Skip to main content

Surgery for Hyperkinetic Movement Disorders

  • Chapter
Hyperkinetic Movement Disorders

Part of the book series: Current Clinical Neurology ((CCNEU))

  • 1330 Accesses

Abstract

Surgery for movement disorders (MD) has experienced a renaissance over the past decade due to technological advances, greater comprehension of physiology of the basal ganglia, development of reliable disease severity scales, and multicentre clinical trials. While surgery for Parkinson disease (PD) usually receives the bulk of attention and discussion, contemporary surgical results for dystonia are more impressive and seem to be associated with fewer complications than that for PD. The surgical management of Huntington disease and Tourette syndrome remains experimental although a few reports have suggested benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Richter A, Loscher W. Pathology of idiopathic dystonia: findings from genetic animal models. Prog Neurobiol. 1998;54:633–77.

    Article  PubMed  CAS  Google Scholar 

  2. Jinnah HA, Hess EJ, LeDoux MS, et al. Rodent models for dystonia research: characteristics, evaluation, and utility. Mov Disord. 2005;20:283–92.

    Article  PubMed  CAS  Google Scholar 

  3. Berardelli A, Rothwell JC, Hallett M, et al. The pathophysiology of primary dystonia. Brain. 1998;121:1195–212.

    Article  PubMed  Google Scholar 

  4. Vitek JL. Surgery for dystonia. In: Bakay RA, editor. Surgical treatment of movement disorders, vol. 9. Philadelphia: WB Saunders; 1998. p. 345–66.

    Google Scholar 

  5. DeLong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 1990;13:281–5.

    Article  PubMed  CAS  Google Scholar 

  6. Wichmann T, DeLong MR. Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol. 1996;6:751–8.

    Article  PubMed  CAS  Google Scholar 

  7. Vitek JL, Zhang J, Evatt M, et al. GPi pallidotomy for dystonia: clinical outcome and neuronal activity. Adv Neurol. 1998;78:211–9.

    PubMed  CAS  Google Scholar 

  8. Starr PA, Rau GM, Davis V, et al. Spontaneous pallidal neuronal activity in human dystonia: Comparison with Parkinson’s disease and normal macaque. J Neurophysiol. 2005;93:3165–76.

    Article  PubMed  Google Scholar 

  9. Bennay M, Gernert M, Richter A. Spontaneous remission of paroxysmal dystonia coincides with normalization of entopeduncular activity in dt(SZ) mutants. J Neurosci. 2001; 21:RC153.

    PubMed  CAS  Google Scholar 

  10. Hutchison WD, Lang AE, Dostrovsky JO, et al. Pallidal neuronal activity: implications for models of dystonia. Ann Neurol. 2003;53:480–8.

    Article  PubMed  Google Scholar 

  11. Silberstein P, Kuhn AA, Kupsch A, et al. Patterning of globus pallidus local field potentials differs between Parkinson’s disease and dystonia. Brain. 2003;126:2597–608.

    Article  PubMed  Google Scholar 

  12. Brown P, Marsden CD. What do the basal ganglia do? Lancet. 1998;351:1801–4.

    Article  PubMed  CAS  Google Scholar 

  13. Leblois A, Boraud T, Meissner W, et al. Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia. J Neurosci. 2006;26:3567–83.

    Article  PubMed  CAS  Google Scholar 

  14. Bar-Gad I, Bergman H. Stepping out of the box: information processing in the neural networks of the basal ganglia. Curr Opin Neurobiol. 2001;11:689–95.

    Article  PubMed  CAS  Google Scholar 

  15. Mink JW. The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol. 1996;50:381–425.

    Article  PubMed  CAS  Google Scholar 

  16. Boraud T, Bezard E, Bioulac B, et al. Ratio of inhibited-to-activated pallidal neurons decreases dramatically during passive limb movement in the MPTP-treated monkey. J Neurophysiol. 2000;83:1760–3.

    PubMed  CAS  Google Scholar 

  17. Davis DH, Duane DD, Swenson MK. Long term outcome of iontophoresis treatment for torticollis. Stereotact Funct Neurosurg. 1996;66:198–201.

    Article  PubMed  CAS  Google Scholar 

  18. Jho HD, Jannetta PJ. Microvascular decompression for spasmodic torticollis. Acta Neurochir (Wien). 1995;134:21–6.

    Article  CAS  Google Scholar 

  19. Waltz JM, Davis JA. Cervical cord stimulation in the treatment of athetosis and dystonia. In: Fahn S, Calne DB, Shoulson I, editors. Experimental therapeutics of movement disorders, vol. 37. New York: Raven Press; 1983. p. 225–37.

    Google Scholar 

  20. Goetz CG, Penn RD, Tanner CM. Efficacy of cervical cord stimulation in dystonia. In: Fahn S, Marsden CD, Calne DB, editors. Dystonia 2, vol. 50. New York: Raven Press; 1988. p. 645–9.

    Google Scholar 

  21. Tasker RR. The treatment of spasmodic torticollis by peripheral denervation: the McKenzie operation. In: Morley TP, editor. Current controversies in neurosurgery. Philadelphia: Saunders; 1976. p. 448–54.

    Google Scholar 

  22. Bertrand C, Molina-Negro P, Bouvier G, et al. Observations and analysis of results in 131 cases of spasmodic torticollis after selective denervation. Appl Neurophysiol. 1987;50:319–23.

    PubMed  CAS  Google Scholar 

  23. Gauthier S, Perot P, Bertrand G. Role of surgical anterior rhizotomies in the management of spasmodic torticollis. In: Fahn S, Marsden CD, Calne DB, editors. Dystonia 2, vol. 50. New York: Raven Press; 1988. p. 633–5.

    Google Scholar 

  24. Friedman AH, Nashold Jr BS, Sharp R, et al. Treatment of spasmodic torticollis with intradural selective rhizotomies. J Neurosurg. 1993;78:46–53.

    Article  PubMed  CAS  Google Scholar 

  25. Bertrand CM. Surgery of involuntary movements, particularly stereotactic surgery: reminiscences. Neurosurgery. 2004;55:698–703.

    Article  PubMed  Google Scholar 

  26. Bertrand C. The treatment of spasmodic torticollis with particular reference to thalamotomy. In: Morley TP, editor. Current controversies in neurosurgery. Philadephia: Saunders; 1976. p. 455–60.

    Google Scholar 

  27. Bertrand C, Molina-Negro P, Martinez SN. Combined stereotactic and peripheral surgical approach for spasmodic torticollis. Appl Neurophysiol. 1978;41:122–33.

    PubMed  CAS  Google Scholar 

  28. Braun V, Richter H-P. Selective peripheral denervation for the treatment of spasmodic torticollis. Neurosurgery. 1994;35:58–63.

    Article  PubMed  CAS  Google Scholar 

  29. Albright AL, Barry MJ, Shafton DH, et al. Intrathecal baclofen for generalized dystonia. Dev Med Child Neurol. 2001;43:652–7.

    Article  PubMed  CAS  Google Scholar 

  30. Dykstra DD, Mendez A, Chappuis D, et al. Treatment of cervical dystonia and focal hand dystonia by high cervical continuously infused intrathecal baclofen: a report of 2 cases. Arch Phys Med Rehabil. 2005;86:830–3.

    Article  PubMed  Google Scholar 

  31. Dressler D, Oeljeschlager RO, Ruther E. Severe tardive dystonia: treatment with continuous intrathecal baclofen administration. Mov Disord. 1997;12:585–7.

    Article  PubMed  CAS  Google Scholar 

  32. Albright AL, Barry MJ, Painter MJ, et al. Infusion of intrathecal baclofen for generalized dystonia in cerebral palsy. J Neurosurg. 1998;88:73–6.

    Article  PubMed  CAS  Google Scholar 

  33. Albright AL, Ferson SS. Intrathecal baclofen therapy in children. Neurosurg Focus. 2006;21:e3.

    Article  PubMed  Google Scholar 

  34. Walker RH, Danisi FO, Swope DM, et al. Intrathecal baclofen for dystonia: benefits and complications during six years of experience. Mov Disord. 2000;15:1242–7.

    Article  PubMed  CAS  Google Scholar 

  35. Tasker RR, Doorly T, Yamashiro K. Thalamotomy in generalized dystonia. Adv Neurol. 1988;50:615–31.

    PubMed  CAS  Google Scholar 

  36. Benabid AL, Pollak P, Gervason C, et al. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet. 1991;337:403–6.

    Article  PubMed  CAS  Google Scholar 

  37. Fine J, Duff J, Chen R, et al. Long-term follow-up of unilateral pallidotomy in advanced Parkinson’s disease. N Engl J Med. 2000;342:1708–14.

    Article  PubMed  CAS  Google Scholar 

  38. Laitinen LV, Bergenheim AT, Hariz MI. Leksell’s posteroventral pallidotomy in the treatment of Parkinson’s disease. J Neurosurg. 1992;76:53–61.

    Article  PubMed  CAS  Google Scholar 

  39. Iacono RP, Kuniyoshi S, Lonser RR, et al. Simultaneous bilateral pallidoansotomy for idiopathic dystonia musculorum deformans. Pediatr Neurol. 1996;14:145–8.

    Article  PubMed  CAS  Google Scholar 

  40. Lozano AM, Kumar R, Gross RE, et al. Globus pallidus internus pallidotomy for generalized dystonia. Mov Disord. 1997;12:865–70.

    Article  PubMed  CAS  Google Scholar 

  41. Coubes P, Roubertie A, Vayssiere N, et al. Treatment of DYT1-generalised dystonia by stimulation of the internal globus pallidus. Lancet. 2000;355:2220–1.

    Article  PubMed  CAS  Google Scholar 

  42. Lang AE, Widner H. Deep brain stimulation for Parkinson’s disease: patient selection and evaluation. Mov Disord. 2002;17:S94–101.

    Article  PubMed  Google Scholar 

  43. Burke RE, Fahn S, Marsden CD, et al. Validity and reliability of a rating scale for the primary torsion dystonias. Neurology. 1985;35:73–7.

    Article  PubMed  CAS  Google Scholar 

  44. Krystkowiak P, du Montcel ST, Vercueil L, Houeto JL, Lagrange C, Cornu P, Blond S, Benabid AL, Pollak P, Vidailhet M. Reliability of the Burke-Fahn-Marsden scale in a multicenter trial for dystonia. Mov Disord. 2007;22:685–9.

    Article  PubMed  Google Scholar 

  45. Petrovich GD, Setlow B, Holland PC, et al. Amygdalo-hypothalamic circuit allows learned cues to override satiety and promote eating. J Neurosci. 2002;22:8748–53.

    PubMed  CAS  Google Scholar 

  46. Comella CL, Stebbins GT, Goetz CG, et al. Teaching tape for the motor section of the Toronto Western Spasmodic Torticollis Scale. Mov Disord. 1997;12:570–5.

    Article  PubMed  CAS  Google Scholar 

  47. Tsui JK, Eisen A, Stoessl AJ, et al. Double-blind study of botulinum toxin in spasmodic torticollis. Lancet. 1986;2:245–7.

    Article  PubMed  CAS  Google Scholar 

  48. Tarsy D. Comparison of clinical rating scales in treatment of cervical dystonia with botulinum toxin. Mov Disord. 1997;12:100–2.

    Article  PubMed  CAS  Google Scholar 

  49. Frucht SJ, Leurgans SE, Hallett M, et al. The Unified Myoclonus Rating Scale. Adv Neurol. 2002;89:361–76.

    PubMed  Google Scholar 

  50. Pillon B, Ardouin C, Dujardin K, et al. Preservation of cognitive function in dystonia treated by pallidal stimulation. Neurology. 2006;66:1556–8.

    Article  PubMed  CAS  Google Scholar 

  51. Jahanshahi M, Rowe J, Fuller R. Cognitive executive function in dystonia. Mov Disord. 2003;18:1470–81.

    Article  PubMed  Google Scholar 

  52. Balas M, Peretz C, Badarny S, et al. Neuropsychological profile of DYT1 dystonia. Mov Disord. 2006;21:2073–7.

    Article  PubMed  Google Scholar 

  53. Scott RB, Gregory R, Wilson J, et al. Executive cognitive deficits in primary dystonia. Mov Disord. 2003;18:539–50.

    Article  PubMed  Google Scholar 

  54. Bejjani BP, Damier P, Arnulf I, et al. Transient acute depression induced by high-frequency deep-brain stimulation. N Engl J Med. 1999;340:1476–80.

    Article  PubMed  CAS  Google Scholar 

  55. Houeto JL, Mesnage V, Mallet L, et al. Behavioural disorders, Parkinson’s disease and subthalamic stimulation. J Neurol Neurosurg Psychiatry. 2002;72:701–7.

    Article  PubMed  CAS  Google Scholar 

  56. Doshi PK, Chhaya N, Bhatt MH. Depression leading to attempted suicide after bilateral subthalamic nucleus stimulation for Parkinson’s disease. Mov Disord. 2002;17:1084–5.

    Article  PubMed  Google Scholar 

  57. Hauser RA, Furtado S, Cimino CR, et al. Bilateral human fetal striatal transplantation in Huntington’s disease. Neurology. 2002;58:687–95.

    Article  PubMed  CAS  Google Scholar 

  58. Krack PP, Vercueil L. Review of the functional surgical treatment of dystonia. Eur J Neurol. 2001;8:389–99.

    Article  PubMed  CAS  Google Scholar 

  59. Ackermans L, Temel Y, Cath D, et al. Deep brain stimulation in Tourette’s syndrome: two targets? Mov Disord. 2006;21:709–13.

    Article  PubMed  Google Scholar 

  60. Zhang JG, Zhang K, Wang ZC, et al. Deep brain stimulation in the treatment of secondary dystonia. Chin Med J (Engl). 2006;119:2069–74.

    Google Scholar 

  61. Vercueil L, Pollak P, Fraix V, et al. Deep brain stimulation in the treatment of severe dystonia. J Neurol. 2001;248:695–700.

    Article  PubMed  CAS  Google Scholar 

  62. Sellal F, Hirsch E, Barth P, et al. A case of symptomatic hemidystonia improved by ventroposterolateral thalamic electrostimulation. Mov Disord. 1993;8:515–8.

    Article  PubMed  CAS  Google Scholar 

  63. Ghika J, Villemure JG, Miklossy J, et al. Postanoxic generalized dystonia improved by bilateral Voa thalamic deep brain stimulation. Neurology. 2002;58:311–3.

    Article  PubMed  CAS  Google Scholar 

  64. Eltahawy HA, Saint-Cyr JA, Giladi N, et al. Primary dystonia is more responsive than secondary dystonia to pallidal interventions: outcome after pallidotomy or pallidal deep brain stimulation. Neurosurgery. 2004;54:613–9.

    Article  PubMed  Google Scholar 

  65. Cardoso F, Jankovic J, Grossman RG, et al. Outcome after stereotactic thalamotomy for dystonia and hemiballismus. Neurosurgery. 1995;36:501–7.

    Article  PubMed  CAS  Google Scholar 

  66. Zonenshayn M, Rezai AR, Mogilner A, et al. Comparison of anatomic and neurophysiological methods for subthalamic nucleus targeting. Neurosurgery. 2000;47:282–92.

    Article  PubMed  CAS  Google Scholar 

  67. Tsao KJ, Wilkinson S, Overman J, et al. Pallidotomy lesion locations: significance of microelectrode refinement. Neurosurgery. 1998;43:506–13.

    Article  PubMed  CAS  Google Scholar 

  68. Guridi J, Gorospe A, Ramos E, et al. Stereotactic targeting of the globus pallidus internus in Parkinson’s disease: imaging versus electrophysiological mapping. Neurosurgery. 1999;45:278–87.

    Article  PubMed  CAS  Google Scholar 

  69. Lenz FA, Dostrovsky JO, Kwan HC, et al. Methods for microstimulation and recording of single neurons and evoked potentials in the human central nervous system. J Neurosurg. 1988;68:630–4.

    Article  PubMed  CAS  Google Scholar 

  70. Lenz FA, Dostrovsky JO, Tasker RR, et al. Single-unit analysis of the human ventral thalamic nuclear group: somatosensory responses. J Neurophysiol. 1988;59:299–316.

    PubMed  CAS  Google Scholar 

  71. Lenz FA, Kwan HC, Martin RL, et al. Single unit analysis of the human ventral thalamic nuclear group: tremor-related activity in functionally identified cells. Brain. 1994;117:531–43.

    Article  PubMed  Google Scholar 

  72. Lenz FA, Kwan HC, Dostrovsky JO, et al. Single unit analysis of the human ventral thalamic nuclear group: activity correlated with movement. Brain. 1990;113:1795–821.

    Article  PubMed  Google Scholar 

  73. Tasker RR, Kiss ZHT. The role of the thalamus in functional neurosurgery. Neurosurg Clin N Am. 1995;6:73–104.

    PubMed  CAS  Google Scholar 

  74. Lenz FA, Normand SL, Kwan HC, et al. Statistical prediction of the optimal site for thalamotomy in Parkinsonian tremor. Mov Disord. 1995;10:318–28.

    Article  PubMed  CAS  Google Scholar 

  75. Atkinson JD, Collins DL, Bertrand G, et al. Optimal location of thalamotomy lesions for tremor associated with Parkinson disease: a probabilistic analysis based on postoperative magnetic resonance imaging and an integrated digital atlas. J Neurosurg. 2002;96:854–66.

    Article  PubMed  Google Scholar 

  76. Ohye C, Shibazaki T, Hirai T, et al. Further physiological observations on the ventralis intermedius neurons in the human thalamus. J Neurophysiol. 1989;61:488–500.

    PubMed  CAS  Google Scholar 

  77. Kiss ZHT, Davis KD, Tasker RR, et al. Kinaesthetic neurons in thalamus of humans with and without tremor. Exp Brain Res. 2003;150:85–94.

    PubMed  CAS  Google Scholar 

  78. Hirai T, Jones EG. A new parcellation of the human thalamus on the basis of histochemical staining. Brain Res Rev. 1989;14:1–34.

    Article  PubMed  CAS  Google Scholar 

  79. Tasker RR, Organ LW, Hawrylyshyn PA. The thalamus and midbrain of man. A physiological atlas using electrical stimulation. Springfield: Thomas; 1982.

    Google Scholar 

  80. Lin YC, Lenz FA. Distribution and response evoked by microstimulation of thalamus nuclei in patients with dystonia and tremor. Chin Med J (Engl). 1994;107:265–70.

    CAS  Google Scholar 

  81. Lenz FA, Jaeger CJ, Seike MS, et al. Thalamic single neuron activity in patients with dystonia: dystonia-related activity and somatic sensory reorganization. J Neurophysiol. 1999;82:2372–92.

    PubMed  CAS  Google Scholar 

  82. Vitek JL, Bakay RA, Hashimoto T, et al. Microelectrode-guided pallidotomy: technical approach and its application in medically intractable Parkinson’s disease. J Neurosurg. 1998;88:1027–43.

    Article  PubMed  CAS  Google Scholar 

  83. Hutchison WD, Lozano AM, Davis KD, et al. Differential neuronal activity in segments of globus pallidus in Parkinson’s disease patients. Neuroreport. 1994;5:1533–7.

    Article  PubMed  CAS  Google Scholar 

  84. Lozano AM, Hutchison WD. Microelectrode recordings in the pallidum. Mov Disord. 2002;17:S150–4.

    Article  PubMed  Google Scholar 

  85. Alterman RL, Sterio D, Beric A, et al. Microelectrode recording during posteroventral pallidotomy: impact of target selection and complications. Neurosurgery. 1999;44:315–23.

    Article  PubMed  CAS  Google Scholar 

  86. Carlson JD, Iacono RP. Electrophysiological versus image-based targeting in the posteroventral pallidotomy. Comput Aided Surg. 1999;4:93–100.

    Article  PubMed  CAS  Google Scholar 

  87. Lozano AM, Hutchison WD, Kiss ZHT, et al. Methods for microelectrode-guided posteroventral pallidotomy. J Neurosurg. 1996;84:194–202.

    Article  PubMed  CAS  Google Scholar 

  88. Vidailhet M, Vercueil L, Houeto JL, et al. Bilateral, pallidal, deep-brain stimulation in primary generalised dystonia: a prospective 3 year follow-up study. Lancet Neurol. 2007;6:223–9.

    Article  PubMed  Google Scholar 

  89. Islekel S, Zileli M, Zileli B. Unilateral pallidal stimulation in cervical dystonia. Stereotact Funct Neurosurg. 1999;72:248–52.

    Article  PubMed  CAS  Google Scholar 

  90. de Bie RM, Schuurman PR, Esselink RA, et al. Bilateral pallidotomy in Parkinson’s disease: a retrospective study. Mov Disord. 2002;17:533–8.

    Article  PubMed  Google Scholar 

  91. Favre J, Burchiel KJ, Taha JM, et al. Outcome of unilateral and bilateral pallidotomy for Parkinson’s disease: patient assessment. Neurosurgery. 2000;46:344–55.

    Article  PubMed  CAS  Google Scholar 

  92. Linhares MN, Tasker RR. Microelectrode-guided thalamotomy for Parkinson’s disease. Neurosurgery. 2000;46:390–8.

    Article  PubMed  CAS  Google Scholar 

  93. Benabid AL, Pollak P, Gao DM, et al. Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorder. J Neurosurg. 1996;84:203–14.

    Article  PubMed  CAS  Google Scholar 

  94. Paluzzi A, Belli A, Bain P, et al. Operative and hardware complications of deep brain stimulation for movement disorders. Br J Neurosurg. 2006;20:290–5.

    Article  PubMed  CAS  Google Scholar 

  95. Kiss ZHT, Doig K, Eliasziw M, et al. The Canadian multicentre trial of pallidal deep brain stimulation for cervical dystonia: preliminary results in three patients. Neurosurg Focus. 2004;17:E5.

    Article  PubMed  Google Scholar 

  96. Kiss ZHT, Doig-Beyaert K, Eliasziw M, Tsui J, Haffenden A, Suchowersky O. The Canadian multicentre study of deep brain stimulation for cervical dystonia. Brain. 2007;130(Pt 11):2879–86.

    Article  PubMed  Google Scholar 

  97. Tomlinson FH, Jack Jr CR, Kelly PJ. Sequential magnetic resonance imaging following stereotactic radiofrequency ventralis lateralis thalamotomy. J Neurosurg. 1991;74:579–84.

    Article  PubMed  CAS  Google Scholar 

  98. Kumar R. Methods for programming and patient management with deep brain stimulation of the globus pallidus for the treatment of advanced Parkinson’s disease and dystonia. Mov Disord. 2002;17:S198–207.

    Article  PubMed  Google Scholar 

  99. Hunka K, Suchowersky O, Wood S, et al. Nursing time to program and assess deep brain stimulators in movement disorder patients. J Neurosci Nurs. 2005;37:204–10.

    Article  PubMed  Google Scholar 

  100. Kulisevsky J, Berthier ML, Gironell A, et al. Mania following deep brain stimulation for Parkinson’s disease. Neurology. 2002;59:1421–4.

    Article  PubMed  CAS  Google Scholar 

  101. Burkhard PR, Vingerhoets FJ, Berney A, et al. Suicide after successful deep brain stimulation for movement disorders. Neurology. 2004;63:2170–2.

    Article  PubMed  CAS  Google Scholar 

  102. Saint-Cyr JA, Trepanier LL, Kumar R, et al. Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson’s disease. Brain. 2000;123:2091–108.

    Article  PubMed  Google Scholar 

  103. Iacono RP, Shima F, Lonser RR, et al. The results, indications, and physiology of posteroventral pallidotomy for patients with Parkinson’s disease. Neurosurgery. 1995;36:1118–27.

    Article  PubMed  CAS  Google Scholar 

  104. Levy RM, Lamb S, Adams JE. Treatment of chronic pain by deep brain stimulation: long term follow-up and review of the literature. Neurosurgery. 1987;21:885–93.

    Article  PubMed  CAS  Google Scholar 

  105. Benabid AL, Benazzouz A, Hoffmann D, et al. Long-term electrical inhibition of deep brain targets in movement disorders. Mov Disord. 1998;13:119–25.

    Article  PubMed  Google Scholar 

  106. Limousin P, Krack PP, Pollak P, et al. Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med. 1998;339:1105–11.

    Article  PubMed  CAS  Google Scholar 

  107. Schuurman PR, Bosch DA, Bossuyt PMM, et al. A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor. N Engl J Med. 2000;342:461–8.

    Article  PubMed  CAS  Google Scholar 

  108. Bakay RA. Ablative and stimulation procedures: techniques and outcome. Semin Neurol. 2001;12:195–212.

    Article  Google Scholar 

  109. Tasker RR. Thalamotomy. Neurosurg Clin N Am. 1990;1(4):841–64.

    PubMed  CAS  Google Scholar 

  110. Petrovici JN. Speech disturbances following stereotaxic surgery in ventrolateral thalamus. Neurosurg Rev. 1980;3:189–95.

    Article  PubMed  CAS  Google Scholar 

  111. Kelly PJ, Gillingham FJ. The long-term results of stereotaxic surgery and L-dopa therapy in patients with Parkinson’s disease. A 10-year follow-up study. J Neurosurg. 1980;53:332–7.

    Article  PubMed  CAS  Google Scholar 

  112. Matsumoto K, Shichijo F, Fukami T. Long-term follow-up review of cases of Parkinson’s disease after unilateral or bilateral thalamotomy. J Neurosurg. 1984;60:1033–44.

    Article  PubMed  CAS  Google Scholar 

  113. Wester K, Hauglie-Hanssen E. Stereotaxic thalamotomy–experiences from the levodopa era. J Neurol Neurosurg Psychiatry. 1990;53:427–30.

    Article  PubMed  CAS  Google Scholar 

  114. Jankovic J, Cardoso F, Grossman RG, et al. Outcome after stereotactic thalamotomy for parkinsonian, essential, and other types of tremor. Neurosurgery. 1995;37:680–6.

    Article  PubMed  CAS  Google Scholar 

  115. Rossitch Jr E, Zeidman SM, Nashold Jr BS, et al. Evaluation of memory and language function pre- and post-thalamotomy with an attempt to define those patients at risk for post-operative dysfunction. Surg Neurol. 1988;29:11–6.

    Article  PubMed  Google Scholar 

  116. Eskandar EN, Shinobu LA, Penney Jr JB, et al. Stereotactic pallidotomy performed without using microelectrode guidance in patients with Parkinson’s disease: surgical technique and 2-year results. J Neurosurg. 2000;92:375–83.

    Article  PubMed  CAS  Google Scholar 

  117. Lang AE, Lozano AM, Montgomery EB, et al. Posteroventral medial pallidotomy in advanced Parkinson’s disease. N Engl J Med. 1997;337:1036–42.

    Article  PubMed  CAS  Google Scholar 

  118. Biousse V, Newman NJ, Carroll C, et al. Visual fields in patients with posterior GPi pallidotomy. Neurology. 1998;50:258–65.

    Article  PubMed  CAS  Google Scholar 

  119. Kondziolka D, Bonaroti E, Baser S, et al. Outcomes after stereotactically guided pallidotomy for advanced Parkinson’s disease. J Neurosurg. 1999;90:197–202.

    Article  PubMed  CAS  Google Scholar 

  120. Merello M, Nouzeilles MI, Cammarota A, et al. Comparison of 1-year follow-up evaluations of patients with indication for pallidotomy who did not undergo surgery versus patients with Parkinson’s disease who did undergo pallidotomy: a case control study. Neurosurgery. 1999;44:461–8.

    Article  PubMed  CAS  Google Scholar 

  121. Baron MS, Vitek JL, Bakay RA, et al. Treatment of advanced Parkinson’s disease by posterior GPi pallidotomy: 1-year results of a pilot study. Ann Neurol. 1996;40:355–66.

    Article  PubMed  CAS  Google Scholar 

  122. Soukup VM, Ingram F, Schiess MC, et al. Cognitive sequelae of unilateral posteroventral pallidotomy. Arch Neurol. 1997;54:947–50.

    Article  PubMed  CAS  Google Scholar 

  123. Uitti RJ, Wharen Jr RE, Turk MF, et al. Unilateral pallidotomy for Parkinson’s disease: comparison of outcome in younger versus elderly patients. Neurology. 1997;49:1072–7.

    Article  PubMed  CAS  Google Scholar 

  124. Scott R, Gregory R, Hines N, et al. Neuropsychological, neurological and functional outcome following pallidotomy for Parkinson’s disease. A consecutive series of eight simultaneous bilateral and twelve unilateral procedures. Brain. 1998;121:659–75.

    Article  PubMed  Google Scholar 

  125. Alkhani A, Lozano AM. Pallidotomy for parkinson disease: a review of contemporary literature. J Neurosurg. 2001;94:43–9.

    Article  PubMed  CAS  Google Scholar 

  126. Vingerhoets G, van der Linden C, Lannoo E, et al. Cognitive outcome after unilateral pallidal stimulation in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1999;66:297–304.

    Article  PubMed  CAS  Google Scholar 

  127. Parkinson’s disease Study Group. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med. 2001;345:956–63.

    Article  Google Scholar 

  128. Kondziolka D, Whiting D, Germanwala A, et al. Hardware-related complications after placement of thalamic deep brain stimulator systems. Stereotact Funct Neurosurg. 2002;79:228–33.

    Article  PubMed  Google Scholar 

  129. Blomstedt P, Hariz MI. Hardware-related complications of deep brain stimulation: a ten year experience. Acta Neurochir (Wien). 2005;147:1061–4.

    Article  CAS  Google Scholar 

  130. Constantoyannis C, Berk C, Honey CR, et al. Reducing hardware-related complications of deep brain stimulation. Can J Neurol Sci. 2005;32:194–200.

    PubMed  Google Scholar 

  131. Koller WC, Lyons KE, Wilkinson SB, et al. Long-term safety and efficacy of unilateral deep brain stimulation of the thalamus in essential tremor. Mov Disord. 2001;16:464–8.

    Article  PubMed  CAS  Google Scholar 

  132. Hariz GM, Bergenheim AT, Hariz MI, et al. Assessment of ability/disability in patients treated with chronic thalamic stimulation for tremor. Mov Disord. 1998;13:78–83.

    Article  PubMed  CAS  Google Scholar 

  133. Ondo W, Almaguer M, Jankovic J, et al. Thalamic deep brain stimulation: comparison between unilateral and bilateral placement. Arch Neurol. 2001;58:218–22.

    Article  PubMed  CAS  Google Scholar 

  134. Pahwa R, Wilkinson S, Smith D, et al. High-frequency stimulation of the globus pallidus for the treatment of Parkinson’s disease. Neurology. 1997;49:249–53.

    Article  PubMed  CAS  Google Scholar 

  135. Galvez-Jiminez N, Lozano AM, Tasker RR, et al. Pallidal stimulation in Parkinson’s disease patients with a prior unilateral pallidotomy. Can J Neurol Sci. 1998;25:300–5.

    Google Scholar 

  136. Tronnier VM, Fogel W, Kronenbuerger M, et al. Pallidal stimulation: an alternative to pallidotomy? J Neurosurg. 1997;87:700–5.

    Article  PubMed  CAS  Google Scholar 

  137. Krack PP, Pollak P, Limousin P, et al. Opposite motor effects of pallidal stimulation in Parkinson’s disease. Ann Neurol. 1998;43:180–92.

    Article  PubMed  CAS  Google Scholar 

  138. Andrew J, Fowler CJ, Harrison MJ. Stereotaxic thalamotomy in 55 cases of dystonia. Brain. 1983;106:981–1000.

    Article  PubMed  Google Scholar 

  139. Loher TJ, Pohle T, Krauss JK. Functional stereotactic surgery for treatment of cervical dystonia: review of the experience from the lesional era. Stereotact Funct Neurosurg. 2004;82:1–13.

    Article  PubMed  Google Scholar 

  140. Pralong E, Debatisse D, Maeder M, et al. Effect of deep brain stimulation of GPi on neuronal activity of the thalamic nucleus ventralis oralis in a dystonic patient. Neurophysiol Clin. 2003;33:169–73.

    Article  PubMed  Google Scholar 

  141. Kumar R, Dagher A, Hutchison WD, et al. Globus pallidus deep brain stimulation for generalized dystonia: clinical and PET investigation. Neurology. 1999;53:871–4.

    Article  PubMed  CAS  Google Scholar 

  142. Ondo WG, Desaloms JM, Jankovic J, et al. Pallidotomy for generalized dystonia. Mov Disord. 1998;13:693–8.

    Article  PubMed  CAS  Google Scholar 

  143. Tronnier VM, Fogel W. Pallidal stimulation for generalized dystonia. Report of three cases. J Neurosurg. 2000;92:453–6.

    Article  PubMed  CAS  Google Scholar 

  144. Bereznai B, Steude U, Seelos K, et al. Chronic high-frequency globus pallidus internus stimulation in different types of dystonia: a clinical, video, and MRI report of six patients presenting with segmental, cervical, and generalized dystonia. Mov Disord. 2002;17:138–44.

    Article  PubMed  Google Scholar 

  145. Bittar RG, Yianni J, Wang S, et al. Deep brain stimulation for generalised dystonia and spasmodic torticollis. J Clin Neurosci. 2005;12:12–6.

    Article  PubMed  Google Scholar 

  146. Coubes P, Cif L, El Fertit H, et al. Electrical stimulation of the globus pallidus internus in patients with primary generalized dystonia: long-term results. J Neurosurg. 2004;101:189–94.

    Article  PubMed  Google Scholar 

  147. Vidailhet M, Vercueil L, Houeto JL, et al. Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N Engl J Med. 2005;352:459–67.

    Article  PubMed  CAS  Google Scholar 

  148. Kupsch A, Benecke R, Muller J, et al. Pallidal deep-brain stimulation in primary generalized or segmental dystonia. N Engl J Med. 2006;355:1978–90.

    Article  PubMed  CAS  Google Scholar 

  149. Krauss JK, Pohle T, Weber S, et al. Bilateral stimulation of globus pallidus internus for treatment of cervical dystonia. Lancet. 1999;354:837–8.

    PubMed  CAS  Google Scholar 

  150. Kulisevsky J, Lleo A, Gironell A, et al. Bilateral pallidal stimulation for cervical dystonia: dissociated pain and motor improvement. Neurology. 2000;55:1754–5.

    Article  PubMed  CAS  Google Scholar 

  151. Krauss JK, Loher TJ, Pohle T, et al. Pallidal deep brain stimulation in patients with cervical dystonia and severe cervical dyskinesias with cervical myelopathy. J Neurol Neurosurg Psychiatry. 2002;72:249–56.

    Article  PubMed  CAS  Google Scholar 

  152. Yianni J, Bain PG, Giladi N, et al. Globus pallidus internus deep brain stimulation for dystonic conditions: a prospective audit. Mov Disord. 2003;18:436–42.

    Article  PubMed  Google Scholar 

  153. Eltahawy HA, Saint-Cyr JA, Lang AE, et al. Pallidal deep brain stimulation in cervical dystonia: clinical outcome in four cases. Can J Neurol Sci. 2004;31:328–32.

    PubMed  CAS  Google Scholar 

  154. Consky ES, Lang AE. Clinical assessments of patients with cervical dystonia. In: Jankovic J, Hallett M, editors. Therapy with botulinum toxin. New York: Marcel Dekker; 1994. p. 211–37.

    Google Scholar 

  155. Capelle HH, Weigel R, Krauss JK. Bilateral pallidal stimulation for blepharospasm-oromandibular dystonia (Meige syndrome). Neurology. 2003;60:2017–8.

    Article  PubMed  Google Scholar 

  156. Muta D, Goto S, Nishikawa S, et al. Bilateral pallidal stimulation for idiopathic segmental axial dystonia advanced from Meige syndrome refractory to bilateral thalamotomy. Mov Disord. 2001;16:774–7.

    Article  PubMed  CAS  Google Scholar 

  157. Foote KD, Sanchez JC, Okun MS. Staged deep brain stimulation for refractory craniofacial dystonia with blepharospasm: case report and physiology. Neurosurgery. 2005;56:415.

    Article  Google Scholar 

  158. Houser M, Waltz T. Meige syndrome and pallidal deep brain stimulation. Mov Disord. 2005;20:1203–5.

    Article  PubMed  Google Scholar 

  159. Trottenberg T, Meissner W, Arnold G, et al. Neurostimulation of the ventral intermediate thalamic nucleus in inherited myoclonus-dystonia syndrome. Mov Disord. 2001;16: 769–71.

    Article  PubMed  CAS  Google Scholar 

  160. Cif L, Valente EM, Hemm S, et al. Deep brain stimulation in myoclonus-dystonia syndrome. Mov Disord. 2004;19:724–7.

    Article  PubMed  Google Scholar 

  161. Liu X, Griffin IC, Parkin SG, et al. Involvement of the medial pallidum in focal myoclonic dystonia: a clinical and neurophysiological case study. Mov Disord. 2002;17:346–53.

    Article  PubMed  Google Scholar 

  162. Magarinos-Ascone CM, Regidor I, Martinez-Castrillo JC, et al. Pallidal stimulation relieves myoclonus-dystonia syndrome. J Neurol Neurosurg Psychiatry. 2005;76:989–91.

    Article  PubMed  CAS  Google Scholar 

  163. Oropilla J, Diesta C, Itthimathin P, Suchowersky O, Kiss Z. Both thalamic and pallidal deep brain stimulation for myoclonic dystonia. J Neurosurg. 2010;112(6):1267–70.

    Article  PubMed  Google Scholar 

  164. Krause M, Fogel W, Kloss M, et al. Pallidal stimulation for dystonia. Neurosurgery. 2004;55:1361–70.

    Article  PubMed  Google Scholar 

  165. Krauss JK, Yianni J, Loher TJ, et al. Deep brain stimulation for dystonia. J Clin Neurophysiol. 2004;21:18–30.

    Article  PubMed  Google Scholar 

  166. Yianni J, Bain PG, Gregory RP, et al. Post-operative progress of dystonia patients following globus pallidus internus deep brain stimulation. Eur J Neurol. 2003;10:239–47.

    Article  PubMed  CAS  Google Scholar 

  167. Hristova A, Lyons K, Tröster AI, et al. Effect and time course of deep brain stimulation of the globus pallidus and subthalamus on motor features of Parkinson’s disease. Clin Neuropharmacol. 2000;23:208–11.

    Article  PubMed  CAS  Google Scholar 

  168. Lopiano L, Torre E, Benedetti F, et al. Temporal changes in movement time during the switch of the stimulators in Parkinson’s disease patients treated by subthalamic nucleus stimulation. Eur Neurol. 2003;50:94–9.

    Article  PubMed  Google Scholar 

  169. Madrazo I, Franco-Bourland RE, Castrejon H, et al. Fetal striatal homotransplantation for Huntington’s disease: first two case reports. Neurol Res. 1995;17:312–5.

    PubMed  CAS  Google Scholar 

  170. Bachoud-Levi AC, Remy P, Nguyen JP, et al. Motor and cognitive improvements in patients with Huntington’s disease after neural transplantation. Lancet. 2000;356:1975–9.

    Article  PubMed  CAS  Google Scholar 

  171. Bachoud-Levi AC, Gaura V, Brugieres P, et al. Effect of fetal neural transplants in patients with Huntington’s disease 6 years after surgery: a long-term follow-up study. Lancet Neurol. 2006;5:303–9.

    Article  PubMed  Google Scholar 

  172. Furtado S, Sossi V, Hauser RA, et al. Positron emission tomography after fetal transplantation in Huntington’s disease. Ann Neurol. 2005;58:331–7.

    Article  PubMed  Google Scholar 

  173. Keene CD, Sonnen JA, Swanson PD, et al. Neural transplantation in Huntington disease: long-term grafts in two patients. Neurology. 2007;68:2093–8.

    Article  PubMed  CAS  Google Scholar 

  174. Cubo E, Shannon KM, Penn RD, et al. Internal globus pallidotomy in dystonia secondary to Huntington’s disease. Mov Disord. 2000;15:1248–51.

    Article  PubMed  CAS  Google Scholar 

  175. Joel D. Deep brain stimulation in Huntington’s disease: Globus pallidus externus or substantia nigra pars compacta. Mov Disord. 2002;17:431–2.

    Article  Google Scholar 

  176. Tang JK, Moro E, Lozano AM, et al. Firing rates of pallidal neurons are similar in Huntington’s and Parkinson’s disease patients. Exp Brain Res. 2005;166:230–6.

    Article  PubMed  Google Scholar 

  177. Moro E, Lang AE, Strafella AP, et al. Bilateral globus pallidus stimulation for Huntington’s disease. Ann Neurol. 2004;56:290–4.

    Article  PubMed  Google Scholar 

  178. Hebb MO, Garcia R, Gaudet P, et al. Bilateral stimulation of the globus pallidus internus to treat choreathetosis in Huntington’s disease: technical case report. Neurosurgery. 2006;58:E383.

    Article  PubMed  Google Scholar 

  179. DiFiglia M, Sena-Esteves M, Chase K, et al. Therapeutic silencing of mutant huntington with siRNA attenuates striatal and cortical neuropathology and behavioural deficits. PNAS. 2007;104:17204–9.

    Article  PubMed  CAS  Google Scholar 

  180. Wang YL, Liu W, Wada E, et al. Clinicopathological rescue of a mouse model of Huntington’s Disease by siRNA. Neurosci Res. 2005;53:241–9.

    Article  PubMed  CAS  Google Scholar 

  181. Saka E, Graybiel AM. Pathophysiology of Tourette’s syndrome: striatal pathways revisited. Brain Dev. 2003;25:S15–9.

    Article  PubMed  Google Scholar 

  182. Rauch SL, Baer L, Cosgrove GR, et al. Neurosurgical treatment of Tourette’s syndrome: a critical review. Compr Psychiatry. 1995;36:141–56.

    Article  PubMed  CAS  Google Scholar 

  183. Temel Y, Visser-Vandewalle V. Surgery in Tourette syndrome. Mov Disord. 2004;19:3–14.

    Article  PubMed  Google Scholar 

  184. Houeto JL, Karachi C, Mallet L, et al. Tourette’s syndrome and deep brain stimulation. J Neurol Neurosurg Psychiatry. 2005;76:992–5.

    Article  PubMed  CAS  Google Scholar 

  185. Vandewalle V, Van Der LC, Groenewegen HJ, et al. Stereotactic treatment of Gilles de la Tourette syndrome by high frequency stimulation of thalamus. Lancet. 1999;353:724.

    Article  PubMed  CAS  Google Scholar 

  186. Visser-Vandewalle V, Ackermans L, Van Der Linden C, Temel Y, Tijssen MA, Schruers KR, Nederveen P, Kleijer M, Boon P, Weber W, Cath D. Deep brain stimulation in Gilles de la Tourette’s syndrome. Neurosurgery. 2006;58:E590.

    PubMed  Google Scholar 

  187. Mink JW, Walkup J, Frey KA, et al. Patient selection and assessment recommendations for deep brain stimulation in Tourette syndrome. Mov Disord. 2006;21:1831–8.

    Article  PubMed  Google Scholar 

  188. Flaherty AW, Williams ZM, Amirnovin R, et al. Deep brain stimulation of the anterior internal capsule for the treatment of Tourette syndrome: technical case report. Neurosurgery. 2005;57:E403.

    Article  PubMed  Google Scholar 

  189. Sun B, Krahl SE, Zhan S, et al. Improved capsulotomy for refractory Tourette’s syndrome. Stereotact Funct Neurosurg. 2005;83:55–6.

    Article  PubMed  CAS  Google Scholar 

  190. Babel TB, Warnke PC, Ostertag CB. Immediate and long term outcome after infrathalamic and thalamic lesioning for intractable Tourette’s syndrome. J Neurol Neurosurg Psychiatry. 2001;70:666–71.

    Article  PubMed  CAS  Google Scholar 

  191. Diederich NJ, Kalteis K, Stamenkovic M, et al. Efficient internal pallidal stimulation in Gilles de la Tourette syndrome: a case report. Mov Disord. 2005;20:1496–9.

    Article  PubMed  Google Scholar 

  192. Schrader C, Peschel T, Petermeyer M, et al. Unilateral deep brain stimulation of the internal globus pallidus alleviates tardive dyskinesia. Mov Disord. 2004;19:583–5.

    Article  PubMed  Google Scholar 

  193. Wang Y, Turnbull I, Calne S, et al. Pallidotomy for tardive dyskinesia. Lancet. 1997;349:777–8.

    Article  PubMed  CAS  Google Scholar 

  194. Trottenberg T, Volkmann J, Deuschl G, et al. Treatment of severe tardive dystonia with pallidal deep brain stimulation. Neurology. 2005;64:344–6.

    Article  PubMed  CAS  Google Scholar 

  195. Weetman J, Anderson IM, Gregory RP, et al. Bilateral posteroventral pallidotomy for severe antipsychotic induced tardive dyskinesia and dystonia. J Neurol Neurosurg Psychiatry. 1997;63:554–6.

    Article  PubMed  CAS  Google Scholar 

  196. Eltahawy HA, Feinstein A, Khan F, et al. Bilateral globus pallidus internus deep brain stimulation in tardive dyskinesia: a case report. Mov Disord. 2004;19:969–72.

    Article  PubMed  Google Scholar 

  197. Franzini A, Marras C, Ferroli P, et al. Long-term high-frequency bilateral pallidal stimulation for neuroleptic-induced tardive dystonia. Report of two cases. J Neurosurg. 2005;102:721–5.

    Article  PubMed  Google Scholar 

  198. Damier P, Thobois S, Witjas T, et al. Bilateral deep brain stimulation of the globus pallidus to treat tardive dyskinesia. Arch Gen Psychiatry. 2007;64:170–6.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Cesar Almeida-Serrano, who did some preliminary work for this chapter. Videos were made by Karen Hunka, Kristina Doig-Beyaert, and Dr. Cid Diesta. Dr. Kiss was a Canadian Institutes of Health Research Clinician-Scientist and a Clinical Investigator of the Alberta Heritage Foundation for Medical Research: This chapter was submitted July 2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zelma Kiss MD, PhD, FRCSC .

Editor information

Editors and Affiliations

Electronic Supplementary material

CASE 1 – Cervical Dystonia (wmv 5,694 KB)

CASE 1 – Cervical Dystonia (wmv 10,084 KB)

CASE 2 – Meige Syndrome (wmv 18,421 KB)

CASE 2 – Meige Syndrome (wmv 14,303 KB)

CASE 3 – Myoclonic Dystonia (wmv 14,272 KB)

CASE 4 – DYT 1 Dystonia (mpg 5,107 KB)

CASE 4 – DYT 1 Dystonia (mpg 3,772 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kiss, Z., Furtado, S. (2012). Surgery for Hyperkinetic Movement Disorders. In: Suchowersky, O., Comella, C. (eds) Hyperkinetic Movement Disorders. Current Clinical Neurology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-120-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-120-2_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-805-8

  • Online ISBN: 978-1-60327-120-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics