Skip to main content

Vermicomposting Process

  • Chapter
Biological Treatment Processes

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 8))

Abstract

Vermistabilization, also known as vermicomposting, is a biodegradation process for stabilization of biosolids and organic solid wastes using earthworms. The worms maintain aerobic conditions in the organic substances and accelerate and enhance the biological decomposition of the organic substances. This chapter introduces and reviews the vermistabilization process. The technology development, technical problems, legal problems, technology breakthrough, current status, available resources, engineering design, and recent advances of the process are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. J. Mitchell, R. M. Mulligan, R. Hartenstein, and E. F. Neuhauser, Conversion of sludges in topsoil by earthwormsCompost Sci.18(4), 28–32 (1977).

    CAS  Google Scholar 

  2. M. J. Mitchell, S. G. Hornor, and B. I. Abrams, Decomposition of sewage sludge in drying beds and the potential role of the earthwormE. foetida, J. Environ. Qual.9(3), 373–378 (1980).

    Article  Google Scholar 

  3. Camp, Dresser and McKee, Inc.Compendium on Solid Waste Management by Vermicomposting,US EPA, Municipal Environmental Research Laboratory, Cincinnati, OH, USA, Technical Report No. EPA-600/8-80-033, p. 72, 1980.

    Google Scholar 

  4. S. G. Hornor and M. J. Mitchell, Effect of the earthwormE. foetida(oligochaeta), on fluxes of volatile carbon and sulfur compounds from sewage sludgeSoil Biol. Biochem.13(5), 367–373 (1981).

    Article  CAS  Google Scholar 

  5. R. HartensteinUtilization of Earthworms and Microorganisms in Stabilization, Decontamination and Detoxification of Residual Sludges from Treatment of Wastewater, National Science Foundation, Washington, DC, USA, Technical Report No. NSF/CEE-81009, p. 19, 1981.

    Google Scholar 

  6. G. W. DickersonVermicomposting, Guide H-164. New Mexico, State University, College of Agriculture and Home Economics, New Mexicowww.practicalhippie.com(2003).

  7. J. E. Collier and D. LivingstoneConversion of Municipal Wastewater Treatment Plant Residual Sludges into Earthworm Castings for Use as Topsoil,National Science Foundation, Washington, DC, USA, Technical Report No. NSF/CEE-81008, p. 43 (1981).

    Google Scholar 

  8. R. Hartenstein, Metabolic parameters of the earthwormE. foetidain relation to temperature—potential use for manure management and as a source of protein biomassBiotechnol. Bioeng.24(8), 1803–1811 (1982).

    Article  CAS  Google Scholar 

  9. J. Chosson and P. Dupuy, Improvement of the cellulolytic activity of a natural population of aerobic bacteria—enrichment culture; isolation and characterization of worm gut and compost cellulolytic strainsEur. J. Appl. Microbiol. Biotechnol.18(3), 163–167, 1983.

    Article  CAS  Google Scholar 

  10. R. Hartenstein, D. L. Kaplan, and E. F. Neuhauser, Earthworms and trickling filters—for wastewater treatmentJ. Water Pollut. Control Fed.56(3), Part 1, 294–298 (1984).

    CAS  Google Scholar 

  11. R. C. Loehr, J. H. Martin, E. F. Neuhauser, and M. R. MaleckiWaste Management Using Earthworms: Engineering and Scientific Relationships, National Science Foundation, Washington, DC, USA, Technical Report No. NSF/CEE-84007, p. 128 (1984).

    Google Scholar 

  12. R. C. Loehr, E. F. Neuhauser, and M. R. Malecki, Factors affecting the vermistabilization process: temperature, moisture content and polycultureWater Res.19(10), 1311–1317 (1985).

    Article  Google Scholar 

  13. R. C. Loehr, J. H. Martin, and E. F. Neuhauser, Liquid sludge stabilization using vermistabilization.J. Water Pollut. Control Fed.57(7), 817–826 (1985).

    CAS  Google Scholar 

  14. Y. Hasit, Sludge management: a research update.BioCycle 26(4), 44–47 (1985).

    Google Scholar 

  15. Y. Hasit, Sludge management: a research update: Part II.BioCycle 27(9), 42–46 (1986).

    CAS  Google Scholar 

  16. E. A. Stafford and C. A. EdwardsComparison of Heavy Metal Uptake by E. Foetida with That of Other Common Earthworms, US Department of Commerce, National Technical Information Service, Springfield, VA, USA, Technical Report No. AD-A164-779/1/XAB, p. 83 (1986).

    Google Scholar 

  17. M. E. GlogowskiProcess for PreparingOrganic Compost from MunicipalRefuse,US Patent No. 497161, 1990.

    Google Scholar 

  18. L. Amaravadi, M. S. Bisesi, and R. F. Bozarth, Vermial virucidal activity: implications for management of pathogenic biological wastes on landBiol. Wastes 34(4), 349–358 (1990).

    Article  Google Scholar 

  19. B. Greene, R. A. McPherson, D. W. Darnall, and J. L. Gardea-TorresdeyRemoval of Metal Ions with Immobilized Metal Ion-binding Microorganisms, US Patent No. 5055402 (1991).

    Google Scholar 

  20. G. Concheri, S. Nardi, and G. DellAgnola, Humification of organic waste material during earthworm compostingFresenius Environ. Bull.1(11), 754–759 (1992).

    CAS  Google Scholar 

  21. F. A. Anton, E. Laborda, P. Laborda, and E. Ramos, Carbofuran acute toxicity toEisenia foetidaearthwormsBull. Environ. Contam. Toxicol.50(3), 407–412 (1993).

    CAS  Google Scholar 

  22. C. A. M. Van-Gestel and W. C. Ma, Development of QSAR's in soil ecotoxicology: earthworm toxicity and soil sorption of chlorophenols, chorobenzenes and chloroanilinesWater, Air and Soil Pollut.69(3–4), 265–276 (1993).

    Article  CAS  Google Scholar 

  23. R. Sherman-Huntoon, Latest developments in mid- to large-scale vermicompostingBioCycle, November, pp. 1–2 (2000).

    Google Scholar 

  24. G. Logsdon, Worldwide progress in vermicompostingBioCycle, March, pp. 63–65 (1994).

    Google Scholar 

  25. D. Riggle and H. Homes, New horizons for commercial vermicultureBioCycle, March, 58–62 (1994).

    Google Scholar 

  26. C. Elvira, S. Mato, and R. Nogales, Changes in heavy metal extractability and organic matter fractions after vermicomposting of sludges from a paper mill industry and wastewater treatment plantFresenius Environ. Bull.4(8), 503–507 (1995).

    CAS  Google Scholar 

  27. S. Z. Frankel and S. White, (eds.), Worm bins in the schoolsWorm Digest 1, p. 8 (1993).

    Google Scholar 

  28. S. Z. Frankel and S. White, (eds.), Why vermicompost?Worm Digest 2, p. 8 (1993).

    Google Scholar 

  29. S. Z. Frankel and S. White, (eds.), The Mary Appelhof issueWorm Digest 3, p. 16 (1993).

    Google Scholar 

  30. S. Z. Frankel, and S. White, (eds.), Seattle area issueWorm Digest 4, p. 16 (1994).

    Google Scholar 

  31. S. Z. Frankel and S. White, (eds.), San Francisco area issueWorm Digest 5, p. 16 (1994).

    Google Scholar 

  32. S. Z. Frankel and S. White, (eds.), Canada Issue: vermicomposting education and projects in CanadaWorm Digest 6, p. 16 (1994).

    Google Scholar 

  33. S. Z. Frankel and S. White, (eds.), The Darwin issue-earthworm research & researchersWorm Digest 7, p. 24 (1994).

    Google Scholar 

  34. S. Z. Frankel and S. White (eds.), Earthworms and human waste Part IWorm Digest 8, p. 16 (1995).

    Google Scholar 

  35. S. Z. Frankel and S. White, (eds.), Earthworms and human waste Part IIWorm Digest 9, p. 16 (1995).

    Google Scholar 

  36. S. Z. Frankel, and S. White, (eds.), School issue Part I—small-scale vermicompostingWo r m Digest 10, p. 24 (1995).

    Google Scholar 

  37. S. Z. Frankel and S. White, (eds.), School issue Part II—large-scale vermicompostingWo r m Digest 11, p. 24 (1995).

    Google Scholar 

  38. S. Z. Frankel and S. White, (eds.), Earthworms in farms and gardensWorm Digest 12, p. 24 (1996).

    Google Scholar 

  39. US EPAInnovative and Alternative Technology Assessment Manual,Technical Report 430/9-78-009. US Environmental Protection Agency, Washington, DC, 1980.

    Google Scholar 

  40. L. K. Wang, Vermistabilization of biosolids and organic solid wastes using earthworms (Part I): technology development and researchOCEESA J.14(1), 32–35 (1997).

    CAS  Google Scholar 

  41. L. K. Wang, Vermistablilizatin of bioslids and organic solid wastes using earthworms (Part II): technical problems, breakthrough and worldwide progressOCEESA J.14(2), 34–36 (1997).

    Google Scholar 

  42. L. K. WangVermistabilization, Technical Report No. PB97-136279, US Department of Commerce, National Technical Information Service, Springfield, VA, p. 19 (1997).

    Google Scholar 

  43. B. Geiselman, Worms eat away at US Air Force's wasteWaste N e w sp. 15 (2003).

    Google Scholar 

  44. NSFCComposting Biosolids,Report No. WWBRGN113. National Small Flows Clearinghouse, West Virginia University, PO Box 6064, Morgantown, WV 26506, 2003.

    Google Scholar 

  45. F. CarmodyPractical Problems in Application of Earthworms to Waste Conversion Processes: Utilization of Soil Organisms in Sludge Management, PB-286932. US Dept. of Commerce, National Technical Information Service, Springfield, VA, 1978.

    Google Scholar 

  46. M. J. Mitchell, R. M. Mulligan, R. Hartenstein, and E. F. Neuhauser, Conversion of sludges into topsoils' by earthwormsCompost Sci.18, 28 (1977).

    CAS  Google Scholar 

  47. D. Newman, Earthworm and electrons: technology's outer limitsSludge Mag.1(1), 30 (1978).

    Google Scholar 

  48. C. Dombrowski, Postscript: earthwormsSludge Mag.1(5), 10 (1978).

    Google Scholar 

  49. J. R. SabineThe Nutritive Valve of Earthworm Meal: Utilization of Soil Organisms in Sludge Management, PB-286932, US Dept. of Commerce, National Technical Information Service, Springfield, VA, 1978.

    Google Scholar 

  50. M. B. KirkhamAvailability to Wheat of Elements in sludge-Treated Soil with Earthworms: Utilization of Soil Organisms in Sludge Management, PB-286932. US Dept. of Commerce, National Technical Information Service, Springfield, VA, 53, 1978.

    Google Scholar 

  51. J. E. CollierUse of Earthworms in Sludge Lagoons: Utilization of Soil Organisms in Sludge Management, PB-286932, US Dept. of Commerce, National Technical Information Service, Springfield, VA, 1978.

    Google Scholar 

  52. L. Theoret, R. Hartenstein, and M. J. Mitchell, A study on the interactions of enzymes with manures and sludgesCompost Sci.19, 29 (1978).

    CAS  Google Scholar 

  53. Soil and Plant Laboratory, Inc.Soil Fertility Analysis—Earthworm Castings, Soil and Plant Laboratory, Inc., Santa Clara, CA, 1977.

    Google Scholar 

  54. N. P. Stark and S. BodmerQuality of Earthworm Castings and the Use of Compost on Arid Soils: Utilization of Soil Organisms in Sludge Management, PB-286932, US Dept. of Commerce, National Technical Information Service, Springfield, VA, p. 87 (1978).

    Google Scholar 

  55. E. F. NeuhauserThe Utilization of Earthworms in Solid Waste Management, Utilization of Soil Organisms in Sludge Management, PB-286932, US Dept. of Commerce, National Technical Information Service, Springfield, VA, p. 138 (1978).

    Google Scholar 

  56. R. Hartenstein, E. F. Neahauser, and J. Collier. Accumulation of heavy metals in the earthwormEsenia foetida. J. Environ. Quality, 9, p. 23–26 (1980).

    Article  CAS  Google Scholar 

  57. R. I. Van Hook, Cadmium, lead, and zinc distributions between earthworms and soils: potentials for biological accumulation.Bull. Environ. Contam. Toxicol.12, p. 509 (1974).

    Article  Google Scholar 

  58. S. AnProAn Ecologically, Environmentally, & Economically Sound Approach to Sewage Sludge Management. GTA, Inc., Wilmington, Delaware, 1978.

    Google Scholar 

  59. US EPAProcess Design Manual for Sludge Treatment and Disposal, EPA 625/1-79-011. US Environmental Protection Agency, Washington, DC, 1979.

    Google Scholar 

  60. H. T. Stuckey and P. F. Hudak, Waste investmentEnviron. Prot.13(3), 60–71 (2002).

    Google Scholar 

  61. G. Matson. Worm news.The Composter. p. 2–3. March (2006).

    Google Scholar 

  62. L. K. Wang, Y. T. Hung, C. Yapijakis, J. P. Chen, and H. Lo, Design and application of Vermicom-posting processOCEESA J.20(2), 2003.

    Google Scholar 

  63. S. Z. Frankel, and S. White, (eds.), Earthworms down under—Australia and New ZealandWo r m Digest 13, p. 32 (1996).

    Google Scholar 

  64. I. S. Turovskiy and J. D. Westbrook, Recent advancements in wastewater sludge compostingWa t e r Eng. Manage.149(10), 29–32 (2003).

    Google Scholar 

  65. Wikimedia Foundation, Vermicompost.Wikimedia Encyclopedia. p. 1–5. June (2008).http://en.wikipedia.org/wiki/worm_castings

  66. C. A. EdwardsEarthworm Ecology. CRC Press, Boca Raton, FL. 456 p. March 2004.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Wang, L.K., Hung, YT., Li, K.H. (2009). Vermicomposting Process. In: Wang, L.K., Pereira, N.C., Hung, YT. (eds) Biological Treatment Processes. Handbook of Environmental Engineering, vol 8. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-156-1_17

Download citation

Publish with us

Policies and ethics