Skip to main content

Single-Sludge Biological Systems for Nutrients Removal

  • Chapter
Advanced Biological Treatment Processes

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 9))

Abstract

In a conventional activated-sludge process, bio-oxidation, nitrification, and denitrification reactions occur in three separate bioreactors connected in series. Each bioreactor has its own type of micro-organisms (i.e., activated sludge), and each bioreactor has its own clarifier for micro-organisms—water separation. In a single sludge biological system, the mixed micro-organisms are used throughout the bioreactor, which is divided into aerobic and anoxic zones for nutrient removal. This chapter introduces the classification, stoichiometric principles, kinetic considerations, and system design of various single sludge biological systems. Specifically, the multistage single anoxic zone system, the multistage multiple anoxic zone system, and the multiphase cyclical aeration system are discussed in detail. Other biological systems covered in this chapter are: endogenous nitrate respiration, aerobic sludge synthesis, anoxic biosolids synthesis, and compartmentalized aeration tanks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. US EPA, Nitrogen Control Manual, U. S. Environmental Protection Agency, Tech. Report # EPA/625/R-93/010, Washington, DC (1993).

    Google Scholar 

  2. L. K. Wang, N. C. Pereira, Y. T. Hung, and N. K. Shammas (eds.), Biological Treatment Processes, Humana Press, Totowa, NJ (2009).

    Google Scholar 

  3. N. K. Shammas, Optimization of Biological Nitrification, Ph.D. dissertation, Microfilm Publication, University of Michigan, Ann Arbor, MI (1971).

    Google Scholar 

  4. L. K. Wang and M. H. S. Wang, Control tests and kinetics of activated sludge process, Water, Air and Soil Pollution (Holland), 8, 315–351 (1977).

    Article  CAS  Google Scholar 

  5. L. K. Wang and D. B. Aulenbach, BOD and Nutrient Removal by Biological A/O Process Systems, US Department of Commerce, National Technical Information Service Technical Report #PB88–168430/AS, pp. 12, December (1986).

    Google Scholar 

  6. US EPA, BNR Plant Assessment Interim Data Summary Report, Office of Wastewater Enforcement and Compliance, Prepared by HydroQual, New Jersey, October (1991).

    Google Scholar 

  7. WRC, Theory, Design, and Operation of Nutrient Removal Activated Sludge Processes, Water Research Commission, South Africa (1984).

    Google Scholar 

  8. Austgen Biojet Waste Water Systems, Inc., Design Manual, Version 1.1, No. 44, May (1991).

    Google Scholar 

  9. A. Brenner and Y. Argaman, Effects of feed composition, aerobic volume fraction and recycle rate on nitrogen removal in the single-sludge system, Water Science And Technology, (G.B.), 24, 1041 (1990).

    CAS  Google Scholar 

  10. E. Sotirakou, G. Kladitis, N. Diamantis, and H. P. Grigoropoulou, Ammonia and phosphorus removal in municipal wastewater treatment plant with extended aeration, The International Journal, 1, 1, 47–53, March 1999, Source Link http://www.gnest.org/journal/Vol1_No1/sotirakou.pdf, January (2005).

    Google Scholar 

  11. A. I. Stamon, Modeling of oxidation ditches using an open channel flow 1-D advection-dispersion equation and ASM1 process description, Proceedings of the 4th International Symposium on System Analysis and Computing in Water Quality Management, Quebec, Canada, pp. 313–320, June (1997).

    Google Scholar 

  12. B. E. Rittman, and W. E. Langeland, Simultaneous denitrification with nitrification in single-channel oxidation ditches, Journal of Water Pollution Control Federation, 57, 4, 300–308 (1985).

    Google Scholar 

  13. US EPA, A comparison of oxidation ditch plant to competing processes for secondary and advanced treatment of municipal wastes, EPA/600/2–78/051, Cincinnati, OH (1978).

    Google Scholar 

  14. K. Inomae, H. Araki,K. Koya,Y. Awoya, T. Kusuda, and I. Matsuo, Nitrogen removal in an oxidation ditch with intermittent aeration, Water Science and Technology, 19 (1987).

    Google Scholar 

  15. D. Sen, et al., Process design and operational modifications of oxidation ditches for biological nutrient removal. Proceedings of 6th IAWPRC Conference, Prague, Czechoslovakia (1991).

    Google Scholar 

  16. L. K. Wang, P. Wang. and N. Clesceri, Groundwater decontamination using sequencing batch process, Water Treatment, 10, 2, 121–134 (1995).

    CAS  Google Scholar 

  17. L. K. Wang, L. Kurylko, and M. H. S. Wang, Sequencing Batch Liquid Treatment, US Patent No. 5354458. US Patent & Trademark Office, Washington, DC (1996).

    Google Scholar 

  18. D. S. Lee, C. O. Jeon, and J. M. Park, Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system, Water Research, 35, 16, 3968–3976 November (2001).

    Article  CAS  Google Scholar 

  19. G. Bortone, et al. Nitrification, denitrification and biological phosphate removal in sequencing batch reactors treating piggery wastewater, Water Science and Technology, (G.B.), 26, 997 (1992).

    Google Scholar 

  20. K. L. Norcross, Sequencing batch reactors: an overview, Proceedings of the 6th Annual Kansas Engineering Conference, Lawrence, KS (1986).

    Google Scholar 

  21. W. M. Shubert, SCR-Sequencing Batch Reactor, Aqua-Aerobic Systems, Inc. (1986).

    Google Scholar 

  22. K. J. Deeny, J. A. Heidman, W. W. Schuk, K. S. Young, and A. J. Condren, Implementation of sequencing batch reactor technologies in the United States, The 64th Annual WPCF Conference, Toronto, Ontario, October (1991).

    Google Scholar 

  23. US EPA, Sequencing Batch Reactors, Summary report for the Center for Environmental Research Information, EPN625/8–86/011, Cincinnati, OH (1986).

    Google Scholar 

  24. R. L. Irvine, D. V. S. Murphy, M. L. Arora, J. L. Copeman, and J. A. Heidman, Analysis of full-scale SBR operation at Grundy Center, Iowa, Journal of Water Pollution Control Federation, 59, 3, 132–138 (1987).

    CAS  Google Scholar 

  25. M. C. Goronszy, CASS, Cyclic Activated Sludge System: Superior Batch Reactor Technology, Transenviro, Inc. Aliso Viejo, CA (1990).

    Google Scholar 

  26. M. C. Goronszy, Nitrogen removal and sludge bulking control in cyclically operated activated sludge systems, Proceedings of the 61st Meeting of Ohio Water Pollution Control Association, Akron, OH (1987).

    Google Scholar 

  27. A. C. J. Koot, and J. Zeper, Carrousel, a new type of aeration-system with low organic load, Water Research, 6, 401–406 (1972).

    Article  CAS  Google Scholar 

  28. A. T. VanderGeest, and W. C. Witvoet, Nitrification and denitrification in Carrousel systems, Progress in Water Technology, 8, 653 (1977).

    CAS  Google Scholar 

  29. H. Emori, H. Nakamura, T. Sumino, T. Takeshima, K. Motegi, and K. Tanaka, High rate and compact single sludge pre-denitrification process for retrofit, Water Science and Technology, 30, 6, 31–40, (1994). Retrofitting.

    CAS  Google Scholar 

  30. C. W. Randall, et al., Retrofitting activated sludge plants to improve the removal of nitrogen and phosphorus by biological process, Water Science and Technology (G.B.), 22, 275 (1990).

    CAS  Google Scholar 

  31. B. Andersson and B. Rosen, Upgrading for biological nitrogen removal-some full-scale experience from Sweden, Water Science and Technology, (G.B.), 22, 93 (1990).

    CAS  Google Scholar 

  32. US EPA, A Study of Nitrate Respiration in the Activated Sludge Process, US Environmental Protection Agency, EPA-600/2-80-154, Office of Research and Development, Cincinnati, OH, August (1980).

    Google Scholar 

  33. US EPA, Process Design Manual for Nitrogen Control, US Environmental Protection Agency, Office of Technology Transfer, Washington, DC (1975).

    Google Scholar 

  34. G. T. Daigger, Biological Nutrient Removal, CH2M-Hill, Denver, Colorado, Paper located on Web Site address: http://bridge.ecn.purdue.edu/̃alleman/w3-class/456/article/daigger-nutrients/daigger.html January (2005).

  35. Y. D. Lee, E. B. Shin, Y. S. Choi, H. S. Yoon, H. S. Lee, I. J. Chung and J. S. Na Biological removal of nitrogen and phosphorus from wastewater by a single-sludge reactor, Environmental Technology, 18, 10, 975–986, October (1997).

    Article  CAS  Google Scholar 

  36. R. G. Kavanaugh, and C. W. Randall, Bacterial populations in a biological nutrient removal plant, Water Science and Technology, (G.B.), 29, 25 (1994).

    CAS  Google Scholar 

  37. N. Porges, L. Jasewiez, and S. H. Hoover, Principles of biological oxidation. In: Biological Treatment of Sewage and Industrial Wastes, Vol. 1, Mccabe and V. V. Eckenfelder, Jr. (eds.), Reinhold, New York, p. 35 (1956).

    Google Scholar 

  38. P. L. McCarty, Energetics and Bacterial Growth. In: Organic Compounds in Aquatic Environments, S. U. Faust. and J. V. Hunter (eds.), Marcel Dekker, New York, p. 495 (1971).

    Google Scholar 

  39. D. B. Christensen and P. L. McCarty, Multi-process biological treatment model, Journal of Water Pollution Control Federation, 67, 2652, (1975).

    Google Scholar 

  40. J. L. Barnard, Biological nutrient removal without the addition of chemicals, Water Research, 9, 483, May/June (1975).

    Article  Google Scholar 

  41. C. Beer, Liquid Waste Treatment Process. US Patent No. 3517810. US Patent and Trade Marks Office, Washington, DC, June 30, 1970.

    Google Scholar 

  42. K. Wuhrmann, Stickstoff und phosphorelimination, ergebnisse von versuchen im technischen masstab, Schweizerische Zeitschrift Fur Hydrologie-Swiss Journal Of Hydrology, 26, 520 (1964).

    Article  CAS  Google Scholar 

  43. M. H. Christensen, M. H. Christensen, and P. Harremoes, Biological Denitrification in Water Treatment, Report No. 72-2, Department of Sanitary Engineering, Technical University of Denmark, Lyngby (1972).

    Google Scholar 

  44. R. C. Brenner, Federal government activities in oxygen activated sludge process development. In: Applications of Commercial Oxygen to Water and Wastewater Systems, R. E. Speece, and J. F. Malina, Jr. (eds.), Proceedings, Water Resources Symposium No. 6, Center for Research in Water Resources, Austin, TX, p. 135, (1973).

    Google Scholar 

  45. Beloit—Passavant Corporation, Magna Rotor, Bulletin No. 5300, Birmingham, Alabama.

    Google Scholar 

  46. F. J. Ludzak, and M. B. Ettinger, Controlling operation to minimize activated sludge effluent nitrogen, Journal of Water Pollution Control Federation, 34, p. 920, September (1962).

    Google Scholar 

  47. United Statue Patent No. 3,964,998 issued to Barnard, J. I., June 22 (1976).

    Google Scholar 

  48. J. C. Wang, D. B. Aulenbach, and L. K. Wang, Energy models and cost models for water pollution controls—Chapter 29. In: Clean Production, K. B. Misra, (ed.), Springer-Verlag, Berlin, Germany, pp. 685–720 (1996).

    Google Scholar 

  49. L. K. Wang, J. V. Krougzek, and U. Kounitson, Case Studies of Cleaner Production and Site Rededication, United Nations Industrial Development Organization (UNIDO) Vienna, Austria, UNIDO-Registry No. DTT-5-4-95, 136 pp., April (1995).

    Google Scholar 

  50. L. K. Wang, and N. C. Pereira, Handbook of Environmental Engineering, Vol. 3, Biological Treatment Processes, Humana Press, New Jersey, pp. 520 (1986).

    Google Scholar 

  51. C. Beer, L. K. Wang, and L. J. Hetling, Full scale operations of plug flow activated sludge systems, Journal of New England Water Pollution Control Association, 9(2) 145–173 (1975).

    Google Scholar 

  52. C. Beer and L. K. Wang, Activated sludge systems using nitrate respiration- design considerations, Journal of Water Pollution Control Federation, 50, 9, 2120–2131, September (1978).

    CAS  Google Scholar 

  53. L. K.Wang, Chemistry of nitrification-denitrification process, Journal of Environmental Science, 21, 23–28, December (1978).

    CAS  Google Scholar 

  54. L. K. Wang, Wastewater treatment by biological physicochemical two-stage process system, Proceedings of the 41st Annual Purdue Industrial Waste Conference, p. 67 (1987).

    Google Scholar 

  55. C. S. Applegate, B. Wilder, and J. R. DeShaw, Total nitrogen removal in a multichemical oxidation system. Journal of Water Pollution Control Federation, 52, 3, 568–577 (1980).

    CAS  Google Scholar 

  56. M. H. Christensen, Denitrification of sewage by alternating process operation, Progress in Water Technology, 7, 2, 339–347 (1975).

    Google Scholar 

  57. J. L. Barnard, Biological denitrification, Water Pollution Control (G.B.) 72, 6, 705–720 (1973).

    CAS  Google Scholar 

  58. K. Krauth, Practical experiences with nitrification and denitrification processes, Proceedings of the Japanese-German Workshop on Wastewater and Sludge Treatment, Tsukuba, October (1982).

    Google Scholar 

  59. M. Kuribayashi, Study of nitrified liquor recycled biological nitrification-denitrification processes, Proceedings of the Japanese-German Workshop on Wastewater and Sludge Treatment, Tsukuba, October (1982).

    Google Scholar 

  60. V. Miyaji, et al., Biological nitrogen removal by step feed process, Progress in Water Technology, 12, 6, 193–202 (1980).

    CAS  Google Scholar 

  61. G. T. Daigger and G. A. Nicholson, Performance of four full-scale nitrifying wastewater treatment plants incorporating selectors, Journal of Water Pollution Control Federation, 62, 5, 676– 683 (1990).

    CAS  Google Scholar 

  62. N. K. Shammas, Interactions of temperature, pH and biomass on the nitrification process, Journal Water Pollution Control Federation, 58, 1, 52–59 (1986).

    CAS  Google Scholar 

  63. R. O. Mines Jr., Designing Single-Sludge Bionutrient Removal Systems, 2001 World Water and Environmental Resources Conference, Orlando, FL (2001).

    Google Scholar 

  64. R. O. Mines, Jr., Design modeling of post-denitrification single-sludge activated sludge process, Water, Air, and Soil Polluion, 100, 1–2, 79–88 (1997).

    Google Scholar 

  65. P. M. Sutton, K. L. Murphy, and B. E. Jank, Nitrogen control: a basis for design with activated sludge systems, Progress in Water Technology, 8, 4/5 (1977).

    Google Scholar 

  66. D. Sen, C. W. Randall, and T. J. Grizzard, Critical design and process control features to optimize biological nutrient removal in temperature climates, Proceedings of 7th IAWPRC Conference, Washington, DC (1992).

    Google Scholar 

  67. R. P. G. Bowker, J. M. Smith, and H. Shah, Assessment of Cost and Effectiveness of Biological Dual Nutrient Removal Technologies in the Chesapeake Bay Drainage Basin, V 1, EPA CBP/TRS 17, Annapolis, MD (1988).

    Google Scholar 

  68. P. M. Sutton, and T. R. Bridle, Biological nitrogen control of industrial wastewater, Water-1980 AICHE Symposium Series, 177 (1980).

    Google Scholar 

  69. J. A. Heidman, I. J. Kugelman, and E. F. Barth, Plug-flow single-stage nitrification-denitrification activated sludge, The 49th Annual WPCF Conference, Minneapolis, MN (1976).

    Google Scholar 

  70. C. W. Randall, J. L. Barnars, and H. D. Stensel, Design and retrofit of wastewater treatment plants for biological nutrient removal, V 5, Water Quality Management Library, Technomic Publishing, Lancaster, PA (1992).

    Google Scholar 

  71. P. Llies and D. S. Mavinic, Biological nitrification and denitrification of a simulated high ammonia landfill leachate using 4-stage Bardenpho systems: system startup and acclimation, Canadian Journal of Civil Engineering, 28, 1, 85–97 (2001).

    Article  Google Scholar 

  72. L. Szpyrkowicz, and S. N. Kaul, Biochemical removal of nitrogen from tannery wastewater: performance and stability of a full-scale plant, Journal of Chemical Technology and Biotechnology, 79, 8, 879–888 (2004).

    Article  CAS  Google Scholar 

  73. D. E. Schwinn, D. F. Storrier, and D. G. Thome, Full-scale Operation of a Single-Stage Nitrification-Denitrification Plant, EPA/600/1 2–77/088, Cincinnati, OH (1977).

    Google Scholar 

  74. D. E. Schwinn, Final Report on Nitrification-Denitrification Research at the Water pollution Control plant, Town of Barnstable, MA, Stearns & Wheler Engineers and Scientists (1988).

    Google Scholar 

  75. N. K. Shammas, An allosteric kinetic model for the nitrification process, Proceedings of the Tenth Annual Conference of Water Supply Improvement Association, Honolulu, Hawaii, pp. 1–30, July (1982).

    Google Scholar 

  76. IAWPRC, Simulation of Single-Sludge Processes for Carbon oxidation, Nitrification and Denitrification, Model developed by the IAWPRC Task Group on Mathematical Modeling for Design and Operation of Biological Wastewater Treatment, Version 1, 1997, Clemson University. Source Link: http://www.ces.clemson.edu/ees/sssp January (2004).

  77. G. Esposito, M. Fabbricino, and F. Pirozzi, Four-substrate design model for single-sludge preden-itrification system, Journal of Environmental Engineering, 129, 5, 394–401, (May 2003).

    Article  CAS  Google Scholar 

  78. Y. Argaman, G. Papkov, A. Ostfeld, and D. Rubin, Single-sludge nitrogen removal model: Calibration and Verification, Journal of Environmental Engineering, ASCE, 125, 7, 608–617, July (1999).

    Article  CAS  Google Scholar 

  79. G. Boeije, D. Schowanek, and P. Vanrolleghem, Adaptation of the simple treat chemical fate model to single-sludge biological nutrient removal wastewater treatment plants, Water Science and Technology, 211–218 (1998).

    Google Scholar 

  80. A. C. Di Pinto, Modeling of two stage single sludge system for nitrogen removal, Environmental Technology, 11, 509 (1990).

    Article  Google Scholar 

  81. C. G. Jih, J. S. Huang, and K. C. Hsieh, Performance evaluation of single-sludge reactor system treating high-strength nitrogen wastewater, Journal of Hazardous Materials, 85, 3, 213–27 (2001).

    Article  CAS  Google Scholar 

  82. BBS, Single-Sludge Process for Carbon Oxidation, Nitrification and Denitrification, BBS Engineering. Source Link: http://www.bbsengineering.com/portfolio/alternative.php3, January (2005).

  83. C. Beer, L. K. Wang, and L. J. Hetling, Full-scale operation of plug flow activated sludge systems, Journal of the New England Water Pollution Control Association, 9(2), September 1975. New York StateDepartmentofEnvironmentalConservation,Albany,NewYork,TechnicalPaper No. 42, 1975.

    Google Scholar 

  84. C. Beer and L. J. Hetling, Nitrogen Removal and Phosphorus Precipitation in a Compartmentalized Aeration Tank, New York State Department of Environmental Conservation, Albany, NY. Technical Paper No. 32 (1974).

    Google Scholar 

  85. C. Beer, and L. K. Wang, Process Design of Single Sludge Activated Sludge Systems Using Nitrate Respiration. New York State Department of Environmental Conservation, Albany, NY. Technical Paper No. 50 (1977). Presented at the 49th Annual Meeting of the New York Water Pollution Control Association, New York City, January 17–19 (1977).

    Google Scholar 

  86. C. Beer, Tests for nitrifying and denitrifying ability of activated sludge. Bulletin of Environmental Contamination and Technology, 18, 5, 558 (1977).

    Article  CAS  Google Scholar 

  87. C. Beer, J. F. Bergenthal, and L. K. Wang, A study of endogenous nitrate respiration of activated sludge. Proceedings of the 9th Mid-Atlantic Industrial Waste Conference, Bucknell University, Lewisburg, PA (1977).

    Google Scholar 

  88. L. K. Wang, J. H. Tay, V. Ivanov, and Y. T. Hung, (eds.) Environmental Biotechnology. Humana Press, Totowa, NJ (2009).

    Google Scholar 

  89. L. K. Wang, N. K. Shammas, and Y. T. Hung, (eds.) Biosolids Treatment Processes. The Humana Press, Totowa, NJ, 820 p. (2007).

    Google Scholar 

  90. L. K.Wang, Y. T.Hung, H. H. Lo, and C. Yapijakis,(eds.), Handbook of Industrial and Hazardous Wastes Treatment, CRC Press/Marcel Dekker, New York, pp. 415–467 (2004).

    Book  Google Scholar 

  91. P. Nawghare, N. N. Rao, and R. Bejankiwar, Szyprkowicz. Treatment of phosphoric acid plant wastewater using Fenton's reagent and coagulants, Journal of Environmental Science and Health, A 36, 10, 2011 (2001).

    Article  Google Scholar 

  92. Wang, L. K. Poly Iron Chloride and Poly Aluminum Chloride, Technical Report LIWT/l-2002/252; Lenox Institute of Water Technology, Lenox, MA, 26 p. (2002).

    Google Scholar 

  93. Y. T. Hung, S. Gubba, H. H. Lo, L. K. Wang, C. Yapijakis, and N. K. Shammas, Application of wetland for wastewater treatment. OCEESA Journal, 20(1), 41–46 (2003).

    Google Scholar 

  94. L. Johansson, Industrial by-products and natural substrata as phosphorus sorbents, Environmental Technology, 20, 3, 309 (1999).

    Article  CAS  Google Scholar 

  95. J. W. McGrath, and J. P. Quinn, Phosphate Removal: A Novel Approach, School of Biology and Biochemistry, Queens' University Belfast, Ireland (2002); http://www.qub.ac/uk/envres/Earth Airwater/phosphate-removal.htm

    Google Scholar 

  96. B.S. Akin and A. Ugurlu, Enhanced phosphorus removal by glucose fed sequencing batch reactor. Journal of Environmental Science and Health, A 36, 9, 1757 (2001).

    Article  Google Scholar 

  97. CEEP Phosphates, a sustainable future in recycling. Centre Europeen d' Polyphosphates, (1999).

    Google Scholar 

  98. A. Giesen, Eliminate sludge. Industrial Wastewater, 6 (1998).

    Google Scholar 

  99. D. F. Martin, P. M. Dooris, and D. Sumpter, Environmental impacts of phosphogypsum vs. borrow pits in roadfill construction. Journal of Environmental Science and Health, A 36, 10, 1975 (2001).

    Article  Google Scholar 

  100. N. Priyantha and S. Pereira, Removal of phosphate, sulfate, and colored substances in wastewater effluents using Feldspar. Water Research and Management, 14, 6, 417 (2000).

    Article  Google Scholar 

  101. M. Krofta and L. K. Wang, Improved biological treatment with a secondary flotation clarifier. Civil Engng for Practicing and Design Engineers, 2, 307–324 (1983).

    Google Scholar 

  102. L. K. Wang, An Emerging Technology for Phosphorus Removal from Wastewaters, Technical Report LIWT/l-2002/253; Lenox Institute of Water Technology: Lenox, MA, 18 p. (2002).

    Google Scholar 

  103. L. K. Wang, Laboratory simulation of water and wastewater treatment processes. Water Treatment, Vol. 10, 261–282 (1995).

    CAS  Google Scholar 

  104. Anonymous. Flotation equipment. Environmental Protection, 14, 2, 137–138 (2003).

    Google Scholar 

  105. L. K. Wang, M. H. S. Wang, and J. Wang, Preliminary Design Report of a 10-MGD Deep Shaft-Flotation Plant for the City of Bangor, PB88–200605/AS; US Department of Commerce, National Technical Information Service: Springfield, VA, 171 p. (1987).

    Google Scholar 

  106. State of Florida. Industrial Wastewater Program—Phosphate Industry. State of Florida, Dept. of Environmental Protection, Miami, FL, (February 2004). www.dep.state.fl.us.

  107. L. K. Wang, Y. T. Hung, and N. K. Shammas, (eds.) Physicochemical Treatment Processes, Humana Press, Totowa, NJ, 723 p. (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wang, L.K., Shammas, N.K. (2009). Single-Sludge Biological Systems for Nutrients Removal. In: Wang, L.K., Shammas, N.K., Hung, YT. (eds) Advanced Biological Treatment Processes. Handbook of Environmental Engineering, vol 9. Humana Press. https://doi.org/10.1007/978-1-60327-170-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-170-7_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-360-2

  • Online ISBN: 978-1-60327-170-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics