Skip to main content

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 9))

Abstract

Membrane bioreactor (MBR) is a biochemical engineering process involving the use of both (a) a suspended growth bioreactor for biochemical reactions (such as fermentation, bio-oxidation, nitrification, and denitrification); and (b) a membrane separator for sequent solid–liquid separation. In a chemical engineering fermentation process, the solids may be yeasts and the liquid may be an alcohol. In an environmental engineering process, the solids may be activated sludge, and the liquid may be the biologically treated wastewater (WW).

Practically speaking, the membrane separator replaces clarifier, such as sedimentation or dissolved air flotation in a conventional activated sludge (CAS) process system. The membrane module can be either submerged in the activated sludge bioreactor, or situated outside the activated sludge bioreactor. This chapter introduces historical development, engineering applications, various MBR process systems, design considerations and practical environmental engineering applications, such as treatment of dairy industry wastes, landfill leachate, coffee industry wastes, and cosmetics industry wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. K. Wang and M. Cheryan, Application of Membrane Technology in Food Industry for Clean Production. United Nationals Industrial Development Organization (UNIDO) Second International Conference on Waste Minimization and Cleaner Production, Barcelona, Spain, June 7–9, 1995. Technical Report No. DTT-8-6-95, Vienna, Austria, 42p (1995).

    Google Scholar 

  2. L. K. Wang, J. V. Kropuzek, and U. Kounitson, Case Studies of Cleaner Production and Site Remediation. UNIDO Technical Manual No. DTT-5-4-95, United Nationals Industrial Development Organization (UNIDO), Vienna, Austria, 136p (1995).

    Google Scholar 

  3. L. K. Wang, City of Cape Coral Reverse Osmosis Water Treatment Facility. US Department of Commerce, National Technical Information Service, Technical Report No. PB97-139547, Springfield, VA, 15p (1997).

    Google Scholar 

  4. L. K. Wang and N. C. Pereira, Handbook of Environmental Engineering, Volume 3, Biological Treatment Processes, p. 498, Humana Press, Totowa, NJ (1986).

    Google Scholar 

  5. C. Beer and L. K. Wang, Full-Scale operations of plug flow activated sludge systems. Journal of New England Water Pollution Control Association, 9, 2, 145–173 (1975).

    Google Scholar 

  6. L. K. Wang and M. H. S. Wang, Control tests and kinetics of activated sludge process. Water, Air and Soil Pollution, 8, 315–351 (1977).

    Article  CAS  Google Scholar 

  7. C. Beer and L. K. Wang, Activated sludge systems using nitrate respiration–design considerations. Journal of Water Pollution Control Federation, 50, 9, 2120–2131 (1978).

    CAS  Google Scholar 

  8. M. Krofta and L. K. Wang, Improved biological treatment with a secondary flotation clarifier. Civil Engineering for Practicing and Design Engineers, 2, 307–324. (NTIS-PB82-154196) (1983).

    Google Scholar 

  9. L. K. Wang and D. B. Aulenbach, BOD and nutrient removal by biological A/O process systems. US Departmen of Commerce, National Technical Information Service Technical Report #PB88-168430/AS, Springfield, VA. 12p (1986).

    Google Scholar 

  10. L. K. Wang, Modern technologies for prevention and control of groundwater contamination. Proceedings of New York–New Jersey Environmental Exposition, NYNJEE, Belmont, MA (1990).

    Google Scholar 

  11. L. K. Wang and M. H. S. Wang, An overview of environmental biotechnologies with emphasis on aerobic and anaerobic fluidized bed.Proceedings of Annual Convention of CAAPS, Albany, NY (1990).

    Google Scholar 

  12. L. K. Wang, Wastewater treatment by biological-physicochemical two-stage process system. Proceedings of the 41st Annual Purdue Industrial Waste Conference, p. 67 (1987).

    Google Scholar 

  13. K. Brindle and T. Stephenson, The application of membrane biological reactors for the treatment of wastewaters. Biotechnology and Bioengineering, 49, 601 (1996).

    Article  CAS  Google Scholar 

  14. N. Cicek, J. P. Franco, M. T. Suidan, and V. Urbain, Using a membrane bioreactor to reclaim wastewater. Journal of American Water Works Association, 90, 11, 105 (1998).

    CAS  Google Scholar 

  15. R. Menon and C. Fuchs, Application of degremont BRMTM membrane bioreactor to the treatment of industrial wastewaters. Membrane Technology Workshop at WEFTEC, Orlando, FL (1998).

    Google Scholar 

  16. C. Chiemchaisri and K. Yamamoto, Biological Nutrient Removal under Low Temperatures in a Membrane Separation Bioreactor. Water Science and Technology (G.B.), 28, 10, 325 (1993).

    CAS  Google Scholar 

  17. M. P. Pitre, D. N. Enegess, and R. Unterman, Bioreactors: the new wave in wastewater treatment. Environmental Protection, 10, 9, 30–33 (1999).

    Google Scholar 

  18. T. P. Giese, New wastewater treatment technologies. Public Works, 132, 5, 326–332 (2001).

    Google Scholar 

  19. Zenon Environmental Inc., Activated sludge without a clarifier. Water Environment Federation, 13, 9, 75 (2001).

    Google Scholar 

  20. A. Beaubien, E. Trouve, V. Urbain, D. Amar, and J. Manem, Membrane bioreactors offer new solution to old wastewater treatment problems. Environmental Solutions, Dec, 34–36 (1994).

    Google Scholar 

  21. V. Levy, The membrane bioreactor and the management of water resources in industry. Presentation at POLLUTEC 96 (1996).

    Google Scholar 

  22. V. Urbain, R. Benoit, and J. Manem, Membrane bioreactor–a new treatment tool. Journal of American Water Works Association, 88, 75 (1996).

    CAS  Google Scholar 

  23. J. S. Kim, C. H. Lee, and H. D. Chun, Comparison of ultrafiltration characteristics between activated sludge and BAC sludge. Water Research (G.B.), 32, 3443 (1998).

    Article  CAS  Google Scholar 

  24. J. Dollorer and P. A. Wilderer, Biological treatment of leachates from hazardous waste landfills using SBBR technology. Water Science Technology, 34, 437 (1996).

    Google Scholar 

  25. A. G. Livingston, L. M. Freitas dos Santos, P. Pavasant, E. N. Pistikopoulos, and L. F. Strachen, Detoxification of industrial wastewaters in an extractive membrane bioreactor. Water Science Technology, 33, 1, 1 (1996).

    Article  CAS  Google Scholar 

  26. L. F. Strachan, L. M. Freitas dos Santos, D. J. Leak, and A. G. Livingston, Minimization of biomass in an extractive membrane bioreactor. Water Science Technology, 34, 273 (1996).

    Article  CAS  Google Scholar 

  27. P. Cote, H. Buisson, and M. Praderie, Immersed membranes activated sludge process applied to the treatment of municipal wastewater. Water Science Technology (G.B.), 38, 437 (1998).

    Article  CAS  Google Scholar 

  28. L. S. Chang, C. H. Lee, and K. H. Ahn, Membrane filtration characteristics in membrane-coupled activated sludge system–the effect of floc structure on membrane fouling. Sep. Science and Technology, 34, 9, 15 (1999).

    Google Scholar 

  29. J. A. Scott, J. A. Howell, T. C. Arnot, K. L. Smith, and M. Brusk, Enhanced system kLa and permeate flux with a ceramic membrane bioreactor. Biotechnology Techniques, 10, 4, 287 (1996).

    Article  CAS  Google Scholar 

  30. M. G. Parratiyar, R. Govind, and D. F. Bishop, Treatment of trichloroethylene (TCE) in a membrane bioreactor. Biotechnology and Bioengineering, 50, 57 (1996).

    Article  Google Scholar 

  31. L. Clapp, R. Hartono, M. Newman, and J. Park, Trichloroethylene degradation in a novel membrane bioreactor. The 69th Annual Water Environment Federation Conference, Dallas, TX (1996).

    Google Scholar 

  32. T. Nomura, T. Fuji, and M. Suzuki, Application of ceramic membrane with hydrophobic skin layer to separation of activated sludge. Water Science and Technology (G.B.), 35, 4, 137 (1997).

    Article  CAS  Google Scholar 

  33. K. H. Choo and C. H. Lee, Hydrodynamic behavior of anaerobic biosolids during crossflow filtration in the membrane anaerobic bioreactor. Water Research (G.B.), 32, 3387 (1998).

    Article  CAS  Google Scholar 

  34. L. van Dijk and G. C. G. Roncken, Membrane bioreactor for wastewater treatment: the state of the art and new developments. Water Science and Technology (G.B.), 35, 10, 35 (1997).

    Article  Google Scholar 

  35. B. Guender and K. Krauth, Replacement of secondary clarification by membrane separation– results with plate and hollow fiber modules. Water Science and Technology (G.B.), 38, 383 (1998).

    Article  Google Scholar 

  36. K. Yamamoto, M. Hiasa, T. Mahmood, and T. Matsuo, Direct solid-liquid separation using hollow-fiber membrane in an activated sludge aeration tank. Water Science and Technology (G.B.), 21, 43 (1989).

    CAS  Google Scholar 

  37. K. H. Choo and H. D. Stensel, Sequencing batch membrane bioreactor treatment: nitrogen removal and membrane fouling evaluation. Water Environment Research, 72–4, 490–498.

    Google Scholar 

  38. D. Williams, Membrane treat wastewater and leachate. Pollution Engineering, 29, 1, 20–21 (1997).

    Google Scholar 

  39. J. Hensel and T. Mills, High and lows across the industry: 2002 executive forecast. Environmental Protection, 13, 1, 12–14 (2002).

    Google Scholar 

  40. S. Freeman, G. F. Leitner, J. Crook, and W. Vernon, A clear advantage. Water Environment and Technology, 14, 1, 16–21 (2002).

    CAS  Google Scholar 

  41. K. Abbott and H. Alpor, Protection from organic fouling. Environmental Protection, 12, 6, 34 (2001).

    Google Scholar 

  42. Y. Suwa, T. Suzuki, H. Toyohara, T. Yamagishi, and Y. Urushigawa, Single-stage nitrogen removal by an activated-sludge process with crossflow filtration. Water Research (G.B.), 26, 1149 (1992).

    Article  CAS  Google Scholar 

  43. M. C. M. van Loosdrecht and M. Henze, Maintenance, endogenous respiration, lysis, decay and predation. Water Science and Technology (G.B.), 39, 1, 107 (1999).

    Article  Google Scholar 

  44. US Filter, Immersed membrane bioreactor system. Water Engineering and Management, 150, 1, 4 (2003).

    Google Scholar 

  45. D. Pearson, Raisin producer's new process cuts wastewater and odors. Water Engineering and Management, 150, 1, 26–29 (2003).

    Google Scholar 

  46. R. Oreskovich, J. Contestables, K. Flat, I. C. Watson, and J. Rifleman, Reverse osmosis anion-filtration water plant. Water Engineering and Management, 150, 1, 10–19 (2003).

    Google Scholar 

  47. J. M. Hudkins and H. E. Schnidt, Wastewater Membrane Bioreactors–An Emerging Technology for the Development of a Reclaimed Water Supply. www.consulthai.com/2002. news/papers/waterReuse-2004-MBR (2004).

    Google Scholar 

  48. G. N. Sheindorf, N. Stahl, A. Tenenbaum, and Y. Levinsky, Membrane bioreactors for final treatment of wastewater. Water Science Technology, 48, 8, 103–110 (2003).

    Google Scholar 

  49. L. K. Wang and Z. Wu, Activated sludge processes. In: Biological Treatment Processes, L. K. Wang, N. C. Pereira, Y. T. Hung, and N. K. Shammas (eds.), Humana Press, Totowa, NJ (2009).

    Google Scholar 

  50. M. Glastra, H. V. Dijk, and J. Verberk, Prospects of Membrane Bioreactors in Water Supply. Berichte aus dem IWW Rheinisch-Westfalisches Institut fur Wasserforschung gemeinnutzige. Gmbtt Band 37b, Mulheim an der Rhur, 2002, ISSN 0941-0961 (2004).

    Google Scholar 

  51. L. K. Wang and Y. Li, Sequencing batch reactors, In: Biological Treatment Processes, L. K. Wang, N. C. Pereira, Y. T. Hung, and N. K. Shammas (eds.), Humana Press, Totowa, NJ (2009).

    Google Scholar 

  52. N. K. Shammas and L. K. Wang, Emerging suspended growth biological processes. In: Advanced Biological Treatment Processes, L. K. Wang, N. K. Shammas and Y. T. Hung (eds.), Humana Press, Totowa, NJ (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wang, L.K., Menon, R. (2009). Membrane Bioreactors. In: Wang, L.K., Shammas, N.K., Hung, YT. (eds) Advanced Biological Treatment Processes. Handbook of Environmental Engineering, vol 9. Humana Press. https://doi.org/10.1007/978-1-60327-170-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-170-7_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-360-2

  • Online ISBN: 978-1-60327-170-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics