Skip to main content

Activated Sludge Processes

  • Chapter
Biological Treatment Processes

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 8))

Abstract

Activated sludge consists of suspended biological flocs that are matrices of microorganisms, nonliving organic matter and inorganic materials. The activated sludge or biological flocs mix with the waste stream, oxidize the organic substances in the wastewater in the presence of oxygen for bio-oxidation and nitrification reactions, or in the absence of oxygen for denitrification reaction. This chapter introduces the suspended growth systems, bio-oxidation, microorganisms, substrate removal, enzymatic actions, energy flow, microbial synthesis, respiration, kinetics, sludge growth, complete-mix bioreactor, plug-flow bioreactor, contact stabilization, extended aeration, conventional activated sludge, step aeration, Kraus process, tapered aeration, modified aeration, high-rate aeration, oxidation ditch, pure oxygen activated sludge, flotation activated sludge, and process design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. K, Wang, Y. T. Hung, and N. K. Shammas (eds.), Physicochemical Treatment Processes, The Humana Press, Inc., Totowa, NJ. 723 p. (2005).

    Book  Google Scholar 

  2. E. Ruchhoft, Public Health Reports. 54 (12) (1939).

    Google Scholar 

  3. R. E. McKinney. Proc. 3rd Conf. on Biological Waste Treatment. Manhattan College NY, NY (1960).

    Google Scholar 

  4. R. Y Stainer, The Microbial World. 2nd edition, Prentice-Hall NJ (1963).

    Google Scholar 

  5. R. E. McKinney, Microbiology for Sanitary Engineers. McGraw-Hill NY, NY (1962).

    Google Scholar 

  6. P. L. McCarty. In: Water Pollution Microbiology, ed. by Mitchell, R. Wiley-Interscience (1972).

    Google Scholar 

  7. W. Stumm, Proceedings of the 3rd International Conference on Water Pollution Research. Munich, Germany (1966).

    Google Scholar 

  8. Dirasian, Electrode Potentials—Significance in Biological Systems, part 2: Experience in Waste Treatment, Water and Sewage Works, October (1968).

    Google Scholar 

  9. D. Herbert, J. of Gen. Micro. 14 (1956).

    Google Scholar 

  10. A. W. Lawrence, J. of San. Engr. Div., Proceedings ASCE. June (1963).

    Google Scholar 

  11. L. K, Wang, N. K. Shammas, and Y. T. Hung (eds.), Advanced Biological Treatment Processes, The Humana Press, Totowa (2009).

    Google Scholar 

  12. M. Sarioğlu, D. Orhon, E. Görgün, and N. Artan, Design procedure for carbon removal in contact stabilization activated sludge process, Water Science & Technology, 48, 11, pp. 285 – 292 (2004).

    Google Scholar 

  13. N. K. Shammas and L. K. Wang, Principles and kinetics of biological processes. In: Advanced Biological Treatment Processes, L. K. Wang, N. K. Shammas, and Y. T. Hung (eds.), The Humana Press, Totowa (2009).

    Google Scholar 

  14. A. Vesilind, Wastewater Treatment Plant Design, Water Environment Federation and IWA Publishing, Alexandria, VA, USA (2003).

    Google Scholar 

  15. L. K., Wang, C. P. C. Poon, and M. H. S. Wang, Control Tests and Kinetics of Activated Sludge Process. Water, Air and Soil Pollution. 8, 315 – 351 (1977).

    Article  CAS  Google Scholar 

  16. C. Beer and L. K. Wang, Activated Sludge Systems Using Nitrate Respiration — Design Considerations. J. Water Poll. Control Fed. 50(9), 2120 – 2131 (1978).

    CAS  Google Scholar 

  17. K. Wuhrmann, In: Adv. in Bio. Waste Treatment. ed. by Eckenfelder and McCabe Rheinholdt NY, NY (1963).

    Google Scholar 

  18. W. W. Eckenfelder, Jr. and D. J. O'Connor, In: Biological Waste Treatment. Pergamon Press, NY (1961).

    Google Scholar 

  19. Federation of Sewage and Industrial Wastes Associations. Air Diffusion in Sewage Works. Manual of Practice, 5, (1952).

    Google Scholar 

  20. Water Pollution Control Federation. Sewage Treatment Plant Design. Manual of Practice 8, Washington, DC (1967).

    Google Scholar 

  21. M. H. S. Wang and L. K. Wang, Computer-Aided Analysis of Biochemical Oxygen Demand and Reaction Constant. Int. Society Ecological Modeling J. 1, 61 – 67 (1979).

    Google Scholar 

  22. N. K. Shammas, Interactions of Temperature, pH and Biomass on the Nitrification Process, Journal Water Pollution Control Federation, 58, 1, pp. 52 – 59, January (1986).

    CAS  Google Scholar 

  23. S. M. Morrison and C. C. Newton, The Mechanism of Waste Treatment at Low Temperature. Completion Report. Environmental Resources Center. Colorado State University CO (1972).

    Google Scholar 

  24. W. W. Eckenfelder, Jr., J. of Water Poll. Control Fed. 59, 240 (1967).

    Google Scholar 

  25. A-E. Zanoni, J. of Water Poll. Control Fed. 41, 640 (1969).

    Google Scholar 

  26. A. A. Friedman, J. of Water Poll. Control Fed. 44, 1429 (1972).

    Google Scholar 

  27. J. Y. Novak, J. of Water Poll. Control Fed. 46, 984 (1974).

    Google Scholar 

  28. J. E. Alleman, The Genesis and Evolution of Activated Sludge Technology, School of Civil Engineering, http://bridge.ecn.purdue.edu/?alleman/w3-class/456/article/article-aswis-consin.html, West Lafayette, IN (2005).

  29. N. K. Shammas and L. K. Wang, Emerging suspended growth biological processes, In: Advanced Biological Treatment Processes, L. K. Wang, N. K. Shammas, and Y. T. Hung (eds.), Humana Press, Totowa, NJ (2009).

    Google Scholar 

  30. D. Jenkins, J. of Water Poll. Control Fed. 40, Part I (1968).

    Google Scholar 

  31. E. D. Toerber, J. of Water Poll. Control Fed. 46, 1995 (1974).

    Google Scholar 

  32. M. Fazadkia and A. H. Mahvi, Comparison of extended aeration activated sludge process and activated sludge with lime addition method for biosolids stabilization, Pakistan Journal of Biological Sciences, 7, 12, 2061 – 2065 (2004).

    Article  Google Scholar 

  33. KEE Group of Companies Extended Aeration, Waste Water Solutions International Inc., Ellicott City, Maryland http://www.keeprocess.com/html/extended_aeration.html (2005).

  34. USFilter, Biological Treatment-Extended Aeration, US Filter Corporation, Warrendale, PA, http://www.usfilter.com/water/Corporate/Technologies/biological_extended_aeration_technolog-ies (2005).

  35. L. G. Rich, In: Unit Processes of Sanitary Engineering. John Wiley & Sons. Inc., NY (1963).

    Google Scholar 

  36. Metcalf and Eddy (2003) Wastewater Engineering Treatment and Reuse, 4th Edition, McGraw Hill, New York.

    Google Scholar 

  37. P. Balmer, J. Water Poll. Control Fed. 39, 1021 (1967).

    CAS  Google Scholar 

  38. R. Smith and R. C. Eilers, A Generalized Computer Model for Steady-State Performance of the Activated Sludge Process, Fed. Water Poll. Control Adm., Advanced Waste Treatment Branch, Cincinnati. OH (1969).

    Google Scholar 

  39. R. C. Eilers and R. Smith, Executive Digital Computer Program for Preliminary Design of Wastewater Treatment Svstems Documentation. US EPA Report PB-222. p. 765 (1973).

    Google Scholar 

  40. R. Smith, Preliminary Design and Simulation of Conventional Wastewater Renovation Systems Using the Digital Computer. FWQA Report No. WP-20-9. March (1968).

    Google Scholar 

  41. J. J. Bisogni and A. W. Lawrence, Water Research, 5, 753 (1971).

    Article  CAS  Google Scholar 

  42. P. G. Lacroix and D. E. Bloodgood, J. of Water Poll. Control Fed. 44, 1978 (1972).

    Google Scholar 

  43. P.G. Lacroix and D. E. Bloodgood, J. of Water Poll. Control Fed. 44, 2205 (1972).

    Google Scholar 

  44. M. T. Garrett, Jr., Sew, and Ind. Wastes, 30, 253 (1958).

    CAS  Google Scholar 

  45. N. Westberg, Water Research, 3, 613 (1969).

    Article  CAS  Google Scholar 

  46. R. W. Brett and R. I. Kermode, Water Research 1, No. 4. Programm Press, NY (1972).

    Google Scholar 

  47. J. J. Davis, J. of Environ. Engineering Div., ASCE 99, June (1974).

    Google Scholar 

  48. H. E. Klei and D. W. Sundstrom, J. of Water Poll. Control Fed. 46, 993 (1974).

    Google Scholar 

  49. C. R. Ott and R. H. Bogan, J. of Sanitary Engineering Div., ASCE. 97, February (1971).

    Google Scholar 

  50. J. B. Lackey and E. Wattie, Sew, and Ind. Wastes. 12, 669 (1940).

    CAS  Google Scholar 

  51. G. J. Farquhar and W. C. Boyle, J. of Water Poll. Control Fed. 43, 603 (1971).

    Google Scholar 

  52. W. O. Pipes, J. of Water Po11, Control Fed. 41, 714 (1969).

    Google Scholar 

  53. W. O. Pipes and P. H. Jones, Biotechnol, Bioengin. Vol. 1963, p. 287 (1963).

    Article  Google Scholar 

  54. T. Schofield, Water Poll. Control. 70, 32 (1971).

    Google Scholar 

  55. W. B. Cooke and F. J. Ludzack, Sew, and Ind. Wastes. 30, 1490 (1958).

    Google Scholar 

  56. J. H. Rensink, J of Water Poll Control Fed. 46, 1889 (1974).

    Google Scholar 

  57. M. Krofta, D. B. Guss, and L. K. Wang, Improved Biological Treatment with a Secondary Flotation Clarifier. Civil Eng. for Practiring & Design Engrs. 2, 307–324, Pergamon Press, NY (1983).

    Google Scholar 

  58. P. H. Jones, Studies of the Ecology of the Filamentous Sewage Fungus, Geotrichum candidum, Ph.D. thesis, Northwestern University, Illinois (1964).

    Google Scholar 

  59. C. P. C. Poon and L. K. Wang, J. of Environ. Engr. Div. Procs ASCE, August (1973).

    Google Scholar 

  60. W. B. Cooke, A Laboratory Guide to Fungi (and Yeasts) in Polluted Waters, Sewage. and Sewage Treatment Systems, Their Identification and Culture, US Dept. HEW, Div.. Div. Water Supply and Pollution Control, October (1963).

    Google Scholar 

  61. W. N. Wells, Water Pollution Control Fed. Highlights 11, July (1974).

    Google Scholar 

  62. F. E. Caropreso, Ind. Wastes, November/December (1974).

    Google Scholar 

  63. L. K. Wang, M. H. S. Wang, C. P. C. Poon, and J. Bergenthal, Chemistry of Nitrification-Denitrification Process. J. Environ, Sci. 21, 23–28 (1978).

    CAS  Google Scholar 

  64. US ACE, Civil Works Construction Cost Index System Manual, 110-2-1304, U.S. Army Corps of Engineers, 2007-Tables, Washington, DC, pp. 44 (2007).

    Google Scholar 

  65. US EPA Guidelines for Cost Estimates of Municipal Wastewater Systems, US EPA, February (1973).

    Google Scholar 

  66. US EPA Cost and Man-Hours for Operation and Maintenance of Municipal Wastewater Treatment Plants, US EPA, October (1970).

    Google Scholar 

  67. M. H. S. Wang and L. K. Wang, Mathematical Modeling of Electrical Energy Consumption and Heating Requirements by Municipal Wastewater Treatment Plant. J. Environ. Sci. 22, 23– 26 (1979).

    Article  Google Scholar 

  68. L. K, Wang, N. K. Shammas, and Y. T. Hung (eds.), Biosolids Treatment Processes, The Humana Press, Totowa, NJ 820 p. (2007).

    Google Scholar 

  69. N. K. Shammas and L. K. Wang, Characteristics and quantity of biosolids, In:Biosolids Treatment Processes, L. K. Wang, N. K. Shammas, and Y. T. Hung (eds.), Humana Press, Totowa, NJ p. 1–44 (2007).

    Chapter  Google Scholar 

  70. Battelle Memorial Institute, Pacific Northwest Lab. Final Report: Evaluation of Municipal Sewage Treatment Alternatives, prepared for Council of Environ. Quality and US EPA, February (1974).

    Google Scholar 

  71. FWPCA, Dept. of Interior. The Cost of Clean Water. Vols 1 to 4 (1968).

    Google Scholar 

  72. D. P. Tihansky, J. Water Poll. Control Fed. 46, 813 (1974).

    Google Scholar 

  73. W. W. Eckenfelder, Chem. Engr. 76, 16, 09 (1969).

    Google Scholar 

  74. J. L. Barnard, et al. Treatment-Cost Relationships for Industrial Waste-Treatment, Technical Report No. 23, Enviro and Water Res. Engr., Vanderbilt Univ (1971).

    Google Scholar 

  75. R. G. Eilers, et al. Wastewater Treatment Plant Cost Estimating Program, US EPA report PB-213, April, 895 (1971).

    Google Scholar 

  76. J. T. Sliter, Monitor, J. of Water Poll. Control Fed. 46, 2258 (1974).

    Google Scholar 

  77. F. Besik, Water and Sew. Works. 120, 69 (1973).

    Google Scholar 

  78. C., Webb, G. M. Black, and B. Atkinson (eds.), Process Engineering Aspects of Immobilized Cell Systems, Pergamon Press, Elmsford, NY (1986).

    Google Scholar 

  79. J. Tampion and M. D. Tampion, Immobilized Cells: Principles and Applications, Cambridge University Press, Cambridge, MA (1987).

    Google Scholar 

  80. M. Moo-Young (ed.), Bioreactor Immobilized Enzymes and Cells-Fundamentals and Applications, Elsevier Applied Science, New York (1988).

    Google Scholar 

  81. C. E. ZoBell, The effect of solid surfaces upon bacterial activity, J. Bacteriol. 46, 39 (1943).

    CAS  Google Scholar 

  82. K. L. Sublette, E. H. Snider, and N. D. Sylvester, A review of the mechanism of powdered activated carbon enhancement of activated sludge treatment, Water Res . 16, 1075 (1982).

    Article  CAS  Google Scholar 

  83. R. Z. Maigetter and R. M. Plister, A mixed bacterial population in a continuous culture with and without kaolinite, Can. J. Microbiol. 21, 173 (1975).

    Article  CAS  Google Scholar 

  84. D. Oakley, The retention of biomass in fast flowing systems, In: Process Engineering Aspects of Immobilised Cell Systems, C. Webb, O. M. Black, and B. Atkinson (Eds.), Pergamon Press, Elmsford, NY (1986).

    Google Scholar 

  85. J. N. Wardell, C. M. Brown, D. C. Ellwood, and. A. E. Williams, Bacterial growth on inert surfaces, In: Continuous Culture 8: Biotechnology, Medicine and the Environment, A. C. R. Dean, D. C. Ellwood, and C. G. T. Evans, Ellis Horwood, Chichester, England (1984).

    Google Scholar 

  86. W. J. Jewell, Anaerobic attached film expanded bed fundamentals, In: Fixed Film Biological Process for Wastewater Treatment, Y. C. Wu and E. D. Smith (Eds.), Noyes Publishing, Park Ridge, NJ (1983).

    Google Scholar 

  87. R. J. Shimp and F. K. Pfaender, Effects of surface area and flow rate on marine bacterial growth in activated carbon columns, Appl. Environ. Microbiol. 44, 471 (1982).

    CAS  Google Scholar 

  88. W. J. Weber, Jr., M. Pirbazari, and G. L. Melson, Biological growth on activated carbon: an investigation by scanning electron microscopy, Environ. Sci. Technol. 12, 817 (1978).

    Article  CAS  Google Scholar 

  89. H. Heukelekian and Heller, A. Relations between food concentration and surface bacterial growth, J. Bacteriol. 40, 547 (1940).

    CAS  Google Scholar 

  90. H. J. Conn and J. E. Conn, The stimulating effect of colloids upon the growth of certain bacteria, J. Bacteriol. 39, 99 (1940).

    CAS  Google Scholar 

  91. J. H. Harwood and S. J Pirt, Quantitative aspects of growth of the methane oxidizing bacterium Methylococcus capsulatus on methane in shake flask and continuous chemostat culture, J. App!. Bacteriol. 35, 597 (1972).

    Article  CAS  Google Scholar 

  92. G. Stotzky, Influence of clay minerals on microorganisms. II. Effect of various clay species, homionic clays, and other particles on bacteria, Can. J. Microbial. 12, 831 (1966).

    Article  CAS  Google Scholar 

  93. G. Stotzky and L. T. Rem, Influence of clay minerals on microorganisms. I. Montmorillonite and kaolinite on bacteria, Can. J. Microbiol. 12, 547 (1966).

    Article  CAS  Google Scholar 

  94. D. L. King and R. D. Verma, The role of particulate substances in biotic degradation of organic waste, Proc. 23rd Purdue Ind. Waste Conf. 75 (1968).

    Google Scholar 

  95. R. W. Harvey and L. Y. Young, Enumeration of particle-bound and unattached respiring bacteria in the salt marsh environment, Appl. Environ. Microbiol. 40, 1, 156 (1980).

    Google Scholar 

  96. M. W. LeChevallier, C. D. Cawthon, and R. G. Lee, Mechanisms of bacterial survival in chlorinated drinking water, Proc. Int. Conf. Water Wastewater Microbiology, Irvine, CA, February 8 to 11 (1988).

    Google Scholar 

  97. T. J. Marrie and J. W. Costerton, Prolonged survival of Serratia marcescens in chlorhexidine, Appl. Environ. Microbiol. 42, 1093 (1981).

    CAS  Google Scholar 

  98. K. C. Marshall, Adsorption of microorganisms to soils and sediments, In: Adsorption of Microorganisms to Surfaces, G. Bitton and K. C. Marshall (eds.), John Wiley & Sons, New York (1980).

    Google Scholar 

  99. G. Henry, D. Prasad, and W. Lohaza, Survival of indicator Bacteria during Leaching, presented at Joint Canadian Society of Civil Engineers-American Society of Civil Engineers Natl. Conf. on Environmental Engineering, Vancouver, July 13 to 15 (1988).

    Google Scholar 

  100. G. M. Black and C. Webb, An immobilization technology based on biomass support particles, In: Process Engineering Aspects of Immobilized Cell Systems, C. Webb, G. M. Black, and B. Atkinson (eds.), Pergamon Press, Elmsford, NY (1986).

    Google Scholar 

  101. US EPA Demonstration and Evaluation of the CAPTOR Process for Sewage Treatment, U. S. Environmental Protection Agency # PB 89-118 665/AS, Cincinnati, OH (1989).

    Google Scholar 

  102. US EPA Project Summary: Demonstration and Evaluation of the CAPTOR Process for Sewage Treatment, U. S. Environmental Protection Agency, # US EPA/600/S2-88/060, Risk Reduction Engineering Laboratory, Cincinnati, OH, Feb. (1989).

    Google Scholar 

  103. P. F. Cooper, I. Walker, H. E. Crabtree, and R. P. Aldred, Evaluation of the CAPTOR process for uprating an overloaded sewage works, In: Process Engineering Aspects of Immobilized Cell Systems, C.

    Google Scholar 

  104. Webb, G. M. Black, and B. Atkinson (eds.), Pergamon Press, Elmsford, NY (1986).

    Google Scholar 

  105. P. E. Tharp and M. Frymier, High intensity biological systems using the captivated sludge process, presented at 59th Water Pollut. Control Fed. Conf., Los Angeles, October 5 to 9 (1986).

    Google Scholar 

  106. C. E. Tharp, High Rate Nitriftcation with CAPTOR Process, report from studies conducted by S. K. Banerji and J. N. Lin, University of Missouri, Columbia, MO (1988).

    Google Scholar 

  107. F. Rogalla and M. Payraudeau, Tertiary nitrification with fixed biomass reactors, presented at IAWPRC Conf. Brussels, Belgium, November, 24 to 28 (1987).

    Google Scholar 

  108. F. Rogalla and J. Jarosz, Upgrading high load activated sludge plants with biomass support systems — comparison of porous carriers with fixed submersible beds, presented at 60th Water Pollut Control Fed. Conf. Philadelphia, October, 4 to 7 (1982).

    Google Scholar 

  109. W. Hegemann, A combination of the activated sludge process with fixed film biomass to increase the capacity of waste water treatment plants, Water Sci. Technol. 16, 119 (1984).

    CAS  Google Scholar 

  110. S. R., Richards, M. Davies, and C. Hastwell, An evaluation of the CAPTOR process: a controllable fixed film process for wastewater treatment, in Process Engineering Aspects of Immobilized Cell Systems, C. Webb, G. M. Black, and B. Atkinson (eds.), Pergamon Press, Elmsford, NY (1986).

    Google Scholar 

  111. M.Krofta and L. K. Wang, Development of Innovative Sandfloat System for Water Purification and Pollution Control. ASPE J. Eng. Plumbing. (1), 1–16 (1984).

    Google Scholar 

  112. M. Krofta and L. K. Wang, Civil Eng. for Practicing & Design Engrs. 3, 253, Pergamon Press, NY (1984).

    Google Scholar 

  113. G. Bertanza, Simultaneous nitrification-denitrification process in extended aeration plants: pilot and real scale experience. Wat. Sci. Tech. 35 (6), 53–61 (1997).

    Article  CAS  Google Scholar 

  114. C. Collivignarelli and G. Bertanza, Simultaneous nitrification-denitrification processes in activated sludge plants: performance and applicability. Wat. Sci. Tech. 40(4/5), 187–194 (1999).

    Article  CAS  Google Scholar 

  115. T., Zipperm, N. Fleischmann, and R. Haberl, Development of a new system for control and optimization of small wastewater treatment plants using oxidation-reduction potential. Wat. Sci. Te c h . 38(3), 307–314 (1998).

    Article  Google Scholar 

  116. J., Charpentier, H., Godart, G. Martin, and Y. Mogno, Oxidation-reduction potential (ORP) regulation as a way to optimize aeration and C, N and P removal: experimental basis and various full-scale examples. Wat. Sci. Tech. 21, 1209–1223 (1989).

    CAS  Google Scholar 

  117. R. M. Jones, D., Sen, and R. Lambert, Full scale evaluation of nitrification performance in an integrated fixed activated sludge process. Wat. Sci. Tech. 38(1), 71–78 (1998).

    Article  CAS  Google Scholar 

  118. P. R. Barros and B. Carlsson, Iterative design of a nitrate controller using an external carbon source in an activated sludge process. Wat. Sci. Tech. 38, 1, 71–78 (1998).

    Article  Google Scholar 

  119. L. K. Wang, and. N. K. Shammas, Single-sludge biological systems for nutrients removal, In: Advanced Biological Treatment Processes, L. K. Wang, N. K. Shammas, and Y. T. Hung (eds.), Humana Press, Inc., Totowa, NJ (2009).

    Google Scholar 

  120. Y. Liu, J. H. Tay, Y. M. Lin, and Y. T. Hung, Biological nitrification and denitrification processes, In: Biological Treatment Processes, L. K. Wang, N. C. Pereira, and Y. T. Hung (eds.), Humana Press, Inc., Totowa, NJ p. 539–588 (2009).

    Google Scholar 

  121. M. H. Gerardi, Nitrification and Denitrification in the Activated Sludge Process, Wiley-Interscience, NY. December (2001).

    Google Scholar 

  122. L. K. Wang and R. Menon, Membrane bioreactor, in Advanced Biological Treatment Processes, L. K. Wang, N. K. Shammas, and Y. T. Hung (eds.), Humana Press, Totowa, NJ (2009).

    Google Scholar 

  123. T. Stephenson, S. Judd, B. Jeferson, and K. Brindle, Membrane bioreactors for wastewater treatment. London: IWA Publishing (2000).

    Google Scholar 

  124. V. Urbain, B. Mobarry, V. de Silva, D. A. Stahl, B. E. Rittmann, and J. Manem, Integration of performance, molecular biology and modeling to describe the activated sludge process. Wat. Sci. Te c h . 37(3), 223–229 (1998).

    Article  CAS  Google Scholar 

  125. S. Rosenberger, U. Kruger, R. Witzig, Manz W. U. Szewzyk, and M. Kraumea, Performance of a bioreactor with submerged membranes for aerobic treatment of municipal waste water. Water Research, 36, 413–420 (2002).

    Article  CAS  Google Scholar 

  126. N. J. Horan Biological wastewater treatment systems. Chichester: Wiley (1990).

    Google Scholar 

  127. H. Yasui and M.Shibata An innovative approach to reduce excess sludge production in the activated sludge process. Wat. Sci. Tech. 30, 9, 11–20 (1994).

    CAS  Google Scholar 

  128. H. Yasui, K. Nakamura, S. Sakuma, M. Iwasaki, and Y. Sakai, A full-scale operation of a novel activated sludge process without excess sludge production, Wat. Sci. Tech. 34, 3, 396–404 (1996).

    Article  Google Scholar 

  129. Y. Sakai, T. Fukase, H. Yasui, and M. Shibata, An activated sludge process without excess sludge production, Wat Sci Tech. 36, 11, 163–170 (1997).

    Article  CAS  Google Scholar 

  130. L. K. Wang, Y. T. Hung, and N. K. Shammas (eds.), Advanced Physicochemical Treatment Processes, The Humana Press, Totowa, NJ (2006).

    Book  Google Scholar 

  131. S. Saby, M. Djafer, and G-H. Chen, Feasibility of using a chlorination step to reduce excess sludge in activated sludge process, Water Research. 36, 656–666 (2002).

    Article  CAS  Google Scholar 

  132. US EPA. Onsite Wastewater Treatment Systems Continuous Flow Suspended Growth Aerobic Systems. US Environmental Protection Agency, Washington DC. US EPA-625/R-00/008. April (2008).

    Google Scholar 

  133. P. Patziger, H. Kainz, M. Hunze, and J. Jozsa, Analysing sludge balance in activated sludge systems with a novel mass transport model. Water Science and Technology. Vol. 57, No. 9. pp. 1413–1419 (2008).

    Google Scholar 

Download references

Acknowledgments

This chapter is updated based on the first edition, which was originally written by Drs. Mu Hao Sung Wang, Lawrence K. Wang and Calvin P. C. Poon. Dr. Mu Hao Sung Wang will coauthor the chapter again in next edition.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wang, L.K., Wu, Z., Shammas, N.K. (2009). Activated Sludge Processes. In: Wang, L.K., Pereira, N.C., Hung, YT. (eds) Biological Treatment Processes. Handbook of Environmental Engineering, vol 8. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-156-1_6

Download citation

Publish with us

Policies and ethics