Skip to main content

Applications of Environmental Biotechnology

  • Chapter
  • First Online:
Environmental Biotechnology

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 10))

Abstract

Environmental biotechnology is a system of scientific and engineering knowledge related to the use of microorganisms and their products in the prevention of environmental pollution through biotreatment of solid, liquid, and gaseous wastes, bioremediation of polluted environments, and biomonitoring of environment and treatment processes. The advantages of biotechnological treatment of wastes are as follows: biodegradation or detoxication of a wide spectrum of hazardous substances by natural microorganisms; availability of a wide range of biotechnological methods for complete destruction of hazardous wastes; and diversity of the conditions suitable for biodegradation. The main considerations for application of biotechnology in waste treatment are technically and economically reasonable rate of biodegradability or detoxication of substances during biotechnological treatment, big volume of treated wastes, and ability of natural microorganisms to degrade substances. Type of biotreatment is based on physiological type of applied microorganisms, such as fermenting anaerobic, anaerobically respiring (anoxic), microaerophilic, and aerobically respiring microorganisms. All types of biotechnological treatment of wastes can be enhanced using optimal environmental factors, better availability of contaminants and nutrients, or addition of selected strain(s) biomass. Bioaugmentation can accelerate start-up or biotreatment process in case microorganisms, which are necessary for hazardous waste treatment, are absent or their concentration is low in the waste; if the rate of bioremediation performed by indigenous microorganisms is not sufficient to achieve the treatment goal within the prescribed duration; when it is necessary to direct the biodegradation to the best pathway of many possible pathways; and to prevent growth and dispersion in waste treatment system of unwanted or nondetermined microbial strain which may be pathogenic or opportunistic one. Biosensors are essential tools in biomonitoring of environment and treatment processes. Combinations of biosensors in array can be used to measure concentration or toxicity of a set of hazardous substances. Microarrays for simultaneous qualitative or quantitative detection of different microorganisms or specific genes in the environmental sample are also useful in the monitoring of environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Talley JW, Sleeper PM (1997) Ann N Y Acad Sci 829:16–29

    Article  Google Scholar 

  2. Ivanov V, Wang J-Y, Stabnikova O, Krasinko V, Stabnikov V, Tay ST-L, Tay J-H (2004) Water Sci Technol 49:421–431

    Google Scholar 

  3. Ivanov V, Stabnikov V, Zhuang W-Q, Tay ST-L, Tay J-H (2005) J Appl Microbiol 98:1152–1161

    Article  Google Scholar 

  4. Evans GM, Furlong JC (2003) Environmental biotechnology: theory and applications. Wiley, Chichester

    Google Scholar 

  5. Moo-Young M, Anderson WA, Chakrabarty AM (eds) (1996) Environmental biotechnology: principles and applications. Kluwer, Dordrecht

    Google Scholar 

  6. Rittman B, McCarty PL (2000) Environmental biotechnology: principles and applications. McGraw-Hill, Boston

    Google Scholar 

  7. Armenante PM (1993) In: Levin MA, Gealt MA (eds) Biotreatment of industrial and hazardous wastes. McGrew-Hill, New York, pp 65–112

    Google Scholar 

  8. Gonzalez-Flecha B, Demple B (1997) Homeostatic regulation of intracellular hydrogen peroxide concentration in aerobically growing Escherichia coli. J Bacteriol 179:382–388

    Article  Google Scholar 

  9. Eriksson M, Yu E, Sodersten Z, Dalhammar G, Mohn WW (2003) Appl Environ Microbiol 69:275–284

    Article  Google Scholar 

  10. Borch T, Ambus P, Laturnus F, Svensmark B, Gron C (2003) Chemosphere 51:143–152

    Article  Google Scholar 

  11. Marttinen SK, Kettunen RH, Sormunen KM, Rintala JA (2003) Water Res 37:1385–1393

    Article  Google Scholar 

  12. Otal E, Lebrato J (2002) Environ Technol 23:1405–1414

    Article  Google Scholar 

  13. Tchobanoglous G, Theisen H, Vigil SA (1993) Integrated solid waste management: engineering principles and management issues. McGraw-Hill, Singapore

    Google Scholar 

  14. Ito A, Takachi T, Aizawa J, Umita T (2001) Water Sci Technol 44:59–64

    Google Scholar 

  15. Xiang L, Chan LC, Wong JW (2000) Chemosphere 41:283–287

    Article  Google Scholar 

  16. Tamaki S, Frankenberger WT Jr (1992) Rev Environ Contam Toxicol 124:79–110

    Google Scholar 

  17. Gadd GM (2000) Sci Total Environ 258:119–227

    Article  Google Scholar 

  18. Vainshtein M, Kuschk P, Mattusch J, Vatsourina A, Wiessner A (2003) Water Res 37:1401–1405

    Article  Google Scholar 

  19. Atlas RM (1993) In: Levin MA, Gealt MA (eds) Biotreatment of industrial and hazardous wastes. McGrew-Hill, New York, pp 19–37

    Google Scholar 

  20. Coppella SJ, DelaCruz N, Payne GF, Pogell BM, Speedie MK, Karns JS, Sybert EM, Connor MA (1990) Biotechnol Prog 6:76–81

    Article  Google Scholar 

  21. De Mot R, Parret AH (2002) Trends Microbiol 10:502–508

    Article  Google Scholar 

  22. Talley JW, Sleeper P (1997) Ann N Y Acad Sci 829:16–29

    Article  Google Scholar 

  23. Bass DH, Hastings NA, Brown RA (2000) J Hazard Mater 72:101–119

    Article  Google Scholar 

  24. Zappi M, White K, Hwang HM, Bajpai R, Qasim M (2000) J Air Waste Manag Assoc 50:1818–1830

    Article  Google Scholar 

  25. Ensley BD (1994) Curr Opin Biotechnol 5:249–252

    Article  Google Scholar 

  26. Vasilyeva G, Kreslavski VD, Oh BT, Shea PJ (2001) Environ Toxicol Chem 20:965–971

    Article  Google Scholar 

  27. Tay ST-L, Ivanov V, Yi S, Zhuang W-Q, Tay J-H (2002) Microb Ecol 44(3):278–285

    Article  Google Scholar 

  28. Ivanov V. (2006) Structure of aerobically grown microbial granules. In: Biogranulation Technologies for Wastewater Treatment (Joo-Hwa Tay, Stephen Tiong-Lee Tay, Yu Liu, Show Kuan Yeow, Volodymyr Ivanov, eds). Elsevier, Amsterdam, pp. 115–134

    Chapter  Google Scholar 

  29. Reuschenbach P, Pagga U, Strotmann U (2003) Water Res 37:1571–1582

    Article  Google Scholar 

  30. Bentley A, Atkinson A, Jezek J, Rawson DM (2001) Toxicol In Vitro 15:469–475

    Article  Google Scholar 

  31. Inui T, Tanaka Y, Okayas Y, Tanaka H (2002) Water Sci Technol 45:271–278

    Google Scholar 

  32. Lajoie CA, Lin SC, Nguyen H, Kelly CJ (2002) J Microbiol Methods 50:273–282

    Article  Google Scholar 

  33. Ames BN (1971) In: Hollaender A (ed) Chemical mutagens, principles and methods for their detection. Plenum, New York, pp 267–282

    Chapter  Google Scholar 

  34. Czyz A, Jasiecki J, Bogdan A, Szpilewska H, Wegrzyn G (2000) Appl Environ Microbiol 66:599–605

    Article  Google Scholar 

  35. Hwang HM, Shi X, Ero I, Jayasinghe A, Dong S, Yu H (2001) Chemosphere 45:445–451

    Article  Google Scholar 

  36. Yamamoto A, Kohyama Y, Hanawa T (2002) J Biomed Mater Res 59:176–183

    Article  Google Scholar 

  37. Burlage RS (1997) In: Hurst CJ, Crawford RL, McInerney MJ (eds) Manual of environmental microbiology. ASM, Washington, DC, pp 115–123

    Google Scholar 

  38. Dewettinck T, Van Hege K, Verstraete W (2001) Water Res 35:2475–2483

    Article  Google Scholar 

  39. Nielsen M, Revsbech NP, Larsen LH, Lynggaard-Jensen A (2002) Water Sci Technol 45:69–76

    Google Scholar 

  40. Hatsu M, Ohta J, Takamizawa K (2002) Can J Microbiol 48:848–852

    Article  Google Scholar 

  41. Nogueira R, Melo LF, Purkhold U, Wuertz S, Wagner M (2002) Water Res 36:469–481

    Article  Google Scholar 

  42. Sekiguchi Y, Kamagata Y, Ohashi A, Harada H (2002) Water Sci Technol 45:19–25

    Google Scholar 

  43. Fredrickson HL, Perkins EJ, Bridges TS, Tonucci RJ, Fleming JK, Nagel A, Diedrich K, Mendez-Tenorio A, Doktycz MJ, Beattie KL (2001) Sci Total Environ 274:137–149

    Article  Google Scholar 

  44. Koizumi Y, Kelly JJ, Nakagawa T, Urakawa H, El-Fantroussi S, Al-Muzaini S, Fukui M, Urushigawa Y, Stahl DA (2002) Appl Environ Microbiol 68:3215–3225

    Article  Google Scholar 

  45. Loy A, Lehner A, Lee N, Adamczyk J, Meier H, Ernst J, Schleifer KH, Wagner M (2002) Appl Environ Microbiol 68:5064–5081

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ivanov, V., Hung, YT. (2010). Applications of Environmental Biotechnology. In: Wang, L., Ivanov, V., Tay, JH. (eds) Environmental Biotechnology. Handbook of Environmental Engineering, vol 10. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-140-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-140-0_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-166-0

  • Online ISBN: 978-1-60327-140-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics