 

  8. G. T. Daigger, G. D. Waltrip, E. D. Romm, and L. M. Morales, Enhanced secondary treatment incorporating biological nutrient removal, Journal of Water Pollution Control Federation, 60, 10, 1833–1842 (1988).

    CAS  Google Scholar 

  9. C. W. Randall, et al., Retrofitting activated sludge plants to improve the removal of nitrogen and phosphorus by biological process, Water Science and Technology (G.B.), 22, 275 (1990).

    CAS  Google Scholar 

  10. K. Krauth, Practical experiences with nitrification and denitrification processes, Proceedings of the Japanese-German Workshop on Wastewater and Sludge Treatment, Tsukuba, October (1982).

    Google Scholar 

  11. M. Kuribayashi, Study of nitrified liquor recycled biological nitrification-denitrification processes, Proceedings of the Japanese-German Workshop on Wastewater and Sludge Treatment, Tsukuba, October (1982).

    Google Scholar 

  12. V. Miyaji, et al., Biological nitrogen removal by step feed process, Prog. Water Tech., 12, 6, 193–202 (1980).

    CAS  Google Scholar 

  13. L. K. Wang, L. Kurylko, and M. H. S. Wang, Sequencing Batch Liquid Treatment, US Patent No. 5354458. US Patent & Trademark Office, Washington, D.C (1996).

    Google Scholar 

  14. D. S. Lee, C. O. Jeon, J. M. Park, Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system. Water Res. 35, 16, 3968–76 November (2001).

    Article  CAS  Google Scholar 

  15. R. P. G Bowker, J. M. Smith, and H. Shah, Assessment of cost and effectiveness of biological dual nutrient removal technologies in the Chesapeake Bay drainage basin, Vol. 1, EPA CBP/TRS 17, Annapolis, MD (1988).

    Google Scholar 

  16. J. C. Wang, D. B. Aulenbach, and L. K. Wang, Energy models and cost models for water pollution controls—Chapter 29, Clean Production, Misra, K. B. (ed.) Springer-Verlag, Berlin, Germany, pp. 685–720 (1996).

    Google Scholar 

  17. L. K. Wang, and N. C. Pereira, Handbook of Environmental Engineering, Vol. 3, Biological Treatment Processes, Humana Press, Totowa, NJ, pp. 520 (1986).

    Google Scholar 

  18. Soap and Detergent Association, Principles and Practice of Phosphorus and Nitrogen Removal from Municipal Wastewater, New York (1991).

    Google Scholar 

  19. G. T. Daigger, Biological Nutrient Removal, CH2M-Hill, Denver, CO, Paper located on the Web http://bridge.ecn.purdue.edu/?alleman/w3-class/456/article/daigger-nutrients/daigger.html, (2005).

    Google Scholar 

  20. R. O. Jr. Mines, Designing Single-Sludge Bionutrient Removal Systems, 2001 World Water and Environmental Resources Conference, Orlando, FL (2001).

    Google Scholar 

  21. M. C. Goronszy, CASS, Cyclic Activated Sludge System: Superior Batch Reactor Technology, Transenviro, Inc., Aliso Viejo, CA (1990).

    Google Scholar 

  22. IAWPRC, Simulation of Single-Sludge Processes for Carbon Oxidation, Nitrification and Deni-trification, Model developed by the IAWPRC Task Group on Mathematical Modeling for Design and Operation of Biological Wastewater Treatment, Version 1, 1997, Clemson University, Source Link: http://www.ces.clemson.edu/ees/sssp January (2004).

  23. Y. Argaman, G. Papkov, A. Ostfeld, and D. Rubin, Single-sludge nitrogen removal model: calibration and verification, ASCE, J. Envir. Engrg., 125, 7, 608–617, July (1999).

    Article  CAS  Google Scholar 

  24. C. G. Jih, J. S. Huang, and K. C. Hsieh, Performance evaluation of single-sludge reactor system treating high-strength nitrogen wastewater, Journal of Hazardous Materials, 85, 3, 213–27, August (2001).

    Article  CAS  Google Scholar 

  25. BBS, Single-Sludge Process for Carbon Oxidation, Nitrification and Denitrification, BBS Engineering, Source Link: http://www.bbsengineering.com/portfolio/alternative.php3, January (2005).

  26. G. T. Daigger, M. H. Jr. Robbins, and B. R. MarshalL, The design of a selector to control low F:M filamentous bulking, Journal of Water Pollution and Control Federation, 57, 3 (1985).

    Google Scholar 

  27. D. F. Bishop, J. A. Heidman, and J. B. Stamberg, Single-stage nitrification-denitrification, Journal of Water Pollution Control Federation, 48, 3, 520–532 (1976).

    CAS  Google Scholar 

  28. M. C. Goronszy, and J. White, Biological nutrient removal with sludge bulking control in a batch activated system, Proceedings of the 14th Biennial International Association on Water Pollution Control and Research Conference, Brighton, UK (1988).

    Google Scholar 

  29. J. H. Rensik, New approach to preventing sludge bulking, Journal of Water Pollution Control Federation, 46, 1888 (1974).

    Google Scholar 

  30. S. R. Linne, and S. C. Chiesa, Operational variables affecting performance of the selector -complete mix activated sludge process, Journal of Water Pollution and Control Federation, 59, 7 (1987).

    Google Scholar 

  31. J. Chudoba, et al., Control of activated sludge filamentous bulking: I. effect of hydraulic regime or degree of mixing in an aeration tank, Water Research 7, 1163 (1973).

    Article  CAS  Google Scholar 

  32. J. Chudoba, et al, Control of activated sludge filamentous bulking: II. selection of microorganisms by means of a selector, Water Research, 7, 1389 (1973).

    Article  CAS  Google Scholar 

  33. J. Chudoba, et al, Control of activated sludge filamentous bulking: III. effect of sludge loading, Water Research, 8, 231 (1974).

    Article  CAS  Google Scholar 

  34. G. T. Daigger, and G. A. Nicholson, Performance of four full-scale nitrifying wastewater treatment plants incorporating selectors, Journal of Water Pollution Control Federation, 62, 5, 676– 683 (1990).

    CAS  Google Scholar 

  35. L. K. Wang, Chemistry of nitrification-denitrification process, Journal of Environmental Science, 21, 23–28, December (1978).

    CAS  Google Scholar 

  36. Y. D. Lee, E. B. Shin, Y. S. Choi, H. S. Yoon, H. S. Lee, I. J. Chung, and J. S. Na, Biological removal of nitrogen and phosphorus from wastewater by a single-sludge reactor, Environmental Technology, 18, 10, 975–986, October (1997).

    Article  CAS  Google Scholar 

  37. L. K. Wang, N. K. Shammas, and Y. T. Hung (eds.), Biosolids Treatment Processes, Humana Press, Totowa, NJ (2007).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Shammas, N.K., Wang, L.K. (2009). Selection and Design of Nitrogen Removal Processes. In: Wang, L.K., Shammas, N.K., Hung, YT. (eds) Advanced Biological Treatment Processes. Handbook of Environmental Engineering, vol 9. Humana Press. https://doi.org/10.1007/978-1-60327-170-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-170-7_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-360-2

  • Online ISBN: 978-1-60327-170-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics