Skip to main content

Part of the book series: Cancer Drug Discovery and Development™ ((CDD&D))

  • 859 Accesses

Summary

The elucidation of the human genome sequence and the advent of genomic technologies have the potential to facilitate drug discovery and development as well as to define individual risks and benefits associated with specific therapeutic interventions. This chapter focuses on the application of this knowledge within the pharmaceutical industry, by providing current examples of the relevance of both germline and somatic genotypic variations to adverse event and efficacy profiles of recently developed anti-cancer drugs. These examples, discussed within the scientific, regulatory, and economic frameworks that shape the industry, highlight both the potential benefits and the emerging challenges to the application of post-genomic science to “real-life” drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guttmacher AE, Collins FS. Realizing the promise of genomics in biomedical research. JAMA 2005;294:1399–1402.

    Article  CAS  PubMed  Google Scholar 

  2. Flowers CR, Veenstra D. The role of cost–effectiveness analysis in the era of pharmacogenomics. PharmacoEconomics 2004;22:481–493.

    Article  PubMed  Google Scholar 

  3. Roses AD. Pharmacogenetics and drug development: the path to safer and more effective drugs. Nat Rev Genet 2004;5:645–656.

    Article  CAS  PubMed  Google Scholar 

  4. Collins FS. Genetics: an explosion of knowledge is transforming clinical practice. Geriatrics 1999;54:41–47; quiz 8.

    CAS  PubMed  Google Scholar 

  5. Lindsay MA. Target discovery. Nat Rev Drug Discov 2003;2:831–838.

    Article  CAS  PubMed  Google Scholar 

  6. Challenges and Opportunities on the Critical Path to New Medical Products. In: Food and Drug Administration, 2004. http://www.fda.gov/oc/initiatives/criticalpath/whitepaper.html.Accessed 17 May 2008.

  7. Salerno RA, Lesko LJ. Three years of promises, proposals, and progress on optimizing the benefit–risk of medicines: a commentary on the 3rd FDA-DIA-PWG-PhRMA-BIO pharmacogenomics workshop. Pharmacogenomics J 2006;6:78–81.

    Article  CAS  PubMed  Google Scholar 

  8. Innocenti F, Ratain MJ. Irinotecan treatment in cancer patients with UGT1A1 polymorphisms. Oncology (Williston Park) 2003;17:52–55.

    Google Scholar 

  9. Ware JH. The limitations of risk factors as prognostic tools. N Engl J Med 2006;355:2615–2617.

    Article  CAS  PubMed  Google Scholar 

  10. Conrad DF, Jakobsson M, Coop G et al. A worldwide survey of haplotype variation and linkage disequilibrium in the human genome. Nat Genet 2006;38:1251–1260.

    Article  CAS  PubMed  Google Scholar 

  11. Gibson N, Jawaid A, March R. Novel technology and the development of pharmacogenetics within the pharmaceutical industry. Pharmacogenomics 2005;6:339–356.

    Article  CAS  PubMed  Google Scholar 

  12. Cardon LR, Idury RM, Harris TJ et al. Testing drug response in the presence of genetic information: sampling issues for clinical trials. Pharmacogenetics 2000;10:503–510.

    Article  CAS  PubMed  Google Scholar 

  13. Burris HA, 3rd, Hurwitz HI, Dees EC et al. Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J Clin Oncol 2005;23:5305–5313.

    Article  PubMed  Google Scholar 

  14. Zaks T, Akkari A, Briley L et al. Role of pharmacogenetic studies in early clinical development: Phase I studies with lapatinib.J Clinl Oncol 2006;24:3029.

    Google Scholar 

  15. Geyer CE, Forster J, Lindquist D et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 2006;355:2733–2743.

    Article  CAS  PubMed  Google Scholar 

  16. Cusatis G, Gregorc V, Li J et al. Pharmacogenetics of ABCG2 and adverse reactions to gefitinib. J Natl Cancer Inst 2006;98:1739–1742.

    Article  CAS  PubMed  Google Scholar 

  17. Elkind NB, Szentpetery Z, Apati A et al. Multidrug transporter ABCG2 prevents tumor cell death induced by the epidermal growth factor receptor inhibitor Iressa (ZD1839, Gefitinib). Cancer Res 2005;65:1770–1777.

    Article  CAS  PubMed  Google Scholar 

  18. Milano G, Lescaut W, Formento J et al. HER2 genetic polymorphism and pharmacodynamics of trastuzumab-based treatment in breast cancer patients. J Clin Oncol 2005;23:501.

    Google Scholar 

  19. Piccart-Gebhart MJ, Procter M, Leyland-Jones B et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 2005;353:1659–1672.

    Article  CAS  PubMed  Google Scholar 

  20. Press M, Seelig S. Lesson learned from the development of a diagnostic to predict response to herceptin. In: Targeted Medicine, 2004.

    Google Scholar 

  21. Druker BJ. Imatinib as a paradigm of targeted therapies. J Clin Oncol 2003;21:239s–245.

    Article  PubMed  Google Scholar 

  22. Shah NP, Tran C, Lee FY et al. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 2004;305:399–401.

    Article  CAS  PubMed  Google Scholar 

  23. Amler LC, Goddard AD, Hillan KJ. Predicting clinical benefit in non-small-cell lung cancer patients treated with epidermal growth factor tyrosine kinase inhibitors. Cold Spring Harb Symp Quant Biol 2005;70:483–488.

    Article  CAS  PubMed  Google Scholar 

  24. Mendelsohn J, Baselga J. Epidermal growth factor receptor targeting in cancer. Semin Oncol 2006;33:369–385.

    Article  CAS  PubMed  Google Scholar 

  25. Cunningham D, Humblet Y, Siena S et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan–refractory metastatic colorectal cancer. N Engl J Med 2004;351:337–345.

    Article  CAS  PubMed  Google Scholar 

  26. Chung KY, Shia J, Kemeny NE et al. Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol 2005;23:1803–1810.

    Article  CAS  PubMed  Google Scholar 

  27. Bonner JA, Harari PM, Giralt J et al. Radiotherapy plus cetuximab for squamous–cell carcinoma of the head and neck. N Engl J Med 2006;354:567–578.

    Article  CAS  PubMed  Google Scholar 

  28. Penault-Llorca F, Cayre A, Arnould L et al. Is there an immunohistochemical technique definitively valid in epidermal growth factor receptor assessment? Oncol Rep 2006;16:1173–1179.

    PubMed  Google Scholar 

  29. Lievre A, Bachet JB, Le Corre D et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 2006;66:3992–3995.

    Article  CAS  PubMed  Google Scholar 

  30. Romond EH, Perez EA, Bryant J et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 2005;353:1673–1684.

    Article  CAS  PubMed  Google Scholar 

  31. Kim C, Bryant J, Horne Z et al. Trastuzumab sensitivity of breast cancer with coamplification of HER2 and cMYC suggests pro-apoptotic function of dysregulated cMYC in vivo. Breast Cancer Res Treat 2005;94:S6.

    Google Scholar 

  32. Lu Y, Zi X, Zhao Y et al. Insulin-like growth factor–I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst 2001;93:1852–1857.

    Article  CAS  PubMed  Google Scholar 

  33. Nagata Y, Lan KH, Zhou X et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 2004;6:117–127.

    Article  CAS  PubMed  Google Scholar 

  34. Gomez HL, Chavez MA, Doval DC et al. Biomarker results from a phase II randomized study of lapatinib (GW572016) as first-line treatment for patients with ErbB2 FISH-amplified advanced or metastatic breast cancer. Breast Cancer Res Treat 2005;94:S63.

    Article  Google Scholar 

  35. Glas AM, Floore A, Delahaye LJ et al. Converting a breast cancer microarray signature into a high-throughput diagnostic test. BMC Genomics 2006;7:278.

    Article  PubMed  Google Scholar 

  36. Fan C, Oh DS, Wessels L et al. Concordance among gene-expression–based predictors for breast cancer. N Engl J Med 2006;355:560–569.

    Article  CAS  PubMed  Google Scholar 

  37. Burczynski ME, Oestreicher JL, Cahilly MJ et al. Clinical pharmacogenomics and transcriptional profiling in early phase oncology clinical trials. Curr Mol Med 2005;5:83–102.

    Article  CAS  PubMed  Google Scholar 

  38. Dracopoli NC. Development of oncology drug response markers using transcription profiling. Curr Mol Med 2005;5:103–110.

    Article  CAS  PubMed  Google Scholar 

  39. Strand KJ, Khalak H, Strovel JW et al. Expression biomarkers for clinical efficacy and outcome prediction in cancer. Pharmacogenomics 2006;7:105–115.

    Article  CAS  PubMed  Google Scholar 

  40. Campbell DA, Carmichael J, Chopra R. Molecular pathology in oncology: the AstraZeneca perspective. Pharmacogenomics 2004;5:1167–1173.

    Article  PubMed  Google Scholar 

  41. Perou CM, Sorlie T, Eisen MB et al. Molecular portraits of human breast tumours. Nature 2000;406:747–752.

    Article  CAS  PubMed  Google Scholar 

  42. van de Vijver MJ, He YD, van't Veer LJ et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002;347:1999–2009.

    Google Scholar 

  43. Potti A, Mukherjee S, Petersen R et al. A genomic strategy to refine prognosis in early-stage non-small-cell lung cancer. N Engl J Med 2006;355:570–580.

    Article  CAS  PubMed  Google Scholar 

  44. Bild AH, Yao G, Chang JT et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 2006;439:353–357.

    Article  CAS  PubMed  Google Scholar 

  45. Chang JC, Wooten EC, Tsimelzon A et al. Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet 2003;362:362–369.

    Article  CAS  PubMed  Google Scholar 

  46. Dalton WS, Friend SH. Cancer biomarkers: an invitation to the table. Science 2006;312:1165–1168.

    Article  CAS  PubMed  Google Scholar 

  47. Von Hoff DD, Penny RS, Shack S et al. Frequency of potential therapeutic targets identified by immunohistochemistry (IHC) and DNA microarray (DMA) in tumors from patients who have progressed on multiple therapeutic agents. J Clin Oncol 2006;24:18S.

    Article  Google Scholar 

  48. Langer CJ, Stephenson P, Thor A et al. Trastuzumab in the treatment of advanced non-small-cell lung cancer: is there a role? Focus on Eastern Cooperative Oncology Group Study 2598. J Clin Oncol 2004;22:1180–1187.

    Article  CAS  PubMed  Google Scholar 

  49. Lara PN, Jr., Chee KG, Longmate J et al. Trastuzumab plus docetaxel in HER-2/neu–positive prostate carcinoma: final results from the California Cancer Consortium Screening and Phase II Trial. Cancer 2004;100:2125–2531.

    Article  CAS  PubMed  Google Scholar 

  50. Frueh FW, Rudman A, Simon K et al. Experience with voluntary and required genomic data submissions to the FDA: summary report from track 1 of the third FDA-DIA-PWG-PhRMA-BIO pharmacogenomics workshop. Pharmacogenomics J 2006;6:296–300.

    Google Scholar 

  51. Goodsaid F, Frueh F. Process map proposal for the validation of genomic biomarkers. Pharmacogenomics 2006;7:773–782.

    Article  CAS  PubMed  Google Scholar 

  52. Gutman S, Kessler LG. The U.S. Food and Drug Administration perspective on cancer biomarker development. Nat Rev Cancer 2006;6:565–571.

    Article  CAS  PubMed  Google Scholar 

  53. DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ 2003;22:151–185.

    Article  PubMed  Google Scholar 

  54. Million RP. Impact of genetic diagnostics on drug development strategy. Nat Rev Drug Discov 2006;5:459–462.

    Article  CAS  PubMed  Google Scholar 

  55. Risner ME, Saunders AM, Altman JF et al. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer's disease. Pharmacogenomics J 2006;6:246–254.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zaks, T. (2008). Pharmacogenomics in Drug Development: A Pharmaceutical Industry Perspective. In: Innocenti, F. (eds) Genomics and Pharmacogenomics in Anticancer Drug Development and Clinical Response. Cancer Drug Discovery and Development™. Humana Press. https://doi.org/10.1007/978-1-60327-088-5_18

Download citation

Publish with us

Policies and ethics