Skip to main content

Aerobic Digestion

  • Chapter

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 8))

Abstract

Aerobic digestion is the biochemical oxidative stabilization of wastewater sludge in open or closed tanks that are separate from the liquid process system. This method of digestion is capable of handling waste activated, trickling filter, or primary sludges as well as mixtures of the same. Aerobic digestion is based upon endogenous respiration, where in the absence of suitable substrate food, microorganisms begin to digest their own protoplasm to obtain energy. Cell tissue is aerobically oxidized to carbon dioxide, water, and ammonia or nitrates. Some of the energy released by the microbial degradation is used to form new cellular material, but the majority is released as heat; thus the aerobic oxidation process is exothermic. In a large facility, it may be feasible or desirable to digest primary sludge anaerobically, and secondary sludge aerobically. Following process description, the chapter covers process variations, design considerations, process performance, costs and worked out design examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. A. Oleszkiewicz and D. S. Mavinic, Wastewater Biosolids: An Overview of Processing, Treatment and Management, Can. J. Civil Eng., Special Supplemental S1, 28(3), 102–114, (2001).

    Article  Google Scholar 

  2. US Filter, Aerobic Digestion-Diffusers, US Filter Envirex Products, Waukesha, WI, Web Site www.envirex.com/products/wastewater/digestion.html (2004).

    Google Scholar 

  3. Walker Process Equipment, Aerobic Digestion-Digestion Equipment, Aurora, IL, USA, Web Site www.walker-process.com/product/waste75.html (2000).

    Google Scholar 

  4. P. Coackley, Research on sewage sludge carried out in the C. E. Department of University College London, J. Inst. Sewage Purif., 59 (England) (1955).

    Google Scholar 

  5. P. Coackley, Laboratory Scale Filtration Experiments and Their Application to Sewage Sludge Dewatering, Biological Treatment of Sewage and Industrial Waste, Vol. 2, Reinhold Publishing Co., NY, p. 287, 1958.

    Google Scholar 

  6. W. W. Eckenfelder, Jr., Studies on the oxidation kinetics of biological sludges, Sewage Ind. Wastes, 28 (8), 983 (1956).

    Google Scholar 

  7. G. W. Lawton and J. O. Norman, Aerobic sludge digestion studies, J. Water Pollut. Control Fed., 36 (4), 495 (1964).

    CAS  Google Scholar 

  8. D. E. Drier, Aerobic digestion of solids. Proceedings, 18th Purdue Industrial Waste Conference, Purdue University, Lafayette, IN (1963).

    Google Scholar 

  9. US EPA, Process Design Manual for Sludge Treatment and Disposal, EPA625/1-79-001, US Environmental Protection Agency, Washington, DC, 1979.

    Google Scholar 

  10. C. E. Randall, W. S. Young, and P. H. King, Aerobic digestion of trickling filter humus. Proceedings 4th Environmental Engineering and Science Conference, University of Louisville, Louisville, Kentucky, 1974.

    Google Scholar 

  11. Air Products, Aerobic Sludge Digestion, Air Products and Chemicals Inc., Web Site: www.airproducts.com/Markets/EnvironmentalWasteWaterTreatment/Sludge/Aerobic_Sludge_Digestion.htm (2003).

    Google Scholar 

  12. US EPA, Construction Costs for Municipal Wastewater Treatment Plants: 1973-1977, Office of Water Program Operations, Washington, DC, EPA 430/9-77-13, MCD-37, January, 1978.

    Google Scholar 

  13. W. J. Jewell and R. M. Kabrick, Autoheated aerobic thermophilic digestion with air aeration, Presented at the 51st Annual Water Pollution Control Conference, Anaheim, CA, October, 1978.

    Google Scholar 

  14. N. R. Ahlberg and B. I. Boyko, Evaluation and design of aerobic digesters,J. Water Pollut. Control Fed., 44, 634 (1972).

    CAS  Google Scholar 

  15. L. E. Ritter, Design and operating experiences using diffused aeration for sludge digestion, J. Water Pollut. Control Fed., 42, 1982 (1970).

    Google Scholar 

  16. G. Folk, Aerobic digestion of waste activated sludge, J. Water Pollut. Control Fed. Deeds and Data, July, 1976.

    Google Scholar 

  17. M. Paredes, Supernatant decanting of aerobically digested waste activated sludge, J. Water Pollut. Control Fed. Deeds Data, October, (1976).

    Google Scholar 

  18. L. Spinosa, and P. A. Vesilind, (eds.), Sludge into Biosolids: Processing, Disposal, Utilization. IWA Publishing, December, 2001.

    Google Scholar 

  19. US EPA, Dewatering Municipal Wastewater Sludges, EPA/625/1-87/014, US Environmental Protection Agency, Washington, DC, 1987.

    Google Scholar 

  20. K. Barbusinski and H. Koscielniak, Activated sludge floc structure during aerobic digestion, Water Sci. Technol., 36 (11), 107–114 (1997).

    Article  CAS  Google Scholar 

  21. L. C. Matsch and R. F. Drnevich, Autothermal aerobic digestion, J. Water Pollut. Control Fed., 49, 296 (1977).

    CAS  Google Scholar 

  22. W. J. Jewell and R. M. Kabrick, Autoheated aerobic thermophilic digestion with aeration, J. Water Pollut. Control Fed., 52, 512 (1980).

    CAS  Google Scholar 

  23. US EPA, Environ. Regulations Technol., Autothermal Thermophilic Aerobic Digestion of Municipal Wastewater Sludge, US Environmental Protection Agency Report EPA/625/10-90/007, 1990.

    Google Scholar 

  24. E. I. Stentiford, Sludge treatment options: aerobic digestion, in Sludge into Biosolids: Processing, Disposal, Utilization, L. Spinosa and P. A. Vesilind, (eds.), IWA Publishing, December, 2001.

    Google Scholar 

  25. R. J. Colvin, W. J. Wujcik, C. D. Hahn, and A. F. Rozich, Design and start-up of an advanced treatment system for high-strength wastewater for a chemical plant, Presented at Purdue University Industrial Wastes Technical Conference, St. Louis, MO, May (2001).

    Google Scholar 

  26. Y. K. Kim, Y. S. Eom, B. K. OH, W. H. Lee, and J. W. Choi, Application of a thermophilic aerobic digestion process to industrial waste activated sludge treatment, J. Microbiol. Biotechnol., 11(4), 570–576 (2001).

    CAS  Google Scholar 

  27. Y. K. Kim, M. S. Kwak, W. H. Lee, S. S. Lee, and J. W. Choi, Effect of pretreatments on thermophilic aerobic digestion for waste activated sludge treatment, J. Environ. Eng., 8 (2002).

    Google Scholar 

  28. J. Zábranská, M. Dohányos, P. Jenícek, H. Ružicková, and A. Vránová, Efficiency of autothermal thermophilic aerobic digestion and thermophilic anaerobic digestion of municipal wastewater sludge in removing Salmonella spp. and indicator bacteria, Water Sci. Technol., 47(3), 51–156 (2003).

    Google Scholar 

  29. Moorhead Group, Thermophilic Digestion Plant, Web Site www.moorheadgroup.com/organic.htm (2004).

    Google Scholar 

  30. Y. S. Yi, S. Kim, S. An, S. I. Choi, E. Choi, and Z Yun, Gas analysis reveals novel aerobic deammonification in thermophilic aerobic digestion, Water Sci. Technol., 47(10), 131–138 (2003).

    CAS  Google Scholar 

  31. G. A. Surucu, E. S. K. Chain, and R. S. Engelbrecht, Aerobic thermophilic treatment of high strength wastewaters, J. Water Pollut. Control Fed., 48(4), 669 (1976).

    CAS  Google Scholar 

  32. A. F. Rozich and K. Bordacs, Use of Thermophilic Biological Aerobic Technology for Industrial Waste Treatment, PMC Technologies, Exton, PA, pp 1–8, www.pmcenviron-mental.com/afc/thatindwaste.htm (2004).

    Google Scholar 

  33. M. Roš, and G. D. Zupančič, Thermophilic aerobic digestion of waste activated sludge, Acta Chim. Slov., 49, 931–943 (2002).

    Google Scholar 

  34. A Chu and D. S. Mavinic, The effects of macromolecular substrates and a metabolic inhibitor on volatile fatty acid metabolism in thermophilic aerobic digestion, Water Sci. Technol., 38(2), 55–61 (1998).

    Article  CAS  Google Scholar 

  35. R. J. Colvin, A. F. Rozich, H. Gerber, and D. Strong, Thermophilic aerobic treatment of high strength organic production wastes and waste-activated sludge from a pharmaceutical manufacturer: bench-scale test results and full-scale design issues, Presented at WEFTEC 2000 73rd Annual Conference, Anaheim, CA, October, 2000.

    Google Scholar 

  36. US EPA, Innovative and Alternative Technology Assessment Manual, EPA430/9-78-009, US Environmental Protection Agency, Washington, DC, 1980.

    Google Scholar 

  37. K. L. Staton, J. E. Alleman, R. Pressley, and J. Eloff, 2nd generation autothermal thermophilic aerobic digestion: conceptual issues and process advancement, WEF/AWWA/CWEA Joint Residuals and Biosolids Management Conference, 2001.

    Google Scholar 

  38. US EPA, Aerobic Digestion of Organic Waste Sludge, US Environmental Protection Agency, EPA l7070-DAV-l2/7l, NTIS PB-21l-024, Washington, DC, 1971.

    Google Scholar 

  39. H. N. Burton and J. F. Malina, Jr., Aerobic stabilization of primary wastewater sludge. Proceedings 19th Purdue Industrial Waste Conference, Purdue University, Lafayette, IN, 1964.

    Google Scholar 

  40. T. L. Coulthard and P. M. Townsley, Thermophilic processing of municipal waste, Can. Soc. Agric. Eng.,Paper No. 74.219, 1974.

    Google Scholar 

  41. D. W. Gay, R. F. Drnevich, E. J. Breider, and K. W. Young, High purity oxygen aerobic digestion experiences at Speedway Indiana. Proceedings of the National Conference on Municipal Sludge Management, Information Transfer Inc., Rockville, MD, June, 1974.

    Google Scholar 

  42. US EPA, Full-Scale Conversion of Anaerobic Digesters to Heated Aerobic Digesters, EPA R2-72-050, NTIS PB-2l-448, Washington, DC, 1972.

    Google Scholar 

  43. M. F. Hamoda and K. J. Ganczarczyk, Aerobic digestion of sludges precipitated from wastewater by lime addition, J. Water Pollut. Control Fed., 49(3), 375 (1977).

    CAS  Google Scholar 

  44. K. J. Ganczarczyk, and M. F. Hamoda, Aerobic Digestion of Organic Sludges Containing Inorganic Phosphorus Precipitates, Phase I, Research Report no. 3, Canada-Ontario Agreement on Great Lakes Water Quality, Environment, Ottawa., Canada (1973).

    Google Scholar 

  45. US EPA, Review of Techniques for Treatment and Disposal of Phosphorus Laden Chemical Sludges, US Environmental Protection Agency, EPA Contract 68-03- 2432, Office of Research and Development, Cincinnati, OH, 1979.

    Google Scholar 

  46. A. J. Tarquin and R. Zaltzman, Inf1uence of waste paper on aerobic sludge digestion, Public Works, 101 (3), 80 (1970).

    CAS  Google Scholar 

  47. D. A. Koers and D. S. Mavinic, Aerobic digestion of waste activated sludge at low temperatures, J. Water Pollut. Control Fed., 50 (3), 460 (1977).

    Google Scholar 

  48. T. D. Reynolds, Aerobic digestion of waste activated sludge, Water and Sewage Work, 114, 37 (1967).

    CAS  Google Scholar 

  49. T. D. Reynolds, Aerobic digestion of thickened waste activated sludge. Proceedings 28th Purdue Industrial Waste Conference, Purdue University, Lafayette, IN (1973).

    Google Scholar 

  50. C. R. Baillod, G. M. Cressey, and R. T. Beaupre, Influence of phosphorus removal on solids budget, J. Water Pollut. Control Fed., 49, 131 (1977).

    CAS  Google Scholar 

  51. C. W. Randall, J. B. Richards, and P. H. King, Temperature effects on aerobic digestion kinetics, J. Environ. Eng. Division, ASCE, 101, 795 (1975).

    Google Scholar 

  52. L. D. Benefield and C. W. Randall, Design relationships for aerobic digestion, J. Water Pollut. Control Fed., 50, 518 (1978).

    Google Scholar 

  53. M. J. Stankewich, Jr., Biological Nitrification with the High Purity Oxygenation Process. Proceedings 27th Purdue industrial Waste Conference, Purdue University, Lafayette, IN, p. 1 (1972).

    Google Scholar 

  54. S. Bernard and N. F. Gray, Aerobic digestion of pharmaceutical and domestic wastewater sludges at ambient temperature, Water Res., 34(3), 725–734 (2000).

    Article  CAS  Google Scholar 

  55. T. D. Brock and G. K. Darland, Limits of microbial existence, temperature and pH, Science, 169, 1316 (1970).

    Article  CAS  Google Scholar 

  56. J. T. Novak, M. E. Sadler, and S. N. Murthy, Mechanisms of floc destruction during anaerobic and aerobic digestion and the effect on conditioning and dewatering of biosolids, Water Res., 37 (13), 3136 (2003).

    Article  CAS  Google Scholar 

  57. L. G. Hagstrom and N. A. Mignone, Operating experiences with a basket centrifuge on aerobic sludges, Water and Wastes Eng., (1978).

    Google Scholar 

  58. US EPA, Sludge Handling and Disposal Practices at Selected Municipal Wastewater Treatment Plant, US Environmental Protection Agency, Office of Water Program Operations, Washington, DC, MCD 36, April, 1977.

    Google Scholar 

  59. J. J. Bisogni and A. W. Laurence, Relationship between biological solids retention time and settling characteristics of activated sludge, Water Res., 5, 753 (1971).

    Article  CAS  Google Scholar 

  60. J. Yin, C. Shou, and H. Bu, Study on the efficacy and mechanism of excess sludge by aerobic digestion treatment, J. Solid Waste Technol. Manag., 25 (3), 4, November (1998).

    Google Scholar 

  61. H. Movahedian and A. Takdastan, Investigation into removal of pathogens from municipal sewage sludge in aerobic pilot plant digester, J. Water Wastewater, 32, (2000).

    Google Scholar 

  62. B. C. Anderson, D. S. Mavinic, and J. A. Oleszkiewicz, Stabilization of combined wastewater sludge: aerobic processes, Environ. Technol., 17(7), 727–736 (1996).

    Article  CAS  Google Scholar 

  63. K. Barbusinski and K. Filipek, Aerobic sludge digestion in the presence of chemical oxidizing agents, Part II. Fenton's reagent, Pol. J. Environ. Studies, 9(3), 145–149 (2000).

    CAS  Google Scholar 

  64. B. R. Lim, H. Xia, H. Y. Hu, and F. Koichi, Solid phase aerobic digestion of high strength organic wastewater using adsorbent polymer gel, Water Sci. Technol., 35(7), 13 (1997).

    Article  CAS  Google Scholar 

  65. R. C. Loher, Aerobic digestion-factors affecting design, 9th Great Plains Sewage Works Design Conference, March (1965).

    Google Scholar 

  66. Great Lakes-Upper Mississippi River Board of State Sanitary Engineers, Recommended Standards for Sewage Works (Ten States Standards), Health Education Service, Albany, NY (1971).

    Google Scholar 

  67. Metcalf and Eddy, Inc., Wastewater Engineering: Treatment, Disposal and Reuse. McGraw-Hill, New York, NY, 1991.

    Google Scholar 

  68. A. Vesilind, Wastewater Treatment Plant Design. Water Environment Federation and IWA Publishing, Alexandria, VA, 2003.

    Google Scholar 

  69. US EPA, Area-wide Assessment Procedures Manual, Appendix H, Point Source Control Alternatives: Performance and Cost, US Environmental Protection Agency, Municipal Environmental Research Laboratory, Cincinnati, OH, 1976.

    Google Scholar 

  70. US EPA, A Guide to the Selection of Cost-Effective Wastewater Treatment Systems,US Environmental Protection Agency, Office of Water Program Operations, Washington, DC, EPA 430/9-75-002. July, 1975.

    Google Scholar 

  71. ACWPCP, Master Plan Update-Aerobic Digestion, Arlington County Water Pollution Control Plant, Technical Memorandum XIII, April, 2002.

    Google Scholar 

  72. US ACE, Civil Works Construction Cost Index System Manual; no. 1110-2-1304, US Army Corps of Engineers, Washington, DC, USA, pp. 44 (PDF file is available on the Internet at http://www.nww.usace.army.mil/cost) (2000, Revised 2003).

  73. US EPA, Sludge Handling and Conditioning, US Environmental Protection Agency, Office of Water Program Operations, Washington, DC, EPA 430/9-78-002, February, 1978.

    Google Scholar 

  74. T. C. Rooney and N. A. Mignone, Influence of basin geometry on different generic types of aeration equipment. Proceedings 33rd Purdue Industrial Waste Conference, Ann Arbor Science, Ann Arbor, MI, 1978.

    Google Scholar 

  75. D. A. Burke, Producing exceptional quality biosolids through digestion pasteurization and re-digestion. Proceedings of WEF/AWWA/CWEA Joint Residuals and Biosolids Management Conference, San Diego, CA, 2001.

    Google Scholar 

  76. D. D. Drury, The use of three stage digestion to mitigate the adverse impacts of thermophilic digestion. Proceedings of WEF/AWWA/CWEA Joint Residuals and Biosolids Management Conference, San Diego, CA, 2001.

    Google Scholar 

  77. G. L. Hernandez, Hyperion advanced digestion pilot program. Proceedings 16th Annual Residuals and Biosolids Management Conference, Austin, TX, 2002.

    Google Scholar 

  78. S. Krugel, North America's first new temperature phased anaerobic digestion system — a successful start-up at the Western Lake Superior Sanitary District (WLSSD). Proceedings 16th Annual Residuals and Biosolids Management Conference, Austin, TX, 2002.

    Google Scholar 

  79. Y. Shang and S. Shihwu, Thermophilic-mesophilic two-stage anaerobic digestion system application. Proceedings of WEF/AWWA/CWEA Joint Residuals and Biosolids Management Conference, San Diego, CA, 2001.

    Google Scholar 

  80. J. A. Oleszkiewicz and D. S. Mavinic, Wastewater biosolids: an overview of processing, treatment, and management, J. Environ. Eng. Sci. 1, 75–88 (2002).

    Article  CAS  Google Scholar 

  81. T. Valentine, In search of digester capacity for less cost? two-phase and three-phase digestion hold much promise. Proceedings 16th Annual Residuals and Biosolids Management Conference, Austin, TX, 2002.

    Google Scholar 

  82. G. Winfield, Design of an acid/gas digestion process for Baltimore's Back River plant. Proceedings of WEF/AWWA/CWEA Joint Residuals and Biosolids Management Conference, WEF, San Diego, CA (2001).

    Google Scholar 

  83. WEF, Manual of Practice FD-9—Wastewater Residuals Stabilization, Water Environment Federation, Alexandria, VA, 1995.

    Google Scholar 

  84. US EPA, Autothermal Thermophilic Aerobic Digestion of Municipal Wastewater Sludge,EPA-625/10-90-007, US Environmental Protection Agency, Cincinnati, Ohio, 1990.

    Google Scholar 

  85. C. H. Burnett, Technology and process options for autothermal thermophilic aerobic digestion. Proceedings Water Environment Federation 67th Annual Conference & Exposition, Chicago, IL, 1994.

    Google Scholar 

  86. S. Murthy, J. T. Novak, R. D. Holbrook, and F. Surovik, Mesophilic Aeration of Autothermal Thermophilic Aerobically Digested Biosolids To Improve Plant Operations, Water Environment Research (2000).

    Google Scholar 

  87. J. Guild, M. Boyle, L. Sasser, D. Pollock, and J. Yoo, VERTAD™- auto-thermophilic aerobic digestion: demonstration-scale test results. Proceedings Water Environment Federation 74th Annual Conference & Exposition, Atlanta, GA, 2001.

    Google Scholar 

  88. R. Gemmell, R. Deshevy, M. Elliott, G. Crawford, and S. Murthy, Design considerations and operating experience for a full scale dual digestion system with separate waste activated sludge thickening. Proceedings Water Environment Federation 73rd Annual Conference & Exposition, Anaheim, CA, 2000.

    Google Scholar 

  89. WEF, Advanced Digestion White Paper, Advanced Digestion Technology Team (Chaired by Dave parry), Bioenergy Subcommittee, Residuals and Biosolids Committee, Water Environment Federation, Alexandria, VA, 2004.

    Google Scholar 

  90. L. K. Wang, N. K. Shammas, and Y. T. Hung, Advanced Biological Treatment Processes, Humana Press, Inc., Totowa, NJ, 2009.

    Book  Google Scholar 

  91. L. K. Wang, L. Kurylko, and M. H. S. Wang, Sequencing Batch Liquid Treatment,US Patent No. 5354458, US Patent & Trademark Office, Washington, DC, 1996.

    Google Scholar 

  92. L. K. Wang and N. C. Pereira, Biological Treatment Processes, Handbook of Environmental Engineering, Vol. 3, the Humana Press, Inc., NJ, USA, pp. 520 (1986).

    Google Scholar 

  93. C. Beer, L. K. Wang, and L. J. Hetling, Full scale operations of plug flow activated sludge systems, J. New England Water Pollut. Control Assoc.,9(2), 145–173, September, 1975.

    Google Scholar 

  94. L. K. Wang and M. H. S. Wang, Control tests and kinetics of activated sludge process, Water, Air Soil Pollut., 8, P315–P351, (Holland) (1977).

    Article  Google Scholar 

  95. C. Beer, and L. K. Wang, Activated sludge systems using nitrate respiration—design considerations, J. Water Pollut. Control Fed., 50(9), 2120–2131, September, 1978.

    CAS  Google Scholar 

  96. C. Beer, L. J. Hetling, and L. K. Wang, Full-Scale Operation of Plug Flow Activated Sludge Systems at Coxsackie WWT, Technical Report No. 42, New York State Department of Environmental Conservation, Albany, NY, 1975.

    Google Scholar 

  97. C. Beer and L. K. Wang, Process design of single-sludge activated sludge systems using nitrate respiration. Proceedings of the 49th Annual Meeting of the New York Water Pollution Control Association, NYC, January 17–19, 1977, Recipients of the Kenneth Research Award (1977).

    Google Scholar 

  98. C. Beer, J. F. Bergenthal, and L. K. Wang, A study of endogenous nitrate respiration of activated sludge. Proceedings of the 9th Mid-Atlantic Industrial Waste Conference, Bucknell University, Lewisburg, PA, 1977.

    Google Scholar 

  99. L. K. Wang, Chemistry of nitrification-denitrification process, J. Environ. Sci., 21 23–28, December, (1978).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shammas, N.K., Wang, L.K. (2009). Aerobic Digestion. In: Wang, L.K., Pereira, N.C., Hung, YT. (eds) Biological Treatment Processes. Handbook of Environmental Engineering, vol 8. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-156-1_15

Download citation

Publish with us

Policies and ethics