Skip to main content

The Relationship Between the Insulin Receptor Substrates and Metabolic Disease

  • Chapter
The Metabolic Syndrome

Part of the book series: Contemporary Endocrinology ((COE))

  • 1534 Accesses

Abstract

Although the regulation of plasma glucose is a dominant response associated with insulin action, glucose homeostasis depends on the integration of insulin signals in many tissues and cells—hepatocytes, muscle, adipose, hypothalamic neurons, pancreatic β-cells, and others (17). Understanding how insulin action is coordinated and modulated in these tissues by heterologous signaling cascades is a challenging scientific question of clinical importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Puigserver P, Rodgers JT. Foxa2: A novel transcriptional regulator of insulin sensitivity. Nat Med 2006 Jan; 12(1):38–39.

    Article  CAS  PubMed  Google Scholar 

  2. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-lalpha and SIRT1. Nature 2005 Mar 3; 434(7029): 113–118.

    Article  CAS  PubMed  Google Scholar 

  3. De LC, Olefsky JM. Stressed out about obesity and insulin resistance. Nat Med 2006 Jan; 12(1):41–42.

    Article  CAS  Google Scholar 

  4. Seeley RJ, Tschop M. How diabetes went to our heads. Nat Med 2006 Jan; 12(1):47–49.

    Article  CAS  PubMed  Google Scholar 

  5. Pocai A, Muse ED, Rossetti L. Did a muscle fuel gauge conquer the brain? Nat Med 2006 Jan; 12(1):50–51.

    Article  CAS  PubMed  Google Scholar 

  6. Horvath TL, Bruning JC. Developmental programming of the hypothalamus: A matter of fat. Nat Med 2006 Jan; 12(1):52–53.

    Article  CAS  PubMed  Google Scholar 

  7. Matsumoto M, Accili D. All roads lead to FoxO. Cell Metab 2005 Apr; 1(4):215–216.

    Article  CAS  PubMed  Google Scholar 

  8. Hotamisligil GS. Inflammatory pathways and insulin action. Int J Obes Relat Metab Disord 2003 Dec; 27(suppl 3):S53–S55.

    Article  CAS  PubMed  Google Scholar 

  9. Reaven G, Tsao PS. Insulin resistance and compensatory hyperinsulinemia: The key player between cigarette smoking and cardiovascular disease? J Am Coll Cardiol 2003 Mar 19; 41(6):1044–1047.

    Article  CAS  PubMed  Google Scholar 

  10. DeFronzo RA, Ferrannini E. Regulation of intermediary metabolism during fasting and feeding. In: Endocrinology, 4 ed., DeGroot LJ, Jameson JL (eds.), W.B. Saunders, Philadelphia, 2001, pp. 737–755.

    Google Scholar 

  11. Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K et al. A central role for JNK in obesity and insulin resistance. Nature 2002 Nov 21; 420(6913):333–336.

    Article  CAS  PubMed  Google Scholar 

  12. Lin X, Taguchi A, Park S, Kushner JA, Li F, Li Y et al. Dysregulation of insulin receptor substrate 2 in beta cells and brain causes obesity and diabetes. J Clin Invest 2004 Oct; 114(7):908–916.

    CAS  PubMed  Google Scholar 

  13. Kitamura Y, Accili D. New insights into the integrated physiology of insulin action. Rev Endocr Metab Disord 2004 May; 5(2):143–149.

    Article  CAS  PubMed  Google Scholar 

  14. Dong X, Park S, Lin X, Copps K, Yi X, White MF. IRSI and IRS2 signaling is essential for hepatic glucose homeostasis and systemic growth. J Clin Invest 2006 Jan; 116(1):101–114.

    Article  CAS  PubMed  Google Scholar 

  15. Nandi A, Kitamura Y, Kahn CR, Accili D. Mouse models of insulin resistance. Physiol Rev 2004 Apr; 84(2):623–647.

    Article  CAS  PubMed  Google Scholar 

  16. Nef S, Verma-Kurvari S, Merenmies J, Vassalli JD, Efstratiadis A, Accili D et al. Testis determination requires insulin receptor family function in mice. Nature 2003 Nov 20; 426(6964):291–295.

    Article  CAS  PubMed  Google Scholar 

  17. Frasca F, Pandini G, Scalia P, Sciacca L, Mineo R, Costantino A et al. Insulin receptor isoform A: A newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol 1999; 19(5):3278–3288.

    CAS  PubMed  Google Scholar 

  18. Sciacca L, Prisco M, Wu A, Belfiore A, Vigneri R, Baserga R. Signaling differences from the A and B isoforms of the insulin receptor (IR) in 32D cells in the presence or absence of IR substrate-l. Endocrinology 2003 Jun; 144(6):2650–2658.

    Article  CAS  PubMed  Google Scholar 

  19. Mosthaf L, Grako K, Dull TJ, Coussens L, Ullrich A, McClain DA. Functionally distinct insulin receptors generated by tissue-specific alternative splicing. EMBO J 1990 Aug; 9(8):2409–2413.

    CAS  PubMed  Google Scholar 

  20. Moller DE, Yokota A, Caro JF, Flier JS. Tissue-specific expression of two alternatively spliced insulin receptor mRNAs in man. Mol Endocrinol 1989; 3:1263–1269.

    Article  CAS  PubMed  Google Scholar 

  21. Goldstein BJ, Kahn CR. Analysis of mRNA heterogeneity by ribonuclease H mapping: Application to the insulin receptor. Biochem Biophys Res Commun 1989; 159:664–669.

    Google Scholar 

  22. Seino S, Bell GI. Alternative splicing of human insulin receptor messenger RNA. Biochem Biophys Res Commun 1989; 159:312–316.

    Article  CAS  PubMed  Google Scholar 

  23. Louvi A, Accili D, Efstratiadis A. Growth-promoting interaction of IGF-II with the insulin receptor during mouse embryonic development. Dev Biol 1997 Sep 1; 189(1):33–48.

    Article  CAS  PubMed  Google Scholar 

  24. Pandini G, Frasca F, Mineo R, Sciacca L, Vigneri R, Belfiore A. Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. J Biol Chem 2002 Oct 18; 277(42):39684–39695.

    Article  CAS  PubMed  Google Scholar 

  25. Roth J. Diabetes and obesity. Diab Met Rev 1998; 13(1):1–2.

    Article  Google Scholar 

  26. Taylor SI. Lilly lecture: Molecular mechanisms of insulin resistance-Lessons from patients with mutations in the insulin receptor gene. Diabetes 1992; 41:1473–1490.

    Article  CAS  PubMed  Google Scholar 

  27. Flier JS, Kahn CR, Roth J, Bar RS. Antibodies that impair insulin receptor binding in an unusual diabetic syndrome with severe insulin resistance. Science 1975; 190:63–65.

    Article  CAS  PubMed  Google Scholar 

  28. Maddux BA, Sbraccia P, Kumakura S, Sasson S, Youngren J, Fisher A et al. Membrane glycoprotein PC-1 in the insulin resistance of non-insulin dependent diabetes mellitus. Nature 1995; 373(6513):448–451.

    Article  CAS  PubMed  Google Scholar 

  29. White MF. Insulin signaling in health and disease. Science 2003 Dec 5; 302(5651):1710–1711.

    Article  CAS  PubMed  Google Scholar 

  30. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 2003 Jan; 52(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  31. Ullrich A, Bell JR, Chen EY, Herrera R, Petruzzelli LM, Dull TJ et al. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 1985; 313:756–761.

    Article  CAS  PubMed  Google Scholar 

  32. Ebina Y, Ellis L, Jarnagin K, Edery M, Graf L, Clauser E et al. The human insulin receptor cDNA: The structural basis for hormone activated transmembrane signalling. Cell 1985; 40:747–758.

    Article  CAS  PubMed  Google Scholar 

  33. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2000 Oct 13; 103(2):211–225.

    Article  CAS  PubMed  Google Scholar 

  34. Myers MG, Jr., White MF. The new elements in insulin signaling: Insulin receptor substrate-1 and proteins with SH2 domains. Diabetes 1993; 42:643–650.

    Article  CAS  PubMed  Google Scholar 

  35. White MF, Kahn CR. The insulin signaling system. J Biol Chem 1994; 269(1):1–4.

    CAS  PubMed  Google Scholar 

  36. Yenush L, White MF. The IRS-signaling system during insulin and cytokine action. Bio Essays 1997; 19(5):491–500.

    CAS  Google Scholar 

  37. Pawson T, Scott JD. Signaling through scaffold, anchoring, and adaptor proteins. Science 1997 Dec 19; 278(5346):2075–2080.

    Article  CAS  PubMed  Google Scholar 

  38. Kotani K, Wilden P, Pillay TS. SH2-Balpha is an insulin-receptor adapter protein and substrate that interacts with the activation loop of the insulin-receptor kinase. Biochem J 1998 Oct 1; 335(pt. 1):103–109.

    CAS  PubMed  Google Scholar 

  39. Lock P, Casagranda F, Dunn AR. Independent SH2-binding sites mediate interaction of Dok-related protein with RasGTPase-activating protein and Nck. J Biol Chem 1999 Aug 6; 274(32):22775–22784.

    Article  CAS  PubMed  Google Scholar 

  40. Noguchi T, Matozaki T, Inagaki K, Tsuda M, Fukunaga K, Kitamura Y et al. Tyrosine phosphorylation of p62 (Dok) induced by cell adhesion and insulin: Possible role in cell migration. EMBO J 1999 Apr 1; 18(7):1748–1760.

    Article  CAS  PubMed  Google Scholar 

  41. Chiang SH, Baumann CA, Kanzaki M, Thurmond DC, Watson RT, Neudauer CL et al. Insulinstimulated GLUT4 translocation requires the CAP-dependent activation of TCI0. Nature 2001 Apr 19; 410(6831):944–948.

    Article  CAS  PubMed  Google Scholar 

  42. Baumann CA, Ribon V, Kanzaki M, Thurmond DC, Mora S, Shigematsu S et al. CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature 2000 Sep 14; 407(6801):202–207.

    Article  CAS  PubMed  Google Scholar 

  43. Burks DJ, Wang J, Towery H, Ishibashi O, Lowe D, Riedel H et al. IRS pleckstrin homology domains bind to acidic motifs in proteins. J Biol Chem 1998 Nov 20; 273(47):31061–31067.

    Article  CAS  PubMed  Google Scholar 

  44. Sawka-Verhelle D, Baron V, Mothe I, Filloux C, White MF, Van Obberghen E. Tyr624 and Tyr628 in insulin receptor substrate-2 mediate its association with the insulin receptor. J Biol Chem 1997; 272(26):16414–16420.

    Article  CAS  PubMed  Google Scholar 

  45. Sawka-Verhelle D, Tartare-Deckert S, White MF, Van Obberghen E. Insulin receptor substrate-2 binds to the insulin receptor through its phosphotyrosine-binding domain and through a newly identified domain comprising amino acids 591–786. J Biol chem 1996; 271(11):5980–5983.

    Article  CAS  PubMed  Google Scholar 

  46. Lee YH, Giraud J, Davis RJ, White MF. c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J Biol Chem 2003 Jan 31; 278(5):2896–2902

    Article  CAS  PubMed  Google Scholar 

  47. Barr RK, Boehm I, Attwood PV, Watt PM, Bogoyevitch MA. The critical features and the mechanism of inhibition of a kinase interaction motif-based peptide inhibitor of JNK. J Biol chem 2004 Aug 27; 279(35):36327–36338.

    Article  CAS  PubMed  Google Scholar 

  48. Lawlor MA, Alessi DR. PKB/Akt: A key mediator of cell proliferation, survival and insulin responses? J Cell Sci 2001 Aug; 114(pt. 16):2903–2910.

    CAS  PubMed  Google Scholar 

  49. Inoki K, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 2003 Aug 1; 17(15):1829–1834.

    Article  CAS  PubMed  Google Scholar 

  50. Fisher TL, White MF. Signaling pathways: The benefits of good communication. Curr Biol 2004 Dec 14; 14(23):R1005–R1007.

    Article  CAS  PubMed  Google Scholar 

  51. Astrinidis A, Henske EP. Tuberous sclerosis complex: Linking growth and energy signaling pathways with human disease. Oncogene 2005 Nov 14; 24(50):7475–7481.

    Article  CAS  PubMed  Google Scholar 

  52. Rosen ED, Spiegelman BM. Tumor necrosis factor-alpha as a mediator of the insulin resistance of obesity. Curr Opin Endocrinol Diab 1999; 6(2):170–176.

    Article  CAS  Google Scholar 

  53. Chen H, Wertheimer SJ, Lin CH, Katz SL, Amrein KE, Burn P et al. Protein-tyrosine phosphatases PTP1B and syp are modulators of insulin-stimulated translocation of GLUT4 in transfected rat adipose cells. J Biol Chem 1997 Mar 21; 272(12):8026–8031.

    Article  CAS  PubMed  Google Scholar 

  54. Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene [see comments]. Science 1999 Mar 5; 283(5407):1544–1548.

    Article  CAS  PubMed  Google Scholar 

  55. Zick Y. Role of Ser/Thr kinases in the uncoupling of insulin signaling. Int J Obes Relat Metab Disord 2003 Dec; 27(suppl 3):S56–S60.

    Article  CAS  PubMed  Google Scholar 

  56. Withers OJ, Gutierrez JS, Towery H, Burks OJ, Ren JM, Previs S et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 1998; 391(6670):900–904.

    Article  CAS  PubMed  Google Scholar 

  57. Kubota N, Tobe K, Terauchi Y, Eto K, Yamauchi T, Suzuki R et al. Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia. Diabetes 2000 Nov; 49(11):1880–1889.

    Article  CAS  PubMed  Google Scholar 

  58. Previs SF, Withers OJ, Ren JM, White MF, Shulman GI. Contrasting effects of IRS-1 vs. IRS-2 gene disruption on carbohydrate and lipid metabolism in vivo. J Biol Chem 2000 Sep 19; 275(50): 38990–38994.

    Article  CAS  PubMed  Google Scholar 

  59. Hennige AM, Burks OJ, Ozcan U, Kulkarni RN, Ye J, Park S et al. Upregulation of insulin receptor substrate-2 in pancreatic beta cells prevents diabetes. J Clin Invest 2003 Nov; 112(10):1521–1532.

    CAS  PubMed  Google Scholar 

  60. Park S, Dong X, Fisher TL, Dunn S, Orner AK, Weir G et al. Exendin-4 uses irs2 signaling to mediate pancreatic beta cell growth and function. J Biol Chem 2006 Jan 13; 281(2):1159–1168.

    Article  CAS  PubMed  Google Scholar 

  61. Withers OJ, Burks OJ, Towery HH, Altamuro SL, Flint CL, White MF. IRS-2 coordinates Igf-1 receptor-mediated beta-cell development and peripheral insulin signalling. Nat Genet 1999 Sep; 23(1):32–40.

    Article  CAS  PubMed  Google Scholar 

  62. Xuan S, Kitamura T, Nakae J, Politi K, Kido Y, Fisher PE et al. Defective insulin secretion in pancreatic beta cells lacking type 1 IOF receptor. J Clin Invest 2002 Oct; 110(7):1011–1019.

    CAS  PubMed  Google Scholar 

  63. Kulkarni RN, Holzenberger M, Shih DQ, Ozcan U, Stoffel M, Magnuson MA et al. Beta-cell-specific deletion of the Igf1 receptor leads to hyperinsulinemia and glucose intolerance but does not alter beta-cell mass. Nat Genet 2002 May; 31(1):111–115.

    CAS  PubMed  Google Scholar 

  64. Jonsson J, Carlsson L, Edlund T, Edlund H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 1994; 371(6498):606–609.

    Article  CAS  PubMed  Google Scholar 

  65. Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 1997; 15(1):106–110.

    Article  CAS  PubMed  Google Scholar 

  66. Kushner JA, Ye J, Schubert M, Burks OJ, Dow MA, Flint CL et al. Pdx1 restores beta cell function in IRS2 knockout mice. J Clin Invest 2002 May; 109(9):1193–1201.

    CAS  PubMed  Google Scholar 

  67. Kitamura T, Nakae J, Kitamura Y, Kido Y, Biggs WH, III, Wright CV et al. The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic beta cell growth. J Clin Invest 2002 Dec; 110(12):1839–1847.

    CAS  PubMed  Google Scholar 

  68. Accili O, Arden KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 2004 May 14; 117(4):421–426.

    Article  CAS  PubMed  Google Scholar 

  69. Uchida T, Nakamura T, Hashimoto N, Matsuda T, Kotani K, Sakaue H et al. Deletion of Cdknlb ameliorates hyperglycemia by maintaining compensatory hyperinsulinemia in diabetic mice. Nat Med 2005 Feb; 11(2):175–182.

    Article  CAS  PubMed  Google Scholar 

  70. Parsons R. Human cancer, PTEN and the PI-3 kinase pathway. Semin Cell Dev Biol 2004 Apr; 15(2):171–176.

    Article  CAS  PubMed  Google Scholar 

  71. Kushner JA, Simpson L, Wartschow LM, Guo S, Rankin MM, Parsons R et al. Pten regulation of islet growth and glucose homeostasis. J Biol Chem 2005 Sep; 16.

    Google Scholar 

  72. Butler AA, Cone RD. Knockout studies defining different roles for melanocortin receptors in energy homeostasis. Ann N Y Acad Sci 2003 Jun; 994:240–245.

    Google Scholar 

  73. Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O’Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 2003 Mar 20; 348(12): 1085–1095.

    Article  CAS  PubMed  Google Scholar 

  74. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature 2000 Apr 6; 404(6778):661–671.

    CAS  PubMed  Google Scholar 

  75. Qi Y, Takahashi N, Hileman SM, Patel HR, Berg AH, Pajvani VB et al. Adiponectin acts in the brain to decrease body weight. Nat Med 2004 May; 10(5):524–529.

    Article  CAS  PubMed  Google Scholar 

  76. Myers MG Jr. Leptin receptor signaling and the regulation of mammalian physiology. Recent Prog Horm Res 2004; 59:287–304.

    Article  CAS  PubMed  Google Scholar 

  77. Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 1997; 88:131–141.

    Article  CAS  PubMed  Google Scholar 

  78. Obici S, Feng Z, Tan J, Liu L, Karkanias G, Rossetti L. Central melanocortin receptors regulate insulin action. J Clin Invest 2001 Oct; 108(7):1079–1085.

    CAS  PubMed  Google Scholar 

  79. Challis BG, Pritchard LE, Creemers JW, Delplanque J, Keogh JM, Luan J et al. A missense mutation disrupting a dibasic prohormone processing site in pro-opiomelanocortin (POMC) increases susceptibility to early-onset obesity through a novel molecular mechanism. Hum Mol Genet 2002 Aug 15; 11(17):1997–2004.

    Article  CAS  PubMed  Google Scholar 

  80. Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 2003 Jun 12; 423(6941):762–769.

    Article  CAS  PubMed  Google Scholar 

  81. Combs TP, Berg AH, Rajala MW, Klebanov S, Iyengar P, Jimenez-Chillaron JC et al. Sexual differentiation, pregnancy, calorie restriction, and aging affect the adipocyte-specific secretory protein adiponectin. Diabetes 2003 Feb; 52(2):268–276.

    Article  CAS  PubMed  Google Scholar 

  82. Spranger J, Kroke A, Mohlig M, Bergmann MM, Ristow M, Boeing H et al. Adiponectin and protection against type 2 diabetes mellitus. Lancet 2003 Jan 18; 361(9353):226–228.

    Article  CAS  PubMed  Google Scholar 

  83. Schwartz MW, Porte D Jr. Diabetes, obesity, and the brain. Science 2005 Jan 21; 307(5708): 375–379.

    Article  CAS  PubMed  Google Scholar 

  84. Woods SC, Lotter EC, McKay LD, Porte D Jr. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 1979 Nov 29; 282(5738):503–505.

    Article  CAS  PubMed  Google Scholar 

  85. Schwartz M, Figlewicz DP, Baskin DG, Woods SC, Porte D. Insulin in the brain: A hormonal regulator of energy balance. Endocr Rev 1992;13:387–414.

    CAS  PubMed  Google Scholar 

  86. Schwartz MW, Baskin DG, Kaiyala KJ, Woods SC. Model of the regulation of energy balance and adiposity by the central nervous system. Am J Clin Nutr 1999;69:584–596.

    CAS  PubMed  Google Scholar 

  87. Bruning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC et al. Role of brain insulin receptor in control of body weight and reproduction. Science 2000 Sep 22; 289(5487):2122–2125.

    Article  CAS  PubMed  Google Scholar 

  88. Burks DJ, de Mora JF, Schubert M, Withers DJ, Myers MG, Towery HH et al. IRS-2 pathways integrate female reproduction and energy homeostasis. Nature 2000 Sep 21; 407(6802):377–382.

    Article  CAS  PubMed  Google Scholar 

  89. Wolfrum C, Asilmaz E, Luca E, Friedman JM, Stoffel M. Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature 2004 Dec 23; 432(7020):1027–1032.

    Article  CAS  PubMed  Google Scholar 

  90. Montminy M, Koo SH. Diabetes: Outfoxing insulin resistance? Nature 2004 Dec 23; 432(7020):958–959.

    Article  CAS  PubMed  Google Scholar 

  91. Pocai A, Lam TK, Gutierrez-Juarez R, Obici S, Schwartz GJ, Bryan J et al. Hypothalamic K(ATP) channels control hepatic glucose production. Nature 2005 Apr 21; 434(7036):1026–1031.

    Article  CAS  PubMed  Google Scholar 

  92. Gribble FM. Metabolism: A higher power for insulin. Nature 2005 Apr 21; 434(7036):965–966.

    Article  CAS  PubMed  Google Scholar 

  93. Barrett EJ. Insulin’s effect on glucose production: Direct or indirect? J Clin Invest 2003 Feb; 111(4):434–435.

    CAS  PubMed  Google Scholar 

  94. Buettner C, Patel R, Muse ED, Bhanot S, Monia BP, McKay R et al. Severe impairment in liver insulin signaling fails to alter hepatic insulin action in conscious mice. J Clin Invest 2005 May; 115(5):1306–1313.

    CAS  PubMed  Google Scholar 

  95. Gelling RW, Morton GJ, Morrison CD, Niswender KD, Myers MG, Jr., Rhodes CJ et al. Insulin action in the brain contributes to glucose lowering during insulin treatment of diabetes. Cell Metab 2006 Jan; 3(1):67–73.

    Article  CAS  PubMed  Google Scholar 

  96. Rother KI, Imai Y, Caruso M, Beguinot F, Formisano P, Accili D. Evidence that IRS-2 phosphorylation is required for insulin action in hepatocytes. J Biol Chem 1998 Jul 10; 273(28):17491–17497.

    Article  CAS  PubMed  Google Scholar 

  97. Ide T, Shimano H, Yahagi N, Matsuzaka T, Nakakuki M, Yamamoto T et al. SREBPs suppress IRS2-mediated insulin signalling in the liver. Nat Cell Biol 2004 Apr; 6(4):351–357.

    Article  CAS  PubMed  Google Scholar 

  98. Valverde AM, Fabregat I, Burks DJ, White MF, Benito M. IRS-2 mediates the antiapoptotic effect of insulin in neonatal hepatocytes. Hepatology 2004 Dec; 40(6): 1285–1294.

    Article  CAS  PubMed  Google Scholar 

  99. Valverde AM, Burks DJ, Fabregat I, Fisher TL, Carretero J, White MF et al. Molecular mechanisms of insulin resistance in IRS-2-deficient hepatocytes. Diabetes 2003 Sep; 52(9):2239–2248.

    Article  CAS  PubMed  Google Scholar 

  100. Jhala US, Canettieri G, Screaton RA, Kulkarni RN, Krajewski S, Reed J et al. cAMP promotes pancreatic beta-cell survival via CREB-mediated induction of IRS2. Genes Dev 2003 Jul 1; 17(13):1575–1580.

    Article  CAS  PubMed  Google Scholar 

  101. Taniguchi CM, Ueki K, Kahn CR. Complementary roles of IRS-1 and IRS-2 in the hepatic regulation of metabolism. J Clin Invest 2005 Mar; 115(3):718–727.

    CAS  PubMed  Google Scholar 

  102. Simmgen M, Knauf C, Lopez M, Choudhury AI, Charalambous M, Cantley J et al. Liver-specific deletion of insulin receptor substrate 2 does not impair hepatic glucose and lipid metabolism in mice. Diabetologia 2006 Jan 11; 1–10.

    Google Scholar 

  103. Matsumoto M, Accili D. The tangled path to glucose production. Nat Med 2006 Jan; 12(1):33–34.

    Article  CAS  PubMed  Google Scholar 

  104. Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: Principles of pathogenesis and therapy. Lancet 2005 Apr 9; 365(9467):1333–1346.

    Article  CAS  PubMed  Google Scholar 

  105. Nawrocki AR, Scherer PE. The delicate balance between fat and muscle: Adipokines in metabolic disease and musculoskeletal inflammation. Curr Opin Pharmacol 2004 Jun; 4(3):281–289.

    Article  CAS  PubMed  Google Scholar 

  106. Steppan CM, Wang J, Whiteman EL, Birnbaum MJ, Lazar MA. Activation of SOCS-3 by resistin. Mol Cell Biol 2005 Feb; 25(4):1569–1575.

    Article  CAS  PubMed  Google Scholar 

  107. Schmitz-Peiffer C, Whitehead JP. IRS-1 regulation in health and disease. IUBMB Life 2003 Jul; 55(7):367–374.

    Article  CAS  PubMed  Google Scholar 

  108. White MF, Myers MG. The molecular basis of insulin action. In: Endocrinology, 4 ed., DeGroot LJ, Jameson JL (eds.), W.B. Saunders, Philadelphia, 2001, pp. 712–727.

    Google Scholar 

  109. Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 2004 Oct 15; 306(5695):457–461.

    Article  PubMed  CAS  Google Scholar 

  110. Hotamisligil GS. The role of TNFalpha and TNF receptors in obesity and insulin resistance. J Intern Med 1999 Jun; 245(6):621–625.

    Article  CAS  PubMed  Google Scholar 

  111. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-α: Direct role in obesity-linked insulin resistance. Science 1993; 259:87–91.

    Article  CAS  PubMed  Google Scholar 

  112. Hotamisligil GS, Spiegelman BM. Adipose expression of TNFa: Direct role in obesity-linked insulin resistance. Science 1999; 259:87–91.

    Article  Google Scholar 

  113. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-α in human obesity and insulin resistance. J Clin Invest 1995; 95:2409–2415.

    Article  CAS  PubMed  Google Scholar 

  114. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003 Dec; 112(12):1796–1808.

    CAS  PubMed  Google Scholar 

  115. Uysal KT, Wiesbrock SM, Hotamisligil GS. Functional analysis of tumor necrosis factor (TNF) receptors in TNF-alpha-mediated insulin resistance in genetic obesity. Endocrinology 1998; 139(12):4832–4838.

    Article  CAS  PubMed  Google Scholar 

  116. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature 1997 Oct 9; 389:610–614.

    Article  CAS  PubMed  Google Scholar 

  117. Hotamisligil GS. Mechanisms of TNF-alpha-induced insulin resistance. Exp Clin Endocrinol Diabetes 1999; 107(2):119–125. [Ref Type: Abstract.]

    Article  CAS  PubMed  Google Scholar 

  118. Aguirre V, Uchida T, Yenush L, Davis R, White MF. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem 2000 Mar 24; 275(12):9047–9054.

    Article  CAS  PubMed  Google Scholar 

  119. De Fea K, Roth RA. Protein kinase C modulation of insulin receptor substrate-1 tyrosine phosphorylation requires serine 612. Biochemistry 1997 Oct 21; 36(42):12939–12947.

    Article  PubMed  Google Scholar 

  120. Begum N, Sandu OA, Ito M, Lohmann SM, Smolenski A. Active Rho kinase (ROK-alpha) associates with insulin receptor substrate-1 and inhibits insulin signaling in vascular smooth muscle cells. J Biol Chem 2002 Feb 22; 277(8):6214–6222.

    Article  CAS  PubMed  Google Scholar 

  121. Eldar-Finkelman H, Krebs EG. Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action. Proc Natl Acad Sci USA 1997; 94:9660–9604.

    Article  CAS  PubMed  Google Scholar 

  122. Staubs PA, Nelson JG, Reichart DR, Olefsky JM. Platelet-derived growth factor inhibits insulin stimulation of insulin receptor substrate-1 associated phosphatidylinositol 3-kinase in 3T3-L1 adipocytes without affecting glucose transport. J Biol Chem 1998; 273(39):25139–25147.

    Article  Google Scholar 

  123. Hemi R, Paz K, Wertheim N, Karasik A, Zick Y, Kanety H. Transactivation of ErbB2 and ErbB3 by tumor necrosis factor-alpha and anisomycin leads to impaired insulin signaling through serine/ threonine phosphorylation of IRS proteins. J Biol Chem 2002 Mar 15; 277(11):8961–8969.

    Article  CAS  PubMed  Google Scholar 

  124. Egawa K, Nakashima N, Sharma PM, Maegawa H, Nagai Y, Kashiwagi A et al. Persistent activation of phosphatidylinositol 3-kinase causes insulin resistance due to accelerated insulin-induced insulin receptor substrate-1 degradation in 3T3-Ll adipocytes. Endocrinology 2000 Jun; 141(6): 1930–1935.

    Article  CAS  PubMed  Google Scholar 

  125. Ravichandran LV, Chen H, Li Y, Quon MJ. Phosphorylation of PTPIB at Ser(50) by Akt impairs its ability to dephosphorylate the insulin receptor. Mol Endocrinol 2001 Oct; 15(10):1768–1780.

    Article  CAS  PubMed  Google Scholar 

  126. Liu YF, Paz K, Herschkovitz A, Alt A, Tennenbaum T, Sampson SR et al. Insulin stimulates PKCzeta-mediated phosphorylation of insulin receptor substrate-1 (IRS-I): A self-attenuated mechanism to negatively regulate the function of IRS proteins. J Biol Chem 2001 Apr 27; 276(17): 14459–14465.

    CAS  PubMed  Google Scholar 

  127. Ozes ON, Akca H, Mayo LD, Gustin JA, Maehama T, Dixon JE et al. A phosphatidylinositol 3kinase/ AktimTOR pathway mediates and PTEN antagonizes tumor necrosis factor inhibition of insulin signaling through insulin receptor substrate-I. Proc Natl Acad Sci USA 2001 Apr 3; 98:4640–4645.

    Article  CAS  PubMed  Google Scholar 

  128. Greene MW, Morrice N, Garofalo RS, Roth RA. Modulation of human insulin receptor substrate-1 tyrosine phosphorylation by protein kinase Cdelta. Biochem J 2004 Feb 15; 378(Pt 1):105–116.

    Article  CAS  PubMed  Google Scholar 

  129. Jiang G, Dallas-Yang Q, Liu F, Moller DE, Zhang BB. Salicylic acid reverses phorbol 12-myristate13-acetate (PMA)-and tumor necrosis factor alpha (TNFalpha)-induced insulin receptor substrate 1 (IRS1) serine 307 phosphorylation and insulin resistance in human embryonic kidney 293 (HEK293) cells. J Biol Chem 2003 Jan 3; 278(1):180–186.

    Article  CAS  PubMed  Google Scholar 

  130. Mauvais-Jarvis F, Ueki K, Froman DA, Hirshman MF, Sakamoto K, Goodyear LJ et al. Reduced expression of the murine p85alpha subunit of phosphoinositide 3-kinase improves insulin signaling and ameliorates diabetes. J Clin Invest 2002 Jan 1; 109(1):141–149.

    CAS  PubMed  Google Scholar 

  131. Deki K, Yballe CM, Brachmann SM, Vicent D, Watt JM, Kahn CR et al. Increased insulin sensitivity in mice lacking p85beta subunit of phosphoinositide 3-kinase. Proc Natl Acad Sci USA 2002 Jan 8; 99(1):419–424.

    Article  CAS  Google Scholar 

  132. Deki K, Froman DA, Brachmann SM, Tseng YH, Cantley LC, Kahn CR. Molecular balance between the regulatory and catalytic subunits of phosphoinositide 3-kinase regulates cell signaling and survival. Mol Cell Biol 2002 Feb 1; 22(3):965–977.

    Article  CAS  Google Scholar 

  133. Ueki K, Froman DA, Yballe CM, Fasshauer M, Klein J, Asano T et al. Positive and negative roles of p85 alpha and p85 beta regulatory subunits of phosphoinositide 3-kinase in insulin signaling. J Biol Chem 2003 Nov 28; 278(48):48453–48466.

    Article  CAS  PubMed  Google Scholar 

  134. Greene MW, Garofalo RS. Positive and negative regulatory role of insulin receptor substrate 1 and 2 (IRS-1 and IRS-2) serine/threonine phosphorylation. Biochemistry 2002 Jun 4; 41(22):7082–7091.

    Article  CAS  PubMed  Google Scholar 

  135. Yu C, Chen Y, Cline GW, Zhang D, Zong H, Wang Y et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 2002 Dec 27; 277(52):50230–50236.

    Article  CAS  PubMed  Google Scholar 

  136. Gao Z, Hwang D, Bataille F, Lefevre M, York D, Quon MJ et al. Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex. J Biol Chem 2002 Dec 13; 277(50):48115–48121.

    Article  CAS  PubMed  Google Scholar 

  137. Gao Z, Zuberi A, Quon MJ, Dong Z, Ye J. Aspirin inhibits serine phosphorylation of insulin receptor substrate 1 in tumor-necrosis-factor-treated cells through targeting multiple serine kinases. J Biol Chem 2003; 278(27):24944–24950.

    Article  CAS  PubMed  Google Scholar 

  138. Gual P, Gremeaux T, Gonzalez T, Marchand-Brustel Y, Tanti JF. MAP kinases and mTOR mediate insulin-induced phosphorylation of insulin receptor substrate-1 on serine residues 307, 612 and 632. Diabetologia 2003 Nov; 46(11):1532–1542.

    Article  CAS  PubMed  Google Scholar 

  139. Rui L, Aguirre V, Kim JK, Shulman GI, Lee A, Corbould A et al. Insulin/IGF-1 and TNF-alpha stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. J Clin Invest 2001 Jan; 107(2):181–189.

    Article  CAS  PubMed  Google Scholar 

  140. Zick Y. Ser/Thr phosphorylation of IRS proteins: A molecular basis for insulin resistance. Sci STKE 2005 Jan 25; 2005(268):e4.

    Article  Google Scholar 

  141. Jaeschke A, Hartkamp J, Saitoh M, Roworth W, Nobukuni T, Hodges A et al. Tuberous sclerosis complex tumor suppressor-mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent. J Cell Biol 2002 Oct 28; 159(2):217–224.

    Article  CAS  PubMed  Google Scholar 

  142. Shah OJ, Wang Z, Hunter T. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS 1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 2004 Sep 21; 14(18):1650–1656.

    Article  CAS  PubMed  Google Scholar 

  143. Urn SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M et al. Absence of S6Kl protects against age-and diet-induced obesity while enhancing insulin sensitivity. Nature 2004 Sep 9; 431(7005):200–205.

    Article  CAS  Google Scholar 

  144. Kim JK, Kim YJ, Fillmore JJ, Chen Y, Moore I, Lee J et al. Prevention of fat-induced insulin resistance by salicylate. J Clin Invest 2001 Aug; 108(3):437–446.

    CAS  PubMed  Google Scholar 

  145. Yuan M, Konstantopoulos N, Lee J, Hansen L, Li ZW, Karin M et al. Reversal of obesity-and dietinduced insulin resistance with salicy lates or targeted disruption of Ikkbeta. Science 2001 Aug 31; 293(5535):1673–1677.

    Article  CAS  PubMed  Google Scholar 

  146. Hundal RS, Petersen KF, Mayerson AB, Randhawa PS, Inzucchi S, Shoelson SE et al. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J Clin Invest 2002 May; 109(10):1321–1326.

    CAS  PubMed  Google Scholar 

  147. Mothe I, Van Obberghen E. Phosphorylation of insulin receptor substrate-Ion multiple serine residues, 612, 632, 662, and 731, modulates insulin action. J Biol chem 1996 May 10; 271(19): 11222–11227.

    Article  CAS  PubMed  Google Scholar 

  148. Jakobsen SN, Hardie DG, Morrice N, Tornqvist HE. 5′-AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide riboside. J Biol chem 2001 Dec 14; 276(50):46912–46916.

    Article  CAS  PubMed  Google Scholar 

  149. Rondinone CM, Reilly RM, Clampit JE, Haasch DL, inventors. Methods of identifying kinases and uses thereof. DN/20050037987, 2005 Feb 17.

    Google Scholar 

  150. Rui L, Yuan M, Frantz D, Shoelson S, White MF. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRSl and IRS2. J Biol chem 2002 Nov 1; 277(44): 42394–42398.

    Article  CAS  PubMed  Google Scholar 

  151. Rui L, Fisher TL, Thomas J, White MF. Regulation of insulin/insulin-like growth factor-1 signaling by proteasome-mediated degradation of insulin receptor substrate-2. J Biol chem 2001 Oct 26; 276(43):40362–40367.

    CAS  PubMed  Google Scholar 

  152. Krebs DL, Hilton DJ. A new role for SOCS in insulin action: Suppressor of cytokine signaling. Sci STKE 2003 Feb 11; 2003(169):E6.

    Article  Google Scholar 

  153. Cope GA, Deshaies RJ. COP9 signalosome: A multifunctional regulator of SCF and other cullinbased ubiquitin ligases. Cell 2003 Sep 19; 114(6):663–671.

    Article  CAS  PubMed  Google Scholar 

  154. Deshaies RJ. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol 1999; 15:435–467.

    Article  CAS  PubMed  Google Scholar 

  155. Li Y, Kumar KG, Tang W, Spiegelman VS, Fuchs SY. Negative regulation of prolactin receptor stability and signaling mediated by SCF(beta-TrCP) E3 ubiquitin ligase. Mol Cell Biol 2004 May; 24(9):4038–4048.

    Article  CAS  PubMed  Google Scholar 

  156. Haruta T, Uno T, Kawahara J, Takano A, Egawa K, Sharma PM et al. A rapamycin-sensitive pathway down-regulates insulin signaling via phosphorylation and proteasomal degradation of insulin receptor substrate-l. Mol Endocrinol 2000 Jun; 14(6):783–794.

    Article  CAS  PubMed  Google Scholar 

  157. Takano A, Usui I, Haruta T, Kawahara J, Uno T, Iwata M et al. Mammalian target of rapamycin pathway regulates insulin signaling via subcellular redistribution of insulin receptor substrate 1 and integrates nutritional signals and metabolic signals of insulin. Mol Cell Biol 2001 Aug; 21(15):5050–5062.

    Article  CAS  PubMed  Google Scholar 

  158. Carlson CJ, White MF, Rondinone CM. Mammalian target of rapamycin regulates IRS-1 serine 307 phosphorylation. Biochem Biophys Res Commun 2004 Apr 2; 316(2):533–539.

    Article  CAS  PubMed  Google Scholar 

  159. Hartley D, Cooper GM. Role of mTOR in the degradation of IRS-I: Regulation of PP2A activity. J Cell Biochem 2002; 85(2):304–314.

    Article  CAS  PubMed  Google Scholar 

  160. Li Y, Corradetti MN, Inoki K, Guan KL. TSC2: Filling the GAP in the mTOR signaling pathway. Trends Biochem Sci 2004 Jan; 29(1):32–38.

    Article  PubMed  CAS  Google Scholar 

  161. Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H et al. The TSCI-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol 2004 Jul 19; 166(2):213–223.

    Article  CAS  PubMed  Google Scholar 

  162. Drucker DJ. The biology of incretin hormones. Cell Metab 2006 Mar; 3(3):153–165.

    Article  CAS  PubMed  Google Scholar 

  163. Brubaker PL, Drucker DJ. Glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut and central nervous system. Endocrinology 2004 Mar 24; 145(6):2653–2659.

    Article  CAS  PubMed  Google Scholar 

  164. De Leon DD, Deng S, Madani R, Ahima RS, Drucker DJ, Stoffers DA. Role of endogenous glucagon-like peptide-1 in islet regeneration after partial pancreatectomy. Diabetes 2003 Feb; 52(2): 365–371.

    Article  PubMed  Google Scholar 

  165. Habener JF, Kemp DM. Insulinotropic glucagon-like peptides. In: Diabetes Mellitus: A Fundamental and Clinical Text, 3rd ed., LeRoith D, Taylon SI, Olefsky JM (eds.), Lippincott Williams and Wilkins, Philadelphia, 2004, pp. 99–113.

    Google Scholar 

  166. Buteau J, Foisy S, Rhodes CJ, Carpenter L, Biden TJ, Prentki M. Protein kinase Czeta activation mediates glucagon-like peptide-1-induced pancreatic beta-cell proliferation. Diabetes 2001 Oct; 50(10):2237–2243.

    Article  CAS  PubMed  Google Scholar 

  167. Buteau J, Roduit R, Susini S, Prentki M. Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta (INS-I)-cells. Diabetologia 1999 Jul; 42(7):856–864.

    Article  CAS  PubMed  Google Scholar 

  168. Idris I, Patiag D, Gray S, Donnelly R. Exendin-4 increases insulin sensitivity via a PI-3-kinasedependent mechanism: Contrasting effects of GLP-1. Biochem Pharmacol 2002 Mar 1; 63(5): 993–996.

    Article  CAS  PubMed  Google Scholar 

  169. Hui H, Nourparvar A, Zhao X, Perfetti R. Glucagon-like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5′-adenosine monophosphate-dependent protein kinase A-and a phosphatidylinositol 3-kinase-dependent pathway. Endocrinology 2003 Apr; 144(4):1444–1455.

    Article  CAS  PubMed  Google Scholar 

  170. Drucker DJ. Glucagon-like peptides: Regulators of cell proliferation, differentiation, and apoptosis. Mol Endocrinol 2003 Feb; 17(2):161–171.

    Article  CAS  PubMed  Google Scholar 

  171. Li Y, Hansotia T, Yusta B, Ris F, Halban PA, Drucker DJ. Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis. J Biol Chem 2003 Jan 3; 278(1):471–478.

    Article  CAS  PubMed  Google Scholar 

  172. Giraud J, Leshan R, Lee YH, White MF. Nutrient-dependent and insulin-stimulated phosphorylation of insulin receptor substrate-1 on serine 302 correlates with increased insulin signaling. J Biol Chem 2004 Jan 30; 279(5):3447–3454.

    Article  CAS  PubMed  Google Scholar 

  173. Kitamura T, Nakae J, Biggs J, White MF, Arden KC, Accili D. The transcription factor FKHR promotes beta cell survival in IRS-2 knockout mice. VIII International Symposium on Insulin Receptors and Insulin Action, 2001 May 5; 85.

    Google Scholar 

  174. Rhoads RE. Signal transduction pathways that regulate eukaryotic protein synthesis. J Biol Chem 1999 Oct 22; 274(43):30337–30340.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

White, M.F. (2008). The Relationship Between the Insulin Receptor Substrates and Metabolic Disease. In: Hansen, B.C., Bray, G.A. (eds) The Metabolic Syndrome. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-60327-116-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-116-5_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-738-9

  • Online ISBN: 978-1-60327-116-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics