Skip to main content

T-cell Unresponsiveness in Renal Cell Carcinoma Patients

  • Chapter
Clinical Management of Renal Tumors

Abstract

There is evidence that immune responses to renal cell carcinoma do occur and in limited cases mediate tumor regression. This notion is supported by the infrequent though detectable occurrences of spontaneous regression in renal cell carcinoma (RCC) patients1 and by the higher incidence of renal cell tumors in patients that are immuno-suppressed after receiving kidney allografts.24 There is also a significant infiltrate of T lymphocytes in many primary renal tumors,5 and in some patients tumor-specific T-cell lines and clones have been expanded from their tumors.68 Furthermore, clonal expansion of T-cell receptor (TCR)α/β T cells has been reported in renal cell tumors, most notably in those that are regressing.9,10 More recently, a number of tumor-associated antigens were found to be expressed on RCC; among these are antigens shared by other tumor types, such as RAGE-1, Mage-3/-6, EphA2, Muc-1, and Her-2/neu, but also several that may be unique to RCC.1117 Despite the potential for an effective immune response to RCC, it is not well developed in this patient population even after implement of various forms of immunotherapy designed to stimulate tumor immunity. The presence of an ineffective immune response is likely attributable to suppression induced by the developing tumor.

Recently a paradigm shift has occurred in treatment of metastatic RCC with the demonstration that small molecule inhibitors of receptor tyrosine kinases and antibodies that antagonize vascular endothelial growth factor (VEGF)/platelet-derived growth factor (PDGF) receptor signaling significantly increased not only the frequency of clinical responses but also their duration.18 While these targeted therapies are a significant improvement in the treatment of metastatic disease, they are not typically curative. To further improve the outcome for RCC patients’ future therapies will likely include combining the VEGF antagonist with strategies that promote antitumor immune responses. Thus, understanding how the tumor microenvironment can hinder the development of effective T-cell response to RCC remains an important issue to address. Here we describe the major suppressive pathways reported in RCC patients and provide some insight into their mechanism of action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oliver RT, Miller RM, Mehta A, Barnett MJ. A phase 2 study of surveillance in patients with metastatic renal cell carcinoma and assessment of response of such patients to therapy on progression. Mol Biother 1988;1(1):14–20.

    PubMed  CAS  Google Scholar 

  2. Edwards MJ, Anderson JA, Angel JR, Harty JI. Spontaneous regression of primary and metastatic renal cell carcinoma. J Urol 1996;155(4):1385.

    Article  PubMed  CAS  Google Scholar 

  3. Kliem V, Kolditz M, Behrend M, et al. Risk of renal cell carcinoma after kidney transplantation. Clin Transplant 1997;11(4):255–258.

    PubMed  CAS  Google Scholar 

  4. Kunisch-Hoppe M, Hoppe M, Bohle RM, et al. Metastatic RCC arising in a transplant kidney. Eur Radiol 1998;8(8):1441–1443.

    Article  PubMed  CAS  Google Scholar 

  5. Finke JH, Rayman P, Hart L, et al. Characterization of tumor-infiltrating lymphocyte subsets from human renal cell carcinoma: specific reactivity defined by cytotoxicity, interferon-gamma secretion, and proliferation. J Immunother Emphasis Tumor Immunol 1994;15(2):91–104.

    PubMed  CAS  Google Scholar 

  6. Finke JH, Rayman P, Alexander J, et al. Characterization of the cytolytic activity of CD4+ and CD8+ tumor-infiltrating lymphocytes in human renal cell carcinoma. Cancer Res 1990;50(8):2363–2370.

    PubMed  CAS  Google Scholar 

  7. Belldegrun A, Kasid A, Uppenkamp M, Rosenberg SA. Lymphokine mRNA profile and functional analysis of a human CD4+ clone with unique antitumor specificity isolated from renal cell carcinoma ascitic fluid. Cancer Immunol Immunother 1990;31(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  8. Schendel DJ, Gansbacher B, Oberneder R, et al. Tumor-specific lysis of human renal cell carcinomas by tumor-infiltrating lymphocytes. I. HLA-A2-restricted recognition of autologous and allogeneic tumor lines. J Immunol 1993;151(8):4209–4220.

    PubMed  CAS  Google Scholar 

  9. Angevin E, Kremer F, Gaudin C, Hercend T, Triebel F. Analysis of T-cell immune response in renal cell carcinoma: polarization to type 1-like differentiation pattern, clonal T-cell expansion and tumor-specific cytotoxicity. Int J Cancer 1997;72(3):431–440.

    Article  PubMed  CAS  Google Scholar 

  10. Puisieux I, Bain C, Merrouche Y, et al. Restriction of the T-cell repertoire in tumor-infiltrating lymphocytes from nine patients with renal-cell carcinoma. Relevance of the CDR3 length analysis for the identification to in situ clonal T-cell expansions. Int J Cancer 1996;66(2):201–208.

    Article  PubMed  CAS  Google Scholar 

  11. Ronsin C, Chung-Scott V, Poullion I, Aknouche N, Gaudin C, Triebel F. A non-AUG-defined alternative open reading frame of the intestinal carboxyl esterase mRNA generates an epitope recognized by renal cell carcinoma-reactive tumor-infiltrating lymphocytes in situ. J Immunol 1999; 163(1):483–490.

    PubMed  CAS  Google Scholar 

  12. Neumann E, Engelsberg A, Decker J, et al. Heterogeneous expression of the tumor-associated antigens RAGE-1, PRAME, and glycoprotein 75 in human renal cell carcinoma: candidates for T-cell-based immunotherapies? Cancer Res 1998;58(18):4090–4095.

    PubMed  CAS  Google Scholar 

  13. Brossart P, Stuhler G, Flad T, et al. Her-2/neu-derived peptides are tumor-associated antigens expressed by human renal cell and colon carcinoma lines and are recognized by in vitro induced specific cytotoxic T lymphocytes. Cancer Res 1998;58(4):732–736.

    PubMed  CAS  Google Scholar 

  14. Flad T, Spengler B, Kalbacher H, et al. Direct identification of major histocompatibility complex class I-bound tumor-associated peptide antigens of a renal carcinoma cell line by a novel mass spectrometric method. Cancer Res 1998;58(24):5803–5811.

    PubMed  CAS  Google Scholar 

  15. Steffens MG, Oosterwijk-Wakka JC, Zegwaart-Hagemeier NE, et al. Immunohistochemical analysis of tumor antigen saturation following injection of monoclonal antibody G250. Anticancer Res 1999;19(2A):1197–1200.

    PubMed  CAS  Google Scholar 

  16. Gaugler B, Brouwenstijn N, Vantomme V, et al. A new gene coding for an antigen recognized by autologous cytolytic T lymphocytes on a human renal carcinoma. Immunogenetics 1996; 44(5):323–330.

    Article  PubMed  CAS  Google Scholar 

  17. Hanada K, Perry-Lalley DM, Ohnmacht GA, Bettinotti MP, Yang JC. Identification of fibroblast growth factor-5 as an overexpressed antigen in multiple human adenocarcinomas. Cancer Res 2001;61(14):5511–5516.

    PubMed  CAS  Google Scholar 

  18. Motzer RJ, Bacik J, Schwartz LH, et al. Prognostic factors for survival in previously treated patients with metastatic renal cell carcinoma. J Clin Oncol 2004;22(3):454–463.

    Article  PubMed  Google Scholar 

  19. Uzzo RG, Rayman P, Kolenko V, et al. Mechanisms of apoptosis in T cells from patients with renal cell carcinoma. Clin Cancer Res 1999;5(5):1219–1229.

    PubMed  CAS  Google Scholar 

  20. Whiteside TL. Immune suppression in cancer: effects on immune cells, mechanisms and future therapeutic intervention. Semin Cancer Biol 2006;16(1):3–15.

    Article  PubMed  CAS  Google Scholar 

  21. Saito T, Dworacki G, Gooding W, Lotze MT, Whiteside TL. Spontaneous apoptosis of CD8+T lymphocytes in peripheral blood of patients with advanced melanoma. Clin Cancer Res 2000; 6(4):1351–1364.

    PubMed  CAS  Google Scholar 

  22. Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature 1996;383(6603):787–793.

    Article  PubMed  CAS  Google Scholar 

  23. Constant SL, Bottomly K. Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches. Annu Rev Immunol 1997;15:297–322.

    Article  PubMed  CAS  Google Scholar 

  24. Cher DJ, Mosmann TR. Two types of murine helper T cell clone. II. Delayed-type hypersensitivity is mediated by TH1 clones. J Immunol 1987;138(11):3688–3694.

    PubMed  CAS  Google Scholar 

  25. Stevens TL, Bossie A, Sanders VM, et al. Regulation of antibody isotype secretion by subsets of antigen-specific helper T cells. Nature 1988;334(6179):255–258.

    Article  PubMed  CAS  Google Scholar 

  26. Levings MK, Bacchetta R, Schulz U, Roncarolo MG. The role of IL-10 and TGF-beta in the differentiation and effector function of T regulatory cells. Int Arch Allergy Immunol 2002; 129(4):263–276.

    Article  PubMed  CAS  Google Scholar 

  27. Nagai H, Hara I, Horikawa T, Oka M, Kamidono S, Ichihashi M. Elimination of CD4(+) T cells enhances anti-tumor effect of locally secreted interleukin-12 on B16 mouse melanoma and induces vitiligo-like coat color alteration. J Invest Dermatol 2000;115(6):1059–1064.

    Article  PubMed  CAS  Google Scholar 

  28. Seo N, Hayakawa S, Takigawa M, Tokura Y. Interleukin-10 expressed at early tumour sites induces subsequent generation of CD4(+) T-regulatory cells and systemic collapse of antitumour immunity. Immunology 2001;103(4):449–457.

    Article  PubMed  CAS  Google Scholar 

  29. Wang Q, Redovan C, Tubbs R, et al. Selective cytokine gene expression in renal cell carcinoma tumor cells and tumor-infiltrating lymphocytes. Int J Cancer 1995;61(6):780–785.

    Article  PubMed  CAS  Google Scholar 

  30. Elsasser-Beile U, Grussenmeyer T, Gierschner D, et al. Semiquantitative analysis of Th1 and Th2 cytokine expression in CD3+, CD4+, and CD8+ renal-cell-carcinoma-infiltrating lymphocytes. Cancer Immunol Immunother 1999;48(4):204–208.

    Article  PubMed  CAS  Google Scholar 

  31. Maeurer MJ, Martin DM, Castelli C, et al. Host immune response in renal cell cancer: interleukin-4 (IL-4) and IL-10 mRNA are frequently detected in freshly collected tumor-infiltrating lymphocytes. Cancer Immunol Immunother 1995;41(2):111–121.

    Article  PubMed  CAS  Google Scholar 

  32. Tatsumi T, Kierstead LS, Ranieri E, et al. Disease-associated bias in T helper type 1 (Th1)/Th2 CD4(+) T cell responses against MAGE-6 in HLA-DRB10401(+) patients with renal cell carcinoma or melanoma. J Exp Med 2002;196(5):619–628.

    Article  PubMed  CAS  Google Scholar 

  33. Tatsumi T, Herrem CJ, Olson WC, et al. Disease stage variation in CD4+ and CD8+ T-cell reactivity to the receptor tyrosine kinase EphA2 in patients with renal cell carcinoma. Cancer Res 2003;63(15):4481–4489.

    PubMed  CAS  Google Scholar 

  34. Tatsumi T, Kierstead LS, Ranieri E, et al MAGE-6 encodes HLA-DRbeta1-1-presented epitopes recognized by CD4+ T cells from patients with melanoma or renal cell carcinoma. Clin Cancer Res 2003;9(3):947–954.

    PubMed  CAS  Google Scholar 

  35. Tatsumi T, Wesa AK, Finke J, Bukowski R, Storkus WJ. CD4 T cell mediated immunity to cancer. In: Finke J, Bukowski R, eds. Cancer Immunotherapy at the Crossroads: How Tumors Evade Immunity and What Can Be Done? Totowa, NJ: Humana Press, 2004:67–86.

    Google Scholar 

  36. Onishi T, Ohishi Y, Imagawa K, Ohmoto Y, Murata K. An assessment of the immunological environment based on intratumoral cytokine production in renal cell carcinoma. BJU Int 1999; 83(4):488–492.

    Article  PubMed  CAS  Google Scholar 

  37. Zea AH, Rodriguez PC, Atkins MB, et al. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 2005;65(8):3044–3048.

    PubMed  CAS  Google Scholar 

  38. Jefford M, Maraskovsky E, Cebon J, Davis ID. The use of dendritic cells in cancer therapy. Lancet Oncol 2001;2(6):343–353.

    Article  PubMed  CAS  Google Scholar 

  39. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392(6673):245–252.

    Article  PubMed  CAS  Google Scholar 

  40. Siena S, Di Nicola M, Bregni M, et al. Massive ex vivo generation of functional dendritic cells from mobilized CD34+ blood progenitors for anticancer therapy. Exp Hematol 1995;23(14):1463–1471.

    PubMed  CAS  Google Scholar 

  41. Volk J, Sel S, Ganser A, Schoffski P. Tumor cell-based vaccination in renal cell carcinoma: rationale, approaches, and recent clinical development. Curr Drug Targets 2002;3(5):401–408.

    Article  PubMed  CAS  Google Scholar 

  42. Schwaab T, Schned AR, Heaney JA, et al. In vivo description of dendritic cells in human renal cell carcinoma. J Urol 1999;162(2):567–573.

    Article  PubMed  CAS  Google Scholar 

  43. Takahashi A, Kono K, Itakura J, et al. Correlation of vascular endothelial growth factor-C expression with tumor-infiltrating dendritic cells in gastric cancer. Oncology 2002;62(2):121–127.

    Article  PubMed  CAS  Google Scholar 

  44. Becker Y. Anticancer role of dendritic cells (DC) in human and experimental cancers—a review. Anticancer Res 1992;12(2):511–520.

    PubMed  CAS  Google Scholar 

  45. Shurin GV, Lotze MT, Barksdale EM. Neuroblastoma inhibits dendritic cell differentiation and function. Curr Surg 2000;57(6):637.

    Article  PubMed  Google Scholar 

  46. Esche C, Lokshin A, Shurin GV, et al. Tumor’s other immune targets: dendritic cells. J Leukoc Biol 1999;66(2):336–344.

    PubMed  CAS  Google Scholar 

  47. Pirtskhalaishvili G, Shurin GV, Esche C, Trump DL, Shurin MR. TNF-alpha protects dendritic cells from prostate cancer-induced apoptosis. Prostate Cancer Prostatic Dis 2001;4(4):221–227.

    Article  PubMed  CAS  Google Scholar 

  48. Katou F, Ohtani H, Saaristo A, Nagura H, Motegi K. Immunological activation of dermal Langerhans cells in contact with lymphocytes in a model of human inflamed skin. Am J Pathol 2000; 156(2):519–527.

    PubMed  CAS  Google Scholar 

  49. Stanford A, Chen Y, Zhang XR, Hoffman R, Zamora R, Ford HR. Nitric oxide mediates dendritic cell apoptosis by downregulating inhibitors of apoptosis proteins and upregulating effector caspase activity. Surgery 2001;130(2):326–332.

    Article  PubMed  CAS  Google Scholar 

  50. Shurin MR, Yurkovetsky ZR, Tourkova IL, Balkir L, Shurin GV. Inhibition of CD40 expression and CD40-mediated dendritic cell function by tumor-derived IL-10. Int J Cancer 2002;101(1):61–68.

    Article  PubMed  CAS  Google Scholar 

  51. Troy AJ, Hart DN. Dendritic cells and cancer: progress toward a new cellular therapy. J Hematother 1997;6(6):523–533.

    PubMed  CAS  Google Scholar 

  52. Troy AJ, Summers KL, Davidson PJ, Atkinson CH, Hart DN. Minimal recruitment and activation of dendritic cells within renal cell carcinoma. Clin Cancer Res 1998;4(3):585–593.

    PubMed  CAS  Google Scholar 

  53. Katsenelson NS, Shurin GV, Bykovskaia SN, Shogan J, Shurin MR. Human small cell lung carcinoma and carcinoid tumor regulate dendritic cell maturation and function. Mod Pathol 2001; 14(1):40–45.

    Article  PubMed  CAS  Google Scholar 

  54. Gabrilovich D, Ishida T, Oyama T, et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 1998;92(11):4150–4166.

    PubMed  CAS  Google Scholar 

  55. Yang L, Carbone DP. Tumor-host immune interactions and dendritic cell dysfunction. Adv Cancer Res 2004;92:13–27.

    Article  PubMed  CAS  Google Scholar 

  56. Ohm JE, Gabrilovich DI, Sempowski GD, et al. VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 2003;101(12):4878–4886.

    Article  PubMed  CAS  Google Scholar 

  57. Caldwell S, Heitger A, Shen W, Liu Y, Taylor B, Ladisch S. Mechanisms of ganglioside inhibition of APC function. J Immunol 2003;171(4):1676–1683.

    PubMed  CAS  Google Scholar 

  58. Peguet-Navarro J, Sportouch M, Popa I, Berthier O, Schmitt D, Portoukalian J. Gangliosides from human melanoma tumors impair dendritic cell differentiation from monocytes and induce their apoptosis. J Immunol 2003;170(7):3488–3494.

    PubMed  CAS  Google Scholar 

  59. Kusmartsev S, Gabrilovich DI. Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother 2006;55(3):237–245.

    Article  PubMed  Google Scholar 

  60. Bronte V, Chappell DB, Apolloni E, et al. Unopposed production of granulocyte-macrophage colonystimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. J Immunol 1999;162(10):5728–5737.

    PubMed  CAS  Google Scholar 

  61. Seung LP, Rowley DA, Dubey P, Schreiber H. Synergy between T-cell immunity and inhibition of paracrine stimulation causes tumor rejection. Proc Natl Acad Sci U S A 1995;92(2):6254–6258.

    Article  PubMed  CAS  Google Scholar 

  62. Kusmartsev SA, Li Y, Chen SH. Gr-1+myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J Immunol 2000;165(2):779–785.

    PubMed  CAS  Google Scholar 

  63. Mirza N, Fishman M, Fricke I, et al. All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res 2006;66(18):9299–9307.

    Article  PubMed  CAS  Google Scholar 

  64. Menetrier-Caux C, Thomachot MC, Alberti L, Montmain G, Blay JY. IL-4 prevents the blockade of dendritic cell differentiation induced by tumor cells. Cancer Res 2001;61(7):3096–3104.

    PubMed  CAS  Google Scholar 

  65. Hoffmann TK, Meidenbauer N, Muller-Berghaus J, Storkus WJ, Whiteside TL. Proinflammatory cytokines and CD40 ligand enhance cross-presentation and cross-priming capability of human dendritic cells internalizing apoptotic cancer cells. J Immunother 2001;24(2):162–171.

    Article  CAS  Google Scholar 

  66. Satoh Y, Esche C, Gambotto A, et al. Local administration of IL-12-transfected dendritic cells induces antitumor immune responses to colon adenocarcinoma in the liver in mice. J Exp Ther Oncol 2002;2(6):337–349.

    Article  PubMed  CAS  Google Scholar 

  67. Sorice M, Parolini I, Sansolini T, et al. Evidence for the existence of ganglioside-enriched plasma membrane domains in human peripheral lymphocytes. J Lipid Res 1997;38(5):969–980.

    PubMed  CAS  Google Scholar 

  68. Ritter G, Livingston PO. Ganglioside antigens expressed by human cancer cells. Semin Cancer Biol 1991;2(6):401–409.

    PubMed  CAS  Google Scholar 

  69. Ladisch S, Gillard B, Wong C, Ulsh L. Shedding and immunoregulatory activity of YAC-1 lymphoma cell gangliosides. Cancer Res 1983;43(8):3808–3813.

    PubMed  CAS  Google Scholar 

  70. Black PH. Shedding from the cell surface of normal and cancer cells. Adv Cancer Res 1980;32:75–199.

    Article  PubMed  CAS  Google Scholar 

  71. Valentino L, Moss T, Olson E, Wang HJ, Elashoff R, Ladisch S. Shed tumor gangliosides and progression of human neuroblastoma. Blood 1990;75(7):1564–1567.

    PubMed  CAS  Google Scholar 

  72. Hoon DS, Okun E, Neuwirth H, Morton DL, Irie RF. Aberrant expression of gangliosides in human renal cell carcinomas. J Urol 1993;150(6):2013–2018.

    PubMed  CAS  Google Scholar 

  73. Ito A, Levery SB, Saito S, Satoh M, Hakomori S. A novel ganglioside isolated from renal cell carcinoma. J Biol Chem 2001;276(20):16695–16703.

    Article  PubMed  CAS  Google Scholar 

  74. Li R, Manela J, Kong Y, Ladisch S. Cellular gangliosides promote growth factor-induced proliferation of fibroblasts. J Biol Chem 2000;275(44):34213–34223.

    Article  PubMed  CAS  Google Scholar 

  75. Sun P, Wang XQ, Lopatka K, Bangash S, Paller AS. Ganglioside loss promotes survival primarily by activating integrin-linked kinase/Akt without phosphoinositide 3-OH kinase signaling. J Invest Dermatol 2002;119(1):107–117.

    Article  PubMed  CAS  Google Scholar 

  76. Yates AJ, Rampersaud A. Sphingolipids as receptor modulators. An overview. Ann NY Acad Sci 1998;845:57–71.

    Article  PubMed  CAS  Google Scholar 

  77. Rebbaa A, Hurh J, Yamamoto H, Kersey DS, Bremer EG. Ganglioside GM3 inhibition of EGF receptor mediated signal transduction. Glycobiology 1996;6(4):399–406.

    Article  PubMed  CAS  Google Scholar 

  78. Yates AJ, VanBrocklyn J, Saqr HE, Guan Z, Stokes BT, O’Dorisio MS. Mechanisms through which gangliosides inhibit PDGF-stimulated mitogenesis in intact Swiss 3T3 cells: receptor tyrosine phosphorylation, intracellular calcium, and receptor binding. Exp Cell Res 1993;204(1):38–45.

    Article  PubMed  CAS  Google Scholar 

  79. Kong Y, Li R, Ladisch S. Natural forms of shed tumor gangliosides. Biochim Biophys Acta 1998;1394(1):43–56.

    PubMed  CAS  Google Scholar 

  80. Li R, Villacreses N, Ladisch S. Human tumor gangliosides inhibit murine immune responses in vivo. Cancer Res 1995;55(2):211–214.

    PubMed  CAS  Google Scholar 

  81. Ladisch S, Li R, Olson E. Ceramide structure predicts tumor ganglioside immunosuppressive activity. Proc Natl Acad Sci U S A 1994;91(5):1974–1978.

    Article  PubMed  CAS  Google Scholar 

  82. Irani DN, Lin KI, Griffin DE. Brain-derived gangliosides regulate the cytokine production and proliferation of activated T cells. J Immunol 1996;157(10):4333–4340.

    PubMed  CAS  Google Scholar 

  83. Biswas K, Richmond A, Rayman P, et al. GM2 expression in renal cell carcinoma: potential role in tumor-induced T-cell dysfunction. Cancer Res 2006;66(13):6816–6825.

    Article  PubMed  CAS  Google Scholar 

  84. Garcia-Ruiz C, Colell A, Paris R, Fernandez-Checa JC. Direct interaction of GD3 ganglioside with mitochondria generates reactive oxygen species followed by mitochondrial permeability transition, cytochrome c release, and caspase activation. FASEB J 2000;14(7):847–858.

    PubMed  CAS  Google Scholar 

  85. Hengartner MO. Apoptosis. DNA destroyers. Nature 2001;412(6842):27,29.

    Article  PubMed  CAS  Google Scholar 

  86. Birkle S, Zeng G, Gao L, Yu RK, Aubry J. Role of tumor-associated gangliosides in cancer progression. Biochimie 2003;85(3–4):455–463.

    Article  PubMed  CAS  Google Scholar 

  87. Kudo D, Rayman P, Horton C, et al. Gangliosides expressed by the renal cell carcinoma cell line SK-RC-45 are involved in tumor-induced apoptosis of T cells. Cancer Res 2003;63(7):1676–1683.

    PubMed  CAS  Google Scholar 

  88. Chahlavi A, Rayman P, Richmond AL, et al. Glioblastomas induce T-lymphocyte death by two distinct pathways involving gangliosides and CD70. Cancer Res 2005;65(12):5428–5438.

    Article  PubMed  CAS  Google Scholar 

  89. Thornton MV, Kudo D, Rayman P, et al. Degradation of NF-kappa B in T cells by gangliosides expressed on renal cell carcinomas. J Immunol 2004;172(6):3480–3490.

    PubMed  CAS  Google Scholar 

  90. Nakamura K, Koike M, Shitara K, et al. Chimeric anti-ganglioside GM2 antibody with antitumor activity. Cancer Res 1994;54(6):1511–1516.

    PubMed  CAS  Google Scholar 

  91. Rayman P, Wesa AK, Richmond AL, et al. Effect of renal cell carcinomas on the development of type 1 T-cell responses. Clin Cancer Res 2004;10(18 Pt 2):6360S–6366S.

    Article  PubMed  CAS  Google Scholar 

  92. Retter MW, Johnson JC, Peckham DW, et al. Characterization of a proapoptotic antiganglioside GM2 monoclonal antibody and evaluation of its therapeutic effect on melanoma and small cell lung carcinoma xenografts. Cancer Res 2005;65(14):6425–6434.

    Article  PubMed  CAS  Google Scholar 

  93. Livingston PO, Wong GY, Adluri S, et al. Improved survival in stage III melanoma patients with GM2 antibodies: a randomized trial of adjuvant vaccination with GM2 ganglioside. J Clin Oncol 1994;12(5):1036–1044.

    PubMed  CAS  Google Scholar 

  94. Levings MK, Sangregorio R, Sartirana C, et al. Human CD25+CD4+ T suppressor cell clones produce transforming growth factor beta, but not interleukin 10, and are distinct from type 1 T regulatory cells. J Exp Med 2002;196(10):1335–1346.

    Article  PubMed  CAS  Google Scholar 

  95. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003;299(5609):1057–1061.

    Article  PubMed  CAS  Google Scholar 

  96. Liyanage UK, Moore TT, Joo HG, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 2002;169(5):2756–2761.

    PubMed  CAS  Google Scholar 

  97. Woo EY, Chu CS, Goletz TJ, et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 2001; 61(12):4766–4772.

    PubMed  CAS  Google Scholar 

  98. Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B. Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 2003;9(2):606–612.

    PubMed  Google Scholar 

  99. Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Med 2004;10(9):942–949.

    Article  PubMed  CAS  Google Scholar 

  100. Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res 2005;65(6):2457–2464.

    Google Scholar 

  101. Alvaro T, Lejeune M, Salvado MT, et al. Outcome in Hodgkin’s lymphoma can be predicted from the presence of accompanying cytotoxic and regulatory T cells. Clin Cancer Res 2005; 11(4):1467–1473.

    Article  PubMed  Google Scholar 

  102. Chakraborty NG, Twardzik DR, Sivanandham M, Ergin MT, Hellstrom KE, Mukherji B. Autologous melanoma-induced activation of regulatory T cells that suppress cytotoxic response. J Immunol 1990;145(7):2359–2364.

    PubMed  CAS  Google Scholar 

  103. Mukherji B, Guha A, Chakraborty NG, et al. Clonal analysis of cytotoxic and regulatory T cell responses against human melanoma. J Exp Med 1989;169(6):1961–1976.

    Article  PubMed  CAS  Google Scholar 

  104. Wolf D, Wolf AM, Rumpold H, et al. The expression of the regulatory T cell-specific forkhead box transcription factor FoxP3 is associated with poor prognosis in ovarian cancer. Clin Cancer Res 2005;11(23):8326–8331.

    Article  PubMed  CAS  Google Scholar 

  105. Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res 1999;59(13):3128–3133.

    PubMed  CAS  Google Scholar 

  106. Golgher D, Jones E, Powrie F, Elliott T, Gallimore A. Depletion of CD25+ regulatory cells uncovers immune responses to shared murine tumor rejection antigens. Eur J Immunol 2002;32(11):3267–3275.

    Article  PubMed  CAS  Google Scholar 

  107. Takeuchi T, Konno-Takahashi N, Kasuya Y, Ogushi T, Nishimatsu H, Kitamura T. Interleukin-2 blocks the antitumour activity caused by depletion of CD25 cells in a murine renal adenocarcinoma model. BJU Int 2004;94(1):171–176.

    Article  PubMed  CAS  Google Scholar 

  108. Cesana GC, DeRaffele G, Cohen S, et al. Characterization of CD4+CD25+ regulatory T cells in patients treated with high-dose interleukin-2 for metastatic melanoma or renal cell carcinoma. J Clin Oncol 2006;24(7):1169–1177.

    Article  PubMed  CAS  Google Scholar 

  109. Dannull J, Su Z, Rizzieri D, et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 2005;115(12):3623–3633.

    Article  PubMed  CAS  Google Scholar 

  110. Allison JP. CD28-B7 interactions in T-cell activation. Current opinion in immunology 1994; 6(3):414–419.

    Article  PubMed  CAS  Google Scholar 

  111. Walunas TL, Lenschow DJ, Bakker CY, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1994;1(5):405–413.

    Article  PubMed  CAS  Google Scholar 

  112. Krummel MF, Allison JP. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med 1996;183(6):2533–2540.

    Article  PubMed  CAS  Google Scholar 

  113. Chambers CA, Kuhns MS, Egen JG, Allison JP. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol 2001; 19:565–594.

    Article  PubMed  CAS  Google Scholar 

  114. Waterhouse P, Penninger JM, Timms E, et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 1995;270(5238):985–988.

    Article  PubMed  CAS  Google Scholar 

  115. Chambers CA, Cado D, Truong T, Allison JP. Thymocyte development is normal in CTLA-4-deficient mice. Proc Natl Acad Sci U S A 1997;94(17):9296–9301.

    Article  PubMed  CAS  Google Scholar 

  116. Shrikant P, Khoruts A, Mescher MF. CTLA-4 blockade reverses CD8+ T cell tolerance to tumor by a CD4+ T cell-and IL-2-dependent mechanism. Immunity 1999;11(4):483–493.

    Article  PubMed  CAS  Google Scholar 

  117. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996;271(5256):1734–1736.

    Article  PubMed  CAS  Google Scholar 

  118. Hurwitz AA, Foster BA, Kwon ED, et al. Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res 2000;60(9):2444–2448.

    PubMed  CAS  Google Scholar 

  119. Hurwitz AA, Kwon ED, van Elsas A. Costimulatory wars: the tumor menace. Curr Opin Immunol 2000;12(5):589–596.

    Article  PubMed  CAS  Google Scholar 

  120. Mokyr MB, Kalinichenko T, Gorelik L, Bluestone JA. Realization of the therapeutic potential of CTLA-4 blockade in low-dose chemotherapy-treated tumor-bearing mice. Cancer Res 1998; 58(23):5301–5304.

    PubMed  CAS  Google Scholar 

  121. Beck KE, Blansfield JA, Tran KQ, et al. Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. J Clin Oncol 2006;24(15):2283–2289.

    Article  PubMed  CAS  Google Scholar 

  122. Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 2000;192(2):295–302.

    Article  PubMed  CAS  Google Scholar 

  123. Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 1999;5(12):1365–1369.

    Article  PubMed  CAS  Google Scholar 

  124. Tamura H, Ogata K, Dong H, Chen L. Immunology of B7-H1 and its roles in human diseases. Int J Hematol 2003;78(4):321–328.

    Article  PubMed  CAS  Google Scholar 

  125. Dong H, Chen L. B7-H1 pathway and its role in the evasion of tumor immunity. J Mol Med 2003;81(5):281–287.

    PubMed  CAS  Google Scholar 

  126. Hirano F, Kaneko K, Tamura H, et al. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res 2005;65(3):1089–1096.

    PubMed  CAS  Google Scholar 

  127. Strome SE, Dong H, Tamura H, et al. B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res 2003;63(19):6501–6505.

    PubMed  CAS  Google Scholar 

  128. Thompson RH, Gillett MD, Cheville JC, et al. Costimulatory B7-H1 in renal cell carcinoma patients: Indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci U S A 2004;101(49):17174–17179.

    Article  PubMed  CAS  Google Scholar 

  129. Bromwich EJ, McArdle PA, Canna K, et al. The relationship between T-lymphocyte infiltration, stage, tumour grade and survival in patients undergoing curative surgery for renal cell cancer. Br J Cancer 2003;89(10):1906–1908.

    Article  PubMed  CAS  Google Scholar 

  130. Curiel TJ, Wei S, Dong H, et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated anti-tumor immunity. Nature Med 2003;9(5):562–567.

    Article  PubMed  CAS  Google Scholar 

  131. Sanderson K, Scotland R, Lee P, et al. Autoimmunity in a phase I trial of a fully human anti-cytotoxic T-lymphocyte antigen-4 monoclonal antibody with multiple melanoma peptides and Montanide ISA 51 for patients with resected stages III and IV melanoma. J Clin Oncol 2005;23(4):741–750.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Finke, J.H., Goel, M. (2008). T-cell Unresponsiveness in Renal Cell Carcinoma Patients. In: Bukowski, R.M., Novick, A.C. (eds) Clinical Management of Renal Tumors. Humana Press. https://doi.org/10.1007/978-1-60327-149-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-149-3_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-251-3

  • Online ISBN: 978-1-60327-149-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics