Skip to main content

The Sympatho-Adrenal System in the Metabolic Syndrome

  • Chapter
The Metabolic Syndrome

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

The sympathetic nervous system (SNS) and the adrenal medulla are intimately involved in the pathogenesis and clinical expression of the metabolic syndrome. This chapter will address that involvement. Obesity and insulin resistance are the primary components of the syndrome (13); the sympatho-adrenal contributions may be viewed as physiologic responses to these primary components and as significant causal factors in the pathogenesis of the major clinical manifestations (4,5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Natali A, Ferrannini E. Hypertension, insulin resistance, and the metabolic syndrome. Endocrinol Metab Clin N Am 2004; 33:417–429.

    CAS  Google Scholar 

  2. Reaven GM. Insulin resistance/compensatory hyperinsulinemia, essential hypertension, and cardiovascular disease. J Clin Endocrinol Metab 2003; 88:2399–2403.

    PubMed  CAS  Google Scholar 

  3. Reaven GM, Lithell H, Landsberg L. Hypertension and associated metabolic abnormalities: The role of insulin resistance and the sympathoadrenal system. NEJM 1996; 343:374–381.

    Google Scholar 

  4. Landsberg L. Insulin-mediated sympathetic stimulation: Role in the pathogenesis of obesity-related hypertension (or, How insulin affects blood pressure and why). J Hypertens 2001; 19:523–528.

    PubMed  CAS  Google Scholar 

  5. Landsberg L. Insulin resistance and the metabolic syndrome. Diabetologia 2005; 48: 1244–1246.

    PubMed  CAS  Google Scholar 

  6. Huggett RJ, Bums J, Mackintosh AF, Mary DA. Sympathetic neural activation in nondiabetic metabolic syndrome and its further augmentation by hypertension. Hypertension 2004; 44:847–852.

    PubMed  CAS  Google Scholar 

  7. Grassi G, Dell’Oro R, Quarti-Trevano F, Scopelliti F, Seravalle G, Paleari F, Gamba PL, Mancia G. Neuroadrenergic and reflex abnormalities in patients with metabolic syndrome. Diabetologia 2005; 48:1359–1365.

    PubMed  CAS  Google Scholar 

  8. Troisi RJ, Weiss ST, Parker DR, Sparrow D, Young JB, Landsberg L. Relation of obesity and diet to sympathetic nervous system activity. Hypertension 1991; 17:669–677.

    PubMed  CAS  Google Scholar 

  9. Scherrer U, Randin D, Tappy L, Vollenweider P, Jequier E, Nicod P. Body fat and sympathetic nerve activity in healthy subjects. Circulation 1994; 89:2634–2640.

    PubMed  CAS  Google Scholar 

  10. Vollenweider P, Randin D, Tappy L, Jequier E, Nicod P. Scherrer U. Impaired insulin-induced sympathetic neural activation and vasodilation in skeletal muscle in obese humans. J Clin Invest 1994; 93:2365–2371.

    PubMed  CAS  Google Scholar 

  11. Grassi G, Seravalle G, Cattaneo BM, Bolla GB, Lanfranchi A, Colombo M, Giannattasio C, Brunani A, Cavagnini F, Mancia G. Sympathetic activation in obese normotensive subjects. Hypertension 1995; 25:560–563.

    PubMed  CAS  Google Scholar 

  12. Rowe JW, Young JB, Minaker KL, Stevens AL, Pallotta J, Landsberg L. Effect of insulin and glucose infusions on sympathetic nervous system activity in normal man. Diabetes 1981; 30:219–225.

    PubMed  CAS  Google Scholar 

  13. Hausberg M, Mark AL, Hoffman RP, Sinkey CA, Anderson EA. Dissociation of sympathoexcitatory and vasodilator actions of modestly elevated plasma insulin levels. J Hypertens 1995; 13:1015–1021.

    PubMed  CAS  Google Scholar 

  14. Young JB, Landsberg L. Diminished sympathetic nervous system activity in the genetically obese mouse. Am J Physiol 1983; 245:EI48–EI54.

    Google Scholar 

  15. Landsberg L, Saville ME, Young JB. The sympathoadrenal system and regulation of thermogenesis. Am J Physiol 1984; 247:E181–E189.

    PubMed  CAS  Google Scholar 

  16. Landsberg L, Young JB. Sympathoadrenal activity and obesity: Physiological rationale for the use of adrenergic thermogenic drugs. Int J Obesity 1993; 17:S29–S34.

    Google Scholar 

  17. Grassi G, Dell’Oro R, Facchini A, Trevano FQ, Bolla GB, Mancia G. Effect of central and peripheral body fat distribution on sympathetic and baroreflex function in obese normotensives. J Hypertens 2004; 22:2363–2369.

    PubMed  CAS  Google Scholar 

  18. Modan M, Halkin H, Almog S et al. Hyperinsulinemia: A link between hypertension obesity and glucose intolerance. J Clin Invest 1985; 75:809–817.

    PubMed  CAS  Google Scholar 

  19. Manicardi V, Camellini L, Bellodi G, Coscelli C, Ferrannini E. Evidence for an association of high blood pressure and hyperinsulinemia in obese man. J Clin Endocrinol Metab 1986; 62: 1302–1304.

    PubMed  CAS  Google Scholar 

  20. Ferrannini E, Buzzigoli G, Bonadonna R et al. Insulin resistance in essential hypertension. N Engl J Med 1987; 317:350–357.

    Article  PubMed  CAS  Google Scholar 

  21. Nilsson PM, Lind L, Andersson PE, Hanni A, Berne C, Baron J, Lithell HO. On the use of ambulatory blood pressure recordings and insulin sensitivity measurements in support of the insulinhypertension hypothesis. J Hypertens 1994; 12:965–969.

    PubMed  CAS  Google Scholar 

  22. Zavaroni I, Mazza S, Dall’ Aglio E, Gasparini P, Passeri M, Reaven GM. Prevalence of hyperinsulinaemia in patients with high blood pressure. J Intern Med 1992; 231:235–240.

    PubMed  CAS  Google Scholar 

  23. Kissebah AH, Vydelingum N, Murray R, Evans DJ, Hartz AJ, Kalkhoff RK, Adams PW. Relation of body fat distribution to metabolic complications of obesity. J Clin Endocrinol Metab 1982; 54:254–260.

    PubMed  CAS  Google Scholar 

  24. Hall JE, Brands MW, Mizelle HL, Gaillard CA, Hildebrandt DA. Chronic intrarenal hyperinsulinemia does not cause hypertension. Am J Physiol 1991; 260:F663–F669.

    PubMed  CAS  Google Scholar 

  25. Brands MW, Lee WF, Keen HL, Alonso-Galicia M, Zappe DH, Hall JE. Cardiac output and renal function during insulin hypertension in Sprague-Dawley rats. Am J Physiol 1996; 271:R276–R281.

    PubMed  CAS  Google Scholar 

  26. Baron AD, Brechtel-Hook G, Johnson A, Hardin D. Skeletal muscle blood flow: A possible link between insulin resistance and blood pressure. Hypertension 1993; 21:129–135.

    PubMed  CAS  Google Scholar 

  27. Grassi G, Seravalle G, Colombo M, Bolla GB, Cattaneo BM, Cavagnini F, Mancia G. Body weight reduction, sympathetic nerve traffic, and arterial baroreflex in obese normotensive humans. Circulation 1998; 97:2037–2042.

    PubMed  CAS  Google Scholar 

  28. Yosefy C, Magen E, Kiselevich A, Priluk R, London D, Volchek L, Viskoper RJ Jr. Rosiglitazone improves, while Glibenclamide worsens blood pressure control in hypertensive diabetic and dyslipidemic subjects via modulation of insulin resistance and sympathetic activity. J Cardiovasc Pharmacol 2004; 44:215–222.

    PubMed  CAS  Google Scholar 

  29. Herrera FC. Effect of insulin on short-circuit current and sodium transport across toad urinary bladder. Am J Physiol 1965; 209:819–824.

    PubMed  CAS  Google Scholar 

  30. Saudek CD, Boulter PR, Knopp RH, Arky RA. Sodium retention accompanying insulin treatment of diabetes mellitus. Diabetes 1974; 23:240–246.

    PubMed  CAS  Google Scholar 

  31. DeFronzo RA. Insulin and renal sodium handling: Clinical implications. Int J Obes 1981; 5(suppl.):93–104.

    PubMed  Google Scholar 

  32. Guyton AC, Coleman TG, Cowley AW Jr, Scheel KW, Manning RD Jr, Norman RA Jr. Arterial pressure regulation: Overriding dominance of the kidneys in long-term regulation and in hypertension. Am J Med 1972; 52:584–594.

    PubMed  CAS  Google Scholar 

  33. Hall JR, Guyton AC, Coleman TG, Mizelle HL, Woods LL. Regulation of arterial pressure: Role of pressure natriuresis and diuresis. Fed Proc 1986; 45:2897–2903.

    PubMed  CAS  Google Scholar 

  34. Rocchini AP, Key J, Bondie D et al. The effect of weight loss on the sensitivity of blood pressure to sodium in obese adolescents. NEJM 1989; 321:580–585.

    PubMed  CAS  Google Scholar 

  35. Kennedy A, Gettys TW, Watson P, Wallace P, Ganaway E, Pan Q, Garvey WT. The metabolic significance of leptin in humans: Gender-based differences in relationship to adiposity, insulin sensitivity, and energy expenditure. J Clin Endocrinol Metab 1997; 82:1293–1300.

    PubMed  CAS  Google Scholar 

  36. Haynes WG, Morgan DA, Walsh SA, Mark AL, Sivitz WI. Receptor-mediated regional sympathetic nerve activation by leptin. J Clin Invest 1997; 100:270–278.

    PubMed  CAS  Google Scholar 

  37. Shek EW, Brands MW, Hall JE. Chronic leptin infusion increases arterial pressure. Hypertension 1998; 31(part 2):409–414.

    PubMed  CAS  Google Scholar 

  38. Agata J, Masuda A, Takada M, Higashiura K, Murakami H, Miyazaki Y, Shimamoto K. High plasma immunoreactive leptin level in essential hypertension. Am J Hypertens 1997; 10:1171–1174.

    PubMed  CAS  Google Scholar 

  39. Young JB, Landsberg L. Suppression of sympathetic nervous system during fasting. Science 1977; 196:1473–1475.

    PubMed  CAS  Google Scholar 

  40. Young JB, Landsberg L. Stimulation of the sympathetic nervous system during sucrose feeding. Nature 1977; 269:615–617.

    PubMed  CAS  Google Scholar 

  41. Young JB, Saville E, Rothwell NJ, Stock MJ, Landsberg L. Effect of diet and cold exposure on norepinephrine turnover in brown adipose tissue in the rat. J Clin Invest 1982; 69:1061–1071.

    PubMed  CAS  Google Scholar 

  42. O’Dea K, Esler M, Leondard P, Stockigt JR, Nestel P. Noradrenaline turnover during under-and overeating in normal weight subjects. Metabolism 1982; 31:896–899.

    PubMed  Google Scholar 

  43. Young JB, Landsberg L. Sympathoadrenal activity in fasting pregnant rats: Dissociation of adrenal medullary and sympathetic nervous system responses. J Clin Invest 1979; 64:109–116.

    PubMed  CAS  Google Scholar 

  44. Landsberg L, Greff L, Gunn S, Young JB. Adrenergic mechanisms in the metabolic adaptation to fasting and feeding: Effects of phlorizin on diet-induced changes in sympathoadrenal activity in the rat. Metabolism 1980; 29:1128–1137.

    PubMed  CAS  Google Scholar 

  45. Rappaport EB, Young JB, Landsberg L. Effects of 2-deoxy-glucose on the cardiac sympathetic nerves and the adrenal medulla in the rat: Further evidence for a dissociation of sympathetic nervous system and adrenal medullary responses. Endocrinology 1982; 110:650–656.

    PubMed  CAS  Google Scholar 

  46. Young JB, Landsberg L. mpaired suppression of sympathetic activity during fasting in the gold thioglucose-treated mouse. J Clin Invest 1980; 65:1086–1094.

    PubMed  CAS  Google Scholar 

  47. Landsberg L, Young JB. Diet and the sympathetic nervous system: Relationship to hypertension. Int J Obesity 1981; 5(suppl 1):79–91.

    Google Scholar 

  48. Young JB, Kaufman LN, Saville ME, Landsberg L. Increased sympathetic nervous system activity in rats fed a low protein diet: Evidence against a role for dietary tyrosine. Am J Physiol 1985; 248: R627–R637.

    PubMed  CAS  Google Scholar 

  49. Kaufman LN, Young JB, Landsberg L. Effect of protein on sympathetic nervous system activity in the rat: Evidence for nutrient-specific responses. J Clin Invest 1986; 77:551–558.

    PubMed  CAS  Google Scholar 

  50. Schwartz JH, Young JB, Landsberg L. Effect of dietary fat on sympathetic nervous system activity in the rat. J Clin Invest 1983; 72:361–370.

    PubMed  CAS  Google Scholar 

  51. Walgren MC, Young JB, Kaufman LN, Landsberg L. The effects of various carbohydrates on sympathetic activity in heart and interscapular brown adipose tissue (IBAT) of the rat. Metabolism 1987; 6(6):585–594.

    Google Scholar 

  52. Neel JV. Diabetes mellitus: A “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genetics 1962; 14:353–362.

    CAS  Google Scholar 

  53. Reaven GM. Insulin resistance: A chicken that has come to roost. In: The Metabolic Syndrome X, Hansen BC, Saye J, Wennogle LP (eds.), Annals NY Acad Sci, 1999; 892:45–57.

    Google Scholar 

  54. Landsberg L. Diet, obesity and hypertension: An hypothesis involving insulin, the sympathetic nervous system, and adaptive thermogenesis. QJ Med 1986; 236:1081–1090.

    Google Scholar 

  55. O’Hare JA, Minaker KL, Meneilly GS, Rowe JW, Pallotta JA, Young JB. Effect of insulin on plasma norepinephrine and 3,4-dihydroxyphenylalanine in obese men. Metabolism. 1989; 38:322–329.

    PubMed  Google Scholar 

  56. Ward KD, Sparrow D, Landsberg L, Young JB, Vokonas PS, Weiss ST. Influence of obesity, insulin, and sympathetic nervous system activity on blood pressure: The Normative Aging Study. J of Hypertension 1996; 14:301–308.

    CAS  Google Scholar 

  57. Sarafidis PA, Lasaridis AN, Nilsson PM, Pagkalos EM, Hitoglou-Makedou AD, Pliakos CI, Kazakos KA, Yovos JG, Zebekakis PE, Tziolas IM, Tourkantonis AN. Ambulatory blood pressure reduction after rosiglitazone treatment in patients with type 2 diabetes and hypertension correlates with insulin sensitivity increase. J Hypertens 2004; 22:1769–1777.

    PubMed  CAS  Google Scholar 

  58. Mark AL, Correia MLG, Rahmouni K, Haynes WG. Selective leptin resistance: A new concept in leptin physiology with cardiovascular implications. J Hypertens 2002; 20:1245–1250.

    PubMed  CAS  Google Scholar 

  59. Julius S, Jamerson K. Sympathetics, insulin resistance and coronary risk in hypertension: The “chicken and egg” question. J Hypertens 1994; 12:495–502.

    PubMed  CAS  Google Scholar 

  60. Julius S, Valentini M, Palatini P. Overweight and hypertension a 2-way street? Hypertension 2000; 35:807–813.

    PubMed  CAS  Google Scholar 

  61. Jamerson KA, Julius S, Gudbrandsson T, Andersson O, Brant DO. Reflex sympathetic activation induces acute insulin resistance in the human forearm. Hypertension 1993; 21:618–623.

    PubMed  CAS  Google Scholar 

  62. Kannel WB, Brand N, Skinner JJ Jr, Dawber TR, McNamara PM. The relation of adiposity to blood pressure and development of hypertension. Ann Intern Med 1967; 67(1):48–59.

    PubMed  CAS  Google Scholar 

  63. Hsieh ACL, Carlson LD, Gray G. Role of the sympathetic nervous system in the control of chemical regulation of heat production. Am J Physiol 1957; 190:247–251.

    PubMed  CAS  Google Scholar 

  64. Valentini M, Julius S, Palatini P, Brook RD, Bard RL, Bisognano JD, Kaciroti N. Attenuation of haemodynamic, metabolic and energy expenditure responses to isoproterenol in patients with hypertension. J Hypertens 2004; 22:1999–2006.

    PubMed  CAS  Google Scholar 

  65. Calhoun DA, Grassi G. Weight gain and hypertension: The chicken-egg question revisited. J Hypertens 2004; 22:1869–1871.

    PubMed  CAS  Google Scholar 

  66. Kunz I, Schorr U, Klaus S, Sharma AM. Resting metabolic rate and substrate use in obesity hypertension. Hypertension 2000; 36:26–32.

    PubMed  CAS  Google Scholar 

  67. Spraul M, Ravussin E, Fontvieille AM, Rising R, Larson DE, Anderson EA. Reduced sympathetic nervous activity (a potential mechanism predisposing to body weight gain). J Clin Inv 1993; 92: 1730–1735.

    CAS  Google Scholar 

  68. Saad MF, Lillioja S, Nyomba BL, Castillo C, Ferraro R, De Gregorio M, Ravussin E, Knowler WC, Bennett PH, Howard BV et al. Racial differences in the relation between blood pressure and insulin resistance. NEJM 1991; 324:733–739.

    PubMed  CAS  Google Scholar 

  69. Ward KD, Sparrow D, Vokonas PS, Willett W, Landsberg L, Weiss ST. The relationships of abdominal obesity, hyperinsulinemia and saturated fat intake to serum lipid levels: The Normative Aging Study. Intl J Obes 1994; 18:137–144.

    CAS  Google Scholar 

  70. Landsberg L. Pathophysiology of obesity-related hypertension: Role of insulin and the sympathetic nervous system. J Cardiovasc Pharmacol 1994; 23(suppl 1):S1–S8.

    PubMed  CAS  Google Scholar 

  71. Ward KD, Sparrow D, Landsberg L, Young JB, Vokonas PS, Weiss ST. The relationship of epinephrine excretion to serum lipid levels: The Normative Aging Study. Metabolism 1994; 43:509–513.

    PubMed  CAS  Google Scholar 

  72. Young JB, Macdonald IA. Sympathoadrenal activity in human obesity: Heterogeneity of findings since 1980. Int J Obesity 1992; 16:959–967.

    CAS  Google Scholar 

  73. Del Rio G. Adrenomedullary function and its regulation in obesity. Int J Obesity 2000; 24(suppl 2) S89–S91.

    Google Scholar 

  74. Landsberg L, Young JB. Sympathoadrenal activity and obesity: Physiological rationale for the use of adrenergic thermogenic drugs. Int J Obes 1993; 17(suppl 1) S29–S34.

    Google Scholar 

  75. Van Cauter E, Spiegel K. Sleep as a mediator of the relationship between socioeconomic status and health: A hypothesis. Annals NY Acad Sci 1999; 896:254–261.

    Google Scholar 

  76. Narkiewicz K, Somers VK. Sympathetic nerve activity in obstructive sleep apnoea. Acta Physiol Scand 2003; 177:385–390.

    PubMed  CAS  Google Scholar 

  77. Wolk R, Shamsuzzaman ASM, Somers VK. Obesity, sleep apnea, and hypertension. Hypertension 2003; 42:1067–1074.

    PubMed  CAS  Google Scholar 

  78. Bujalska IJ, Kumar S, Stewart PM. Does central obesity reflect “Cushing’s disease of the omentum?” Lancet 1997; 349:1210–1213.

    PubMed  CAS  Google Scholar 

  79. Stewart PM. Tissue-specific Cushing’s syndrome: l ljl-hydroxystcroid dehydrogenases and the redefinition of corticosteroid hormone action. Eur J Endocrinol 2003; 149:163–168.

    PubMed  CAS  Google Scholar 

  80. Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet 1999; 354:1435–1439.

    PubMed  CAS  Google Scholar 

  81. Spiegel K, Leproult R, L’Hermite-Balériaux, Copinschi G, Penev PD, Van Cauter E. Leptin levels are dependent on sleep duration: Relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J Clin Endocrinol Metab 2004; 89:5762–5771.

    PubMed  CAS  Google Scholar 

  82. Barker DJP. Fetal programming of coronary heart disease. Trends in Endocrinol Metab 2002; 13:364–368.

    CAS  Google Scholar 

  83. Lithell HO, McKeigue PM, Berglund L, Mohsen R, Lithell UB, Leon DA. Relation of size at birth to non-insulin dependent diabetes and insulin concentrations in men aged 50–60 years. BMJ 1996; 312:406–410.

    PubMed  CAS  Google Scholar 

  84. Forsen T, Eriksson J, Tuomilehto J, Reunanen A, Osmond C, Barker D. The fetal and childhood growth of persons who develop type 2 diabetes. Ann Intern Med 2000; 133:176–182.

    PubMed  CAS  Google Scholar 

  85. Oken E, Gillman MW. Fetal origins of obesity. Obes Res 2003; 11:496–506.

    PubMed  Google Scholar 

  86. Law CM, Shiell AW. Is blood pressure inversely related to birth weight? The strength of evidence from a systematic review of the literature. J Hypertens 1996; 14:935–941.

    PubMed  CAS  Google Scholar 

  87. Young JB, Morrison SF. Effects of fetal and neonatal environment on sympathetic nervous system development. Diabetes Care 1998; 21(suppl 2):BI56–B160.

    Google Scholar 

  88. Boguszewski MCS, Johannsson G, Fortes LC, Sverrisdóttir YB. Low birth size and final height predict high sympathetic nerve activity in adulthood. J Hypertens 2004; 22:1157–1163.

    PubMed  CAS  Google Scholar 

  89. Silverman BL, Landsberg L, Metzger BE. Fetal hyperinsulinism in offspring of diabetic mothers: Association with the subsequent development of childhood. Annals NY Acad Sci 1993; 699:36–45.

    CAS  Google Scholar 

  90. Hausberg M, Barenbrock M, Kosch M. Elevated sympathetic nerve activity: The link between low birth size and adult-onset metabolic syndrome? J Hypertens 2004; 22:1087–1089.

    PubMed  CAS  Google Scholar 

  91. Landsberg L, Molitch M. Diabetes and hypertension: Pathogenesis, prevention and treatment. Clin and Exp Hypertens 2004; 26(7&8):621–628.

    CAS  Google Scholar 

  92. Daskalopoulou SS, Mikhailidis DP, Elisaf M. Prevention and treatment of the metabolic syndrome. Angiology 2004; 55:589–612.

    PubMed  CAS  Google Scholar 

  93. Beilin LJ. Non-pharmacological management of hypertension: Science, consensus and controversies. In: Handbook of Hypertension, Birkenhager WH, Robertson JIS, Zanchetti A (eds.), Hypertension in the Twentieth Century 2004; 22:417–456.

    Google Scholar 

  94. Elmer PJ, Grimm R Jr., Laing B, Grandits G, Svendsen K, Van Heel N, Betz E, Raines J, Link M, Stamler J, Neaton J. Lifestyle intervention: Results of the treatment of mild hypertension study (TOMHS). Preventive Med 1995; 24:378–388.

    CAS  Google Scholar 

  95. Troisi RJ, Weiss ST, Segal MR, Cassano PA, Vokonas PS, Landsberg L. The relationship of body fat distribution to blood pressure in normotensive men: The Normative Aging Study. Int 1 Obesity 1990; 14:515–525.

    CAS  Google Scholar 

  96. Beilin LJ. Non-pharmacological management of hypertension: Optimal strategies for reducing cardiovascular risk. J Hypertens 1994; 12(suppl 10):S71–S81.

    CAS  Google Scholar 

  97. Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, Bray GA, Vogt TM, Cutler JA, Windhauser MM, Lin PH, Karanja N. A clinical trial of the effects of dietary patterns on blood pressure. NEJM 1997; 336:1117–1124.

    PubMed  CAS  Google Scholar 

  98. Ard JD, Slentz CA, Grambow SC, Kraus WE, Liu D, Svetkey LP. The effect of the premier interventions on insulin sensitivity. Diabetes Care 2004; 27:340–347.

    PubMed  Google Scholar 

  99. Reaven G, Lithell H, Landsberg L. Hypertension and associated metabolic abnormalities: The role of insulin resistance and the sympathoadrenal system. NEJM 1996; 334(6):374–381.

    PubMed  CAS  Google Scholar 

  100. Yusuf S, Gerstein H, Hoogwerf B, Pogue J, Bosch J, Wolffenbuttel BHR, Zinman B. Ramipril and the development of diabetes. JAMA 2001; 286:1882–1885.

    PubMed  CAS  Google Scholar 

  101. Dahlof B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, de Faire U, Fyhrquist F, Ibsen H, Kristiansson K, Lederballe-Pedersen O, Lindholm LH, Nieminen MS, Omvik P, Oparil S, Wedel H. Cardiovascular morbidity and mortality in the Losartan Intervention for Endpoint Reduction in Hypertension Study (LIFE): A randomised trial against atenolol. Lancet 2002; 359:995–1003.

    PubMed  CAS  Google Scholar 

  102. Lindholm LH, Ibsen H, Borch-Johnsen K, Olsen MH; Wachtell K, Dahlof B, Devereux RB, Beevers G, de Faire U, Fyhrquist F, Julius S, Kjeldsen SE, Kristianson K, Lederballe-Pedersen O, Nieminen MS, Omvik P, Oparil S, Wedel H, Aurup P, Edelman JM, Snapinn S, LIFE Study Group. Risk of new-onset diabetes in the Losartan Intervention for Endpoint Reduction in Hypertension Study. J Hypertens 2002; 20:1879–1886.

    PubMed  CAS  Google Scholar 

  103. Grassi G, Seravalle G, Dell’Oro R, Trevano FQ, Bombelli M, Scopelliti F, Facchini A, Mancia G. Comparative effects of candesartan and hydrochlorothiazide on blood pressure, insulin sensitivity, and sympathetic drive in obese hypertensive individuals: Results of the CROSS study. J Hypertens 2003; 21:1761–1769.

    PubMed  CAS  Google Scholar 

  104. Lebovitz HE. Rationale for and role of thiazolidinediones in type 2 diabetes mellitus. Am J Cardiol 2002; 90(suppl):34G–41G.

    PubMed  CAS  Google Scholar 

  105. Rajagopalan R, Iyer S, Khan M. Effect of pioglitazone on metabolic syndrome risk factors: Results of double-blind, multicenter, randomized clinical trials. Curr Med Res Opin 2005; 21:163–172.

    PubMed  CAS  Google Scholar 

  106. Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, KeinanenKiukaanniemi S, Laakso M, Louheranta A, Rastas M, Salminen V. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. NEJM 2001;344:1343–1350.

    PubMed  CAS  Google Scholar 

  107. Buchanan TA, Xiang AH, Peters RK, Kjos SL, Marroquin A, Goico J, Ochoa C, Tan S, Berkowitz K, Hodis HN, and Azen SP. Preservation of pancreatic β-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk Hispanic women. Diabetes 2002; 51:2796–2803.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Landsberg, L. (2008). The Sympatho-Adrenal System in the Metabolic Syndrome. In: Hansen, B.C., Bray, G.A. (eds) The Metabolic Syndrome. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-60327-116-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-116-5_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-738-9

  • Online ISBN: 978-1-60327-116-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics